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ere we are today: Al and Society

AI GOV Administration Actions Apply Now Build your Al Skills Bring your Al Skills to the U.S. Make Your Voice Heard Espariol

PRESIDENT BIDEN

MAKING AI WORK
FOR THE AMERICAN
PEOPLE

JOIN THE NATIONAL Al TALENT SURGE

Apply Now

Al is one of the most powerful technologies of our time. President Biden has been clear
that we must take bold action to harness the benefits and mitigate the risks of Al. The
Biden-Harris Administration has acted decisively to protect safety and rights in the age
of Al, so that everyone can benefit from the promise of Al.

Develop standards, tools, and tests to help ensure
that Al systems are safe, secure, and trustworthy



Modern Neural Network Architectures
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Training Neural Networks



Neural Networks with Rectitied Linear Units (ReLUs)
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f(x) Rectified Linear Unit (ReLU)
(Z)-I— — maX{Oa Z}

<— RelLLU neurons

fle) = Z v; (w; x)y



“Training” Neural Networks

Consider the optimization
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data fitting term L(v,w) regularize sum of squared weights

Gradient descent update for v; (same for w)
v, — vV — ,u(vajL + )\’Uj)
< v; — uVe, L — pAv;

descent weight decay
on L

Standard approach when training neural networks (possibly with a different loss)



Neural Balance

because RelU is piecewise linear

vj(wfw)+ = o ! V; (aw?w)+ , Vo > “Neural

=, Balance”

Proof: The solution to the optimization

: 2 —1,.112
min [awll; + o™ vl|;

is a = /[Jv]l2/[wl]

at the global minimum ||v,||2 = |jw,||2 and therefore

(lojlI2 + llwsll2) = llvsllz lw;ll2

DO | —

Grandvalet, Y. (1998). Least absolute shrinkage is equivalent to quadratic penalization. In International
Conference on Atrtificial Neural Networks (pp. 201-206).

Neyshabur, B., Tomioka, R., & Srebro, N. (2015). In Search of the Real Inductive Bias: On the Role of
Implicit Regularization in Deep Learning. In ICLR (Workshop).



Secret Sparsity of Weight Decay

gradient descent with weight decay aims to minimize
sum of losses + sum of squared weights
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squared

- “ " L. ¢? norm
same global minima as “path-norm” regularization

min —ZHyZ ng wla) |2 + A ol flws s
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“path-norm”

same global minima as constrained ¢! regularization

min ZH% Zvj wla,), ||, + AZvaHz

v,w:||w;|2=1

“multi-task” lasso



Weight Decay Produces Sparse Networks

data and neural net fit

training a 320 neuron RelLLU
network to fit 32 data points

sparsity = # nonzero weights
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320
weight decay (eventually)

produces a very sparse

neural network ... 107 - — (Sjpfrsfl_’iy
after millions of GD steps! — data-i ergor
— sparsity ¢

equivalent ¢! path-norm regularization
(gradient descent + soft-thresholding)
converges 15X faster
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Accurate, Robust, and Sparser Networks

prox gradient best at finding

sparse and accurate models
(also more robust to label noise)

100 /
_ QSW
8\.0, — Group Lasso
O 961 Lasso
< o == ||w||2]|v]|2 prox
& —@— Weight Decay
2 02

900 512 2621 1342 687 3.52
Neuron Remain (%)

architecture: three-layer, fully connected, dataset: MNIST



What Kinds of Functions Do
Neural Networks Learn?



Shallow Networks and Neural Balance
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Equivalent optimizations:

T 2 A 9 2  weight d
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Norm on the Space of Neural Network Functions

K
F = {f R 5 R : f(a Zv] w+,fw36Rd UJER}

j=1

The path-norm is a norm on F

11 := > lvjlllaw;ll2
j

Completion of F with respect to || - || is the Banach space of all functions generated
by “infinite-width” neural networks. Each such function f is expressed as an integral
over neurons with respect to a finite measure v

f@ = [ '), dvw

Universal approximation bounds for superpositions of a sigmoidal function
AR Barron - |IEEE Transactions on Information theory, 1993 - ieeexplore.ieee.org

Breaking the curse of dimensionality with convex neural networks
F Bach - The Journal of Machine Learning Research, 2017 - dl.acm.org



Path-Norm Related to Derivatives of f

f(r) = vy (wix+b1)r + vo (woxr +bo)r + v3(wzx+ b3)s
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distributional //
(second) derivative f

more precisely:
ath-norm — vw;| = el second-order
i /) Z‘ ‘ /’f (@) total variation of f,
denoted by TV?(f)

Savarese, P., Evron, |., Soudry, D., & Srebro, N. (2019, June). How do infinite width bounded norm
networks look in function space?. In Conference on Learning Theory (pp. 2667-2690). PMLR.



