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Introduction Multi-fidelity data

Multi-Fidelity Simulations

@ Computer models have been widely adopted to understand a
real-world feature, phenomenon or event.

@ Computer simulations are used to solve these models (e.g., finite
element / finite difference) .
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Introduction Multi-fidelity data

Multi-Fidelity Simulations

@ Computer models have been widely adopted to understand a
real-world feature, phenomenon or event.

@ Computer simulations are used to solve these models (e.g., finite
element / finite difference) .

@ The simulation can be either
e High-fidelity simulation: costly but close to the truth
o Low-fidelity simulation: cheaper but less accurate

o (intermediate-fidelity simulation)
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Introduction Finite Element Simulations

Motivated Example: Finite Element Simulations

@ Thermal stress of jet engine turbine blade can be analyzed through a
static structural computer model.

@ The model can be numerically solved via finite element method.
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Introduction Finite Element Simulations

Motivated Example: Finite Element Simulations

@ Thermal stress of jet engine turbine blade can be analyzed through a
static structural computer model.

@ The model can be numerically solved via finite element method.
@ Input: x = (x1, x2) = (pressure, suction)
@ Output: f(x): average of thermal stress

@ eg., x=(0.23,0.71)

Figure: average of thermal stress f(0.23,0.71) = 10.5
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Introduction Finite Element Simulations

Multi-Fidelity Simulations via Mesh Configuration

less accurate but cheaper accurate but expensive

Simulation accuracy

x = (0.50,0.50) ~ u

s

Simulation cost

x = (0.23,0.71)
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Introduction Finite Element Simulations

Statistical Emulation

@ Can we leverage both low- and high-fidelity simulations in order to
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Introduction Finite Element Simulations

Statistical Emulation

@ Can we leverage both low- and high-fidelity simulations in order to

@ maximize the accuracy of model predictions,

@ while minimizing the cost associated with the simulations?
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Introduction Finite Element Simulations

Statistical Emulation

@ Can we leverage both low- and high-fidelity simulations in order to
@ maximize the accuracy of model predictions,
@ while minimizing the cost associated with the simulations?

@ A cheaper statistical model emulating the model output based on the
simulations with multiple fidelities

e Often called emulator or surrogate model

High-fidelity
data

Low-fidelity
data

Emulation

Statistical
model
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Introduction Finite Element Simulations

Notation

fidelity level 1 2 3
output A(x) H(x) (x)

mesh size hy > ho > h3

cost G < G < G

x = (0.50, 0.50)
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Introduction Finite Element Simulations

Existing Methods

@ Modeling:
e Co-kriging (Kennedy and O'Hagan, 2000, and many others)

ﬁ(X) :p/,lf/,l(x)—l—Z/,l(x), /:27,L

where both f;_1(x) and Z;_1(x) have Gaussian Process (GP) priors.
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Introduction Finite Element Simulations

Existing Methods

@ Modeling:
e Co-kriging (Kennedy and O'Hagan, 2000, and many others)

ﬁ(X) :p/,lf/,l(x)—l—Z/,l(x), /:27,L
where both f;_1(x) and Z;_1(x) have Gaussian Process (GP) priors.
o Non-stationary GP (Tuo, Wu and Yu, 2014): emulate f,,(x) as hoo — 0

Ox, &%,

o Experimental Design: Nested space-filling @
design (Qian, Ai, and Wu, 2009, and many O @

others) O O
XL CX1C---CX @ O @
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Introduction Finite Element Simulations

Questions

@ Q1: Sample size of each level?
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Introduction Finite Element Simulations

Questions

@ Q1: Sample size of each level?
@ Q2: How many fidelity levels?

@ Q3: Mesh size/density specification?
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Introduction Finite Element Simulations

Questions

@ Q1: Sample size of each level?
@ Q2: How many fidelity levels?
@ Q3: Mesh size/density specification?