Weight Decay = TVQ(f) Regularization

weight decay is gradient of squared ¢* regularization

n

1 2 A
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equivalent to ¢! regularization
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equivalent to TV?(f) regularization

1O ’ 2
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i=1 j remember: just think
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F () of this as [ |f"(x)| dx

BV? is the space of all functions with TVZ(f) < oc



Neural Network Representer Theorem (Parhi & N, 2020): For any dataset
{xi,y:} and any lower semicontinous loss function ¢, there exists a solution to

n

min, 3 f(@)) + ATV

that is a sparse single hidden-layer ReLU neural network
sparse solution

) = S oieee ) o fror i)

k=1 . .
RelLU neurons  skip connection

. . . 2
e properties of differential operator D? := dd?:

RelLUs and null space = {linear functions}

Green’s functions are

e cach f € BV? can be expressed in terms of finite measure v
e, D°f = v = vt —v~

e minimizing total variation ||v||x;y = [ dvT+ [ dv~ subject to linear constraints

Is the measure recovery problem = solution is sum of Dirac impulses
Zuhovickii ‘48

e pseudoinverse (integrating twice) (D2)Jr 0 = RelLU activation function



Non-Unigueness of Solution

minimum TV? interpolation of data

""""""

A— i also a minimum TV® interpolation

there are infinite number of neural network interpolators that minimize TV?



—10

—xtension to Multivariate Case: Radon Transform

( 1 mME 1 r .
! differentiate Ime*_s a.Iong filtered Dirac 0 at each
| twice | activation == Radon 1= iron’s angle/offset
_ ) thresholds transform
_ W,
7 ReLLU neuron network
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1 w = (sin 6, cos )

path-norm(f) = Y |vi|||wk|2 = total variation of A1 ZAf

Radon-domain second-order total variation

Ongie, G., Willett, R., Soudry, D., & Srebro, N. (2020). A Function Space View of Bounded Norm Infinite
Width ReLU Nets: The Multivariate Case. In International Conference on Learning Representations.



Multidimensional RelLU Neurons

ReLU function: gb(w1$1 + WoXo — bo)

Laplacian of
RelLU is a
“Dirac line”

Laplacian of ReLU: A¢p = 2% 4 9°¢

| 8:1:%

|w]|2 filtered Radon
transform of line
Is Dirac impulse

0

>

filtered Radon transform:
AR AN = |w|28(b—by)d(0 —tan—t w2) 1

2

H’UJHQ 5(t — bo) 5((9 — tan_l ﬂ)

w2

indicates slope, orientation and offset of ridge



The Banach Space ZBV-

. 9 9 ~ total variation of
Radon domain TV*: ZTV?(f) := measure A4~ ZA f

A1% = filtered Radon transform
d

A = 282/8:13% = Laplacian operator
k=1

measures “sparsity” (L!-like norm) of second derivatives along each direction in R

Second-Order Bounded Variation Space in Radon Domain:
ZBV(RY) == {f:RY =R, ZTV?(f) < o0}

Banach space representer theorems for neural networks and ridge splines
R Parhi, RD Nowak - The Journal of Machine Learning Research, 2021 - dl.acm.org




Neural Network Representer Theorem (Parhi & N, 2020): For any dataset
{@x;,y;} and any lower semicontinous loss function ¢, there exists a solution to

with a representation in the form of a single hidden-layer neural network
sparse solution

- ReLU neurons sklp connection

I

implication: nonparametric problem reduces to training
finite-dimensional neural network with weight decay

e

7
. ’ /



Neural Networks Adapt to Directional Smoothness

sample
locations (red)

AR

reconstructions from samples

thin-plate spline Neural Tangent Kernel RelLU net

linear methods cannot adapt to directional smoothness in function/data



Minimax Optimality of ReLLU Networks

Let © C R¥ be a bounded domain. A function f € ZBV?(Q) can be
approximated by a finite-width m RelLU neuron network f,,, satisfying