@ Q4: Is it better than single-fidelity simulation?
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Stacking Design ML Interpolator

Multi-Level Interpolator

@ Goal: Emulate fio(x)
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Stacking Design ML Interpolator

Multi-Level Interpolator

@ Goal: Emulate fio(x)

@ Idea: with f(x) =0
fu(x) = (f(x) = fo(x)) + (R(x) = A(x)) + -+ (f(x) = fi-1(x))

@ Assume the datais nested X; C X;_1 C---C Xy
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Stacking Design ML Interpolator

Multi-Level Interpolator

@ Denote the difference D; = fi( X)) — fi_1(X)) at nested sites X;
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Stacking Design ML Interpolator

Multi-Level Interpolator

@ Denote the difference D; = fi( X)) — fi_1(X)) at nested sites X;

@ The reproducing kernel Hilbert space (RKHS) interpolator for each
(fi(x) = fi-1(x)) is

A

Z)(x) = &(x, X)X, X)) ' D,

where @, is a positive definite kernel function.
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Stacking Design ML Interpolator

Multi-Level Interpolator

@ Denote the difference D; = fi( X)) — fi_1(X)) at nested sites X;

@ The reproducing kernel Hilbert space (RKHS) interpolator for each
(fi(x) = fi-1(x)) is

Z)(x) = &(x, X))®,(X), X)) Dy,

where @, is a positive definite kernel function.

@ ML Interpolator:

11/41
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Stacking Design ML Interpolator

Matérn kernel

Assumption: Matérn kernel ¢

®(x,x) = ¢:(1[0)(x — x)|2)

with

oi(r) = r(VI)2V’_ (2\/>r)l B, (2v/vir),

@ v;: smoothness parameter
@ 0. lengthscale parameter
@ o7: scalar parameter

@ B,: the modified Bessel function of the second kind
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Stacking Design ML Interpolator

Matérn kernel

Assumption: Matérn kernel ¢

®(x,x) = ¢:(1[0)(x — x)|2)

with

¢i(r) = r(yl)2y,_ (2\/>r)l V/(2fr)

v;: smoothness parameter

0, lengthscale parameter

°
°

@ o7: scalar parameter

@ B,: the modified Bessel function of the second kind
°

Parameters can be estimated via either CV or MLE (by a GP
assumption)

Chih-Li Sung (MSU) Stacking Designs TAMIDS
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Stacking Design ML Interpolator

Note of ML Interpolator

@ Alternatively, one can assume Zj(x) follows a Gaussian process (GP)
prior.
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Stacking Design ML Interpolator

Note of ML Interpolator

@ Alternatively, one can assume Zj(x) follows a Gaussian process (GP)
prior.

@ The posterior mean is equivalent to the ML Interpolator ?L(x).

@ Can be viewed as a special case of Kennedy and O’Hagan (2000)
model (p; = 1)
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Stacking Design Error Analysis

Error Analysis of ML Interpolator

@ ML Interpolator f(x) = Zi(x) + Za(X) + - - - + Z1(X)

@ Recall our goal is to emulate £, (x)
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Stacking Design Error Analysis

Error Analysis of ML Interpolator

@ ML Interpolator f(x) = Zi(x) + Za(X) + - - - + Z1(X)

@ Recall our goal is to emulate £, (x)

[foo(x) = FL)| < [foo(x) — fL(x)| + | f(x) — Fu(x)]-

simulation error emulation error
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Stacking Design Error Analysis

Idea of Stacking Design

@ Given a desired accuracy € > 0
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Idea of Stacking Design

@ Given a desired accuracy € > 0

o We wish ||fy, — || < € (i.e., with target predictive accuracy!)
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Stacking Design Error Analysis

Idea of Stacking Design

@ Given a desired accuracy € > 0

o We wish ||fy, — || < € (i.e., with target predictive accuracy!)

%

Stacking Design
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Stacking Design Error Analysis

Control emulation error ||f; — lA‘LH

Proposition 1: Emulation error

Suppose that
@ the input space is d-dimensional and is bounded and convex,
@ X is quasi-uniform with sample size ny,

Then,

v, _—v/d
[fu(x) — Fu(x \<cz||0/||2'n, 91— it a2,

where || - |||N¢I(Q) is the RKHS norm.
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Stacking Design Error Analysis

Control emulation error ||f; — lA‘LH

Proposition 1: Emulation error

Suppose that
@ the input space is d-dimensional and is bounded and convex,
@ X is quasi-uniform with sample size ny,

Then,

v, _—v/d
[fu(x) — Fu(x \<cz||0/||2'n, 91— it a2,

where || - |||N¢I(Q) is the RKHS norm.

@ Denote gx = mini<jsi<n|[X; — X«||/2 and hx o as the fill distance.

o A design X, satisfying hx a/qx < C for some constant C is called a
quasi-uniform design.
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Stacking Design Error Analysis

Sample size determination n,

@ Sample size n; can be determined by minimizing the error bound and
the total cost by the method of Lagrange multipliers

L

L
S NO5 Ny = fialln, @) + A MG,
=1 =1
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Stacking Design Error Analysis

Sample size determination n,

@ Sample size n; can be determined by minimizing the error bound and
the total cost by the method of Lagrange multipliers

L

Z 161115 m =91 = fitll @) + AD_ MGy
=1

which gives
d/(v+d)

0 vy
(H A 1 = fi1ll g (Q))

for some constant ;1 > 0.
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Stacking Design Error Analysis

Sample size determination n,

@ Sample size n; can be determined by minimizing the error bound and
the total cost by the method of Lagrange multipliers

L

Z 161115 m =91 = fitll @) + AD_ MGy
=1

which gives

d/(vj+d)

0 vy
(H A 1 = fi1ll g (Q))

for some constant ;1 > 0.

o Find // such that ||, — || < ¢/2
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Stacking Design Error Analysis

Sample size determination n,

L
IfL— fL” < Z HP/”“f/ - f/—]-HNd),(Q) < 6/2
=1

e Pi(x) is a power function

® |[fi — fi-1l| Ny, can be estimated by |’Z”N¢,(Q)
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Stacking Design Error Analysis

Sample size determination n,

L
IfL— fL” < Z HP/”“f/ - f/—]-HNd),(Q) < 6/2
=1

e Pi(x) is a power function

® |[fi — fi-1l| Ny, can be estimated by |’Z”N¢,(Q)

Estimated Upper Bound
I
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Stacking Design Error Analysis

Sample size determination n,

L
1 = Fell < D NP = fimtllng o < €/2

=1

@ Py(x) is a power function

o ||fi— f,_1||N¢/(Q) can be estimated by HZHN‘”/(Q)

30
T \
= \
@
8 20 !
o \
[=%
> \
° ~
L ~
g 10 =
- ~
17] ~ o
w _—
1 2 3
w
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Stacking Design Error Analysis

Questions

@ Q1: Sample size of each level? n;
@ Q2: How many fidelity levels?
@ Q3: Mesh size/density specification?

@ Q4: Is it better than single-fidelity simulation?

Chih-Li Sung (MSU) Stacking Designs TAMIDS 20/ 41



Stacking Design Error Analysis

Control simulation error ||f,, — f/|

Error Rate of finite element simulations

(Brenner and Scott, 2007, Tuo, Wu and Yu, 2014) Under some regularity
conditions, for a constant o € N,

|foo(x) — fL(x)| < chf.

Recall h; is the mesh size.

0.15 ‘

0.10

1X) = £ ()1
\H]
\

0.00
000625  0.0125 0.025 0.05 . 0.2
(1=6) (1=5) (1=4) (1=3) (1=2) (1=1)
mesh size

TAMIDS
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Stacking Design Error Analysis

Determine the fidelity level L

@ Let hy = hy2~! where ho/2 is the mesh size of the lowest fidelity
simulator f1(x).
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Stacking Design Error Analysis

Determine the fidelity level L

@ Let hy = hy2~! where ho/2 is the mesh size of the lowest fidelity
simulator f1(x).

@ Suppose |fy(x) — f1(x)| & ch® = cph§2—ot

Chih-Li Sung (MSU) Stacking Designs TAMIDS 22 /41



Stacking Design Error Analysis

Determine the fidelity level L

@ Let hy = hy2~! where ho/2 is the mesh size of the lowest fidelity
simulator f1(x).