If =l = O(m~4¥3/0) = O(m™)

Estimating f in this class from n nicely distributed samples on 2 C R

~ _ ™m ~ _ d+3 _
B = fullfey = O (00 + ) = O i) = o™/
approx. . no curse
+ variance
error
this is the minimax rate for ZBV?(Q)
In contrast, for any linear method (thin-plate spline, RKHS
neural tangent kernel) the linear minimax rate is n~ T3
N
the curse

Parhi & N, 21



Data Fitting and Extrapolation

samples (red) . : RelLU net +
of 2D function thin-plate spline ReLU NTK weight decay

h B BN

neural networks learn and extrapolate very differently than classical
multivariate estimation techniques and kernel methods in general



What Kinds of Functions Do
Deep Neural Networks Learn”




Vector-Valued Networks

fi(x)

r ¢ R

S o (@)

g oy, AN N\
RN \ O D'CERDS f /7
NN g

equivalent optimizations:
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natural norm for vector-valued neural network functions



Vector-Valued Function Spaces

. 1
min oy =Y (), + 2D vl
i=1 J J

v,w:||w,|2=1

continuum width networks:

(@)
f2()
@ = | = e )
) we d—1 \
- fa(x) | finite vector-valued measure
Ifll := |lv| = total variation of £*-norm of v

= Z |v;||2 for finite width networks

J :
weight decay encourages a small norm

Vector-Valued Variation Spaces and Bounds on Neural Network Widths
J. Shenouda, R. Parhi, K. Lee, RN (2023)



Deep Representer Theorem

Let %BViep denote space of functions generated by taking
compositions of functions from the vector-valued variation space

Multilayer Representer Theorem (Parhi & N 2021, Shenouda et al 2023): For any
dataset {«;,y:} and any lower semicontinous loss function ¢, there exists a solution to

min Zf(yz,f(wz)) + A%TViep(f)

2
fe‘%BVdeep =1

with a representation in the form of a sparse multilayer ReLU neural network
with < nd; neurons in [-th layer

implication: nonparametric problem reduces to training
multi-layer neural network with weight decay



The Effect of Weight Decay

£l = Z |v]|2 for finite width networks
dense weights sparse weights Sparse neurons
w
: fi(z)
f1(x) fi(z
fa(x) f2()
fa(x) o fa(z)

IfIl = O(wVd)

weight decay encourages functions with strong variations
in only a few directions (sparse weights)

|fIl = O(Va)

weight decay encourages output functions to “share” neurons



Another Consequence: Tight Bounds on Widths

consider one RelLU layer within a deep network

neuron outputs

P = {qbi}?:l

layer outputs
= {4}, CR?

O

<:>,., A 52
patterns P o Tl

O

O

VT NN N I (N .
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/ 37 V7 YAV PI P AT WARE) 3 Sl X
17/ /A A1/, T 1/ /% N N ¥ N

Layer Width Theorem : Let ® and W be matrices composed of the post-activation
features and the outputs of a RelLU layer in a deep net, trained to minimize the
weight decay objective. Then there exists a representation of this layer with K
neurons where K satisfies

K < rank(®) x rank(¥) < nd

can be a significant improvement on best prior bound of n? (Jacot et al '22)
relevant because in practice the ranks often become small at deeper layers



Sparsitying Trained Networks

VGG-19 trained to minimize cross-entropy loss 4+ weight decay on CIFAR10

final ReLU layer
\ 512 neurons
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Theory: K < rank(®) x rank(¥) =~ 10 x 10 neurons are sufficient

truck

VvV VvV
Active Neurons 512 47
Test Accuracy 93.92% 93.88%
Train Loss 0.0104 0.0112

multi-task lasso finds an equivalent solution (wrt training data) with just 47 neurons!



sSummary

RelLU neural networks are optimal solutions to data-fitting problems
In new function spaces:

Radon-domain bounded variation space

Banach space, not Hilbert space

immune to curse-of-dimensionality

solutions are sparse / narrow

adaptive to spatial and directional varying smoothness

Weight Decay is equivalent to “multi-task lasso” regularization and
thus promotes solutions that have strong variation in limited directions
and encourages outputs to share neurons

Thanks!
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