@ Suppose |fy(x) — f1(x)| & ch® = cph§2—ot
@ One can show that

fi—fi
<HL 1|

where ||f, — f;_1|| can be approximated by || Z,]|.

22 /41
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Stacking Design Error Analysis

Determine the fidelity level L

@ Let hy = hy2~! where ho/2 is the mesh size of the lowest fidelity

simulator f1(x).
@ Suppose |fy(x) — f1(x)| & ch® = cph§2—ot

@ One can show that

1L — fLal|
fo — fi|| < 1L~ f-1ll
| | < a1

where ||f, — f;_1|| can be approximated by || Z,]|.

@ Find L that ensures 2“2 Ll < €/2

TAMIDS 22 /41
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Stacking Design Error Analysis

Determination of «

@ Tuo, Wu and Yu (2014) determines « according to the quantity of
interest
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Stacking Design Error Analysis

Determination of «

@ Tuo, Wu and Yu (2014) determines « according to the quantity of
interest

@ Alternatively, it can be determined by collected data (can be done
only when L > 3) (details omitted)

L=3 L=4
e éﬂ
1 = -
1.2 .
H
T 14
225 200 175 -150 -1.25 -2.5 -2.0 -1.5
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Stacking Design Error Analysis

Questions

@ Q1: Sample size of each level? n;
@ Q2: How many fidelity levels? L
@ Q3: Mesh size/density specification? h; = ho2~'

@ Q4: Is it better than single-fidelity simulation?
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Stacking Design Stacking design with target predictive accuracy

Stacking design with error upper bound ¢

o ldea: Start with low-fidelity simulations and sequentially increase the

[P
ety < €/2.

fidelity level until
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Stacking Design Stacking design with target predictive accuracy

Stacking design with error upper bound ¢

o ldea: Start with low-fidelity simulations and sequentially increase the
[

fidelity level until ;&5 < ¢€/2.
yes Return the
‘ MLGP f,
St?ﬁ:’s':\hsfzzl Find 7, and run Is
by = he/2) fi(x) of size | iz <&
L0 for each ( 2a_q

(lowest fidelity)

no

L=L+1
(increase fidelity)
hy = hy/2
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Real Application

Revisit motivated example

mesh size = 0.05 mesh size = 0.025 mesh size = 0.0125

@ Input: x = (x1, x2) = (pressure, suction)

@ Output: f(x): average of thermal stress
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Real Application

Revisit motivated example

mesh size = 0.05 mesh size = 0.025 mesh size = 0.0125

@ Input: x = (x1, x2) = (pressure, suction)
@ Output: f(x): average of thermal stress

@ Test data: Simulations with mesh size h ~ 0 at 20 uniform test input
locations are conducted to examine the performance
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Real Application

Revisit motivated example

@ We wish ||fo — ?LHLz(Q) <e=5
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Real Application

Revisit motivated example

@ We wish ||fo — ?LHLz(Q) <e=5

X2 (suction side)

% 40 6 8
sample size

L=1

h, 0.05

Chih-Li Sung (MSU) Stacking Designs
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Real Application

tivated example

o We wish ||f,o — 7| <e=5

L=1 L=2
= =
(m] =
| o _ 0O o/=1
zh o8 o o -
@ o @ Ol=
5 g Sl W
3 o i o A=3
o o © 1=4
o o
x1 (pressure side) x1 (pressure side)
n n
n n 10
n 13 n 17
% 40 6 8 6 20 d e &
sample size sample size
L=1 L=2
hy 0.05 0.025
(sec.)
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Real Application

tivated example

o We wish ||f,o — 7| <e=5

L=1 L=2 L=3
[m) [m) [m]
o o F ol Pg 0D o8 oi/=1
7 o |g| o o s| ©p o°-0
sp 2 o |2 oo Oles
o z|lo | o q Ol=
§ O 5 qu Sy o qu
| | A A1-
| o |s|© " sp® 8
o o o ol _g " =4
a o E‘:‘ 0 [a]
x1 (pressure side) x1 (pressure side) x1 (pressure side)
n n - [ho
n, n: 10 n: 10
n 13 n 17 n 35
% 40 6 8 6 20 d e & 6 20 do e &
sample size sample size sample size
L=1 L=2 L=3
hy, 0.05 0.025 0.0125
(sec.)
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Real Application

L=1 L=2 L=3 L=4
o al ] o o a g D Bl D%DD ) 5:‘ O/=1
=l O = o & 0Co |sp %O
3 ol3 o g ©pg i
a P a o |3 03 fa &) Ol=2
= 5 ° o % s S
(T I o I ®, ol e am
2l g 2 - 2 A e
o o m] ] @D o Q‘E\D% @OD ] %dj% [ia} 1—a
- o %" o9 Bgh @
X1 (pressure side) x1 (pressure side) x1 (pressure side) x1 (pressure side)
- - - ne- l‘“
n- [Tho - [Tho -
o m- 10 ne 10 LS I16 RMSE Ofﬁt'
N 1e P . s - =2.01
I i b o e & S b o e & i oh o &
sample size sample size sample size sample size
L=1 L=2 L=3 L=4
hy 0.05 0.025 0.0125 0.00625
(sec.)
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Real Application

Determination of «

L=3 L=4
1 ﬁﬁ
14 et
- -

1.24 _

| PR = L -~
0.9 - o4 -
0.61-"

! -1

-225 -200 -1.75 -150 -1.25 -25 -2.0 -1.5
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Real Application

Visualize ;(x)
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Cost Complexity Theorem

Cost complexity theorem

Theorem

Suppose that

QV =1V =-""=V
0 |fio(x) — fi(X)] < 127
e (< C22’BI
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Cost Complexity Theorem

Cost complexity theorem

Suppose that

QV =1V ==V
0 |fio(x) — fi(X)] < 127
e (< C22’BI

Under some regularity conditions, it follows that
[foo (%) = F1(x)] <,

with a total computational cost G bounded by

d
C3€_;, % > %Tya
_d _ d
Ciot < { c3e v log(e 1), % = %TV,
_d_2Bv—ad a o
C3€ v 2a(u+d)’ B < P
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Cost Complexity Theorem

Insight on budget allocation

@ When % > %”, the budget Gt is expended on coarser mesh
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Cost Complexity Theorem

Insight on budget allocation

@ When % > 2V the budget Gt is expended on coarser mesh

@ When % < 7, the budget Gt is expended on denser mesh
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Cost Complexity Theorem

Insight on budget allocation

@ When % > %”, the budget Gt is expended on coarser mesh
@ When % < %”, the budget Gt is expended on denser mesh
@ When % = %”, evenly spread
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Cost Complexity Theorem

Insight on budget allocation

@ When % > %”, the budget Gt is expended on coarser mesh
@ When % < %”, the budget Gt is expended on denser mesh
@ When % = %”, evenly spread
a 2v
8 d
simulation error reduction the rate of convergence of
over the rate computational RKHS interpolator as
cost as fidelity increases sample size increases
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Cost Complexity Theorem

Single-fidelity vs Multi-fidelity

@ What if all the budget is expanded on single fidelity simulations?
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Cost Complexity Theorem

Single-fidelity vs Multi-fidelity

@ What if all the budget is expanded on single fidelity simulations?

@ Independent kriging vs co-kriging?
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Cost Complexity Theorem

Single-fidelity vs Multi-fidelity

@ What if all the budget is expanded on single fidelity simulations?

@ Independent kriging vs co-kriging?

o Negative transfer?
Target

Source

Target w/o Source

Negative Transfer
l ML accuracy 70% , | TL accuracy 60% '

Zhang et al. (2021) A Survey on Negative Transfer. IEEE
Transactions on Neural Networks and Learning Systems

TAMIDS
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Cost Complexity Theorem

Complexity of single-fidelity interpolator

Corollary

o Let 7y(x) be the RKHS interpolator based on single-fidelity data
(Xu, fri(Xn))
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Cost Complexity Theorem

Complexity of single-fidelity interpolator

Corollary

o Let 7y(x) be the RKHS interpolator based on single-fidelity data
(Xu, fri(Xn))

@ Suppose that (e/2)1+% < chfy <e/2
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Cost Complexity Theorem

Complexity of single-fidelity interpolator

Corollary

o Let 7y(x) be the RKHS interpolator based on single-fidelity data
(Xu, fri(Xn))

@ Suppose that (e/2)1+% < chfy <e/2

Under some regularity conditions, it follows that

oo (%) = Tu(x)] <,

with a total computational cost Cy bounded by

_B_4d
Chy < cpe o 2v,
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Cost Complexity Theorem

Single-fidelity vs Multi-fidelity

@ When % < %" = ML interpolator has a slower cost rate
@ When % > %” = Single-fidelity RKHS interpolator has a slower cost
rate

@ Example 1: §is small and « is large
o (;=29and =3
o |fo(x) — fi(x)] = 10, and |fo(x) — f5(x)| = 0.001

@ Example 2: v is very small (i.e., nonsmooth (f; — fi_1))

fhigh(x) = fiow®) + (fhigh(x) = fiow (%))

B e e e T T T T T LI B
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Cost Complexity Theorem

Questions

@ Q1: Sample size of each level? n;
@ Q2: How many fidelity levels? L
@ Q3: Mesh size/density specification? h; = ho2~!

@ Q4: Is it better than single-fidelity simulation? In some cases, yes
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Conclusion

Conclusion

@ Stacking design for multi-fidelity simulations with desired accuracy

e Sample determination
o Mesh size determination

@ Cost complexity

e Budget allocation
@ Comparison with single fidelity simulation
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Stacking designs: designing multi-fidelity experiments with target predictive
accuracy

Chih-Li Sung, Yi Ji, Tao Tang, Simon Mak

In an era where scientific experiments can be very costly, multi-fidelity emulators provide a useful tool for cost-efficient predictive scientific
computing. For scientific applications, the experimenter is often limited by a tight computational budget, and thus wishes to (i) maximize
predictive power of the multi~fidelity emulator via a careful design of experiments, and (ii) ensure this model achieves a desired error tolerance
with some notion of confidence. Existing design methods, however, do not jointly tackle objectives (i) and (ii). We propose a novel stacking
design approach that addresses both goals. Using a recently proposed multi-level Gaussian process emulator model, our stacking design
provides a sequential approach for designing multi-fidelity runs such that a desired prediction error of € > 0 is met under regularity
assumptions. We then prove a novel cost complexity theorem that, under this multi-level Gaussian process emulator, establishes a bound on the
computation cost (for training data simulation) needed to achieve a prediction bound of €. This result provides novel insights on conditions
under which the proposed multi-fidelity approach improves upon a standard Gaussian process emulator which relies on a single fidelity level.
Finally, we demonstrate the effectiveness of stacking designs in a suite of si to finite element analysis.

Subjects: Methodology (stat.ME); Applications (stat.AP)
Citeas:  arXiv:2211.00268 [stat.ME]
(or arXiv:2211.00268v2 [stat.ME] for this version)
https://doi.org/10.48550/arXiv.2211.00268 @

Submission history

From: Chih-Li Sung [view email]

[v1] Tue, 1 Nov 2022 04:25:57 UTC (1,462 KB)
[v2] Thu, 22 Jun 2023 19:58:52 UTC (2,077 KB)

We gratefully acknowledge support from the Simons Foundation,
member institutions, and all contributors. Donate

Allfields

Help | Advanced Search

Download:

« PDF
+ Other formats

Current browse context:
stat.ME

<prev | next>
new | recent | 2211
Change to browse by:

stat
stat.AP

References & Citations
+ NASA ADS

» Google Scholar

+ Semantic Scholar
Export BibTeX Citation
Bookmark

31




Thank You|
pporting this wor

Thank NSF DMS 2113407 for

IIIIIIIIII



	Introduction
	Multi-fidelity data
	Finite Element Simulations

	Stacking Design
	ML Interpolator
	Error Analysis
	Stacking design with target predictive accuracy

	Real Application
	Cost Complexity Theorem
	Conclusion

