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Introduction Multi-fidelity data

Multi-Fidelity Simulations

Computer models have been widely adopted to understand a
real-world feature, phenomenon or event.

Computer simulations are used to solve these models (e.g., finite
element / finite difference) .

The simulation can be either

High-fidelity simulation: costly but close to the truth

Low-fidelity simulation: cheaper but less accurate

(intermediate-fidelity simulation)
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Introduction Finite Element Simulations

Motivated Example: Finite Element Simulations

Thermal stress of jet engine turbine blade can be analyzed through a
static structural computer model.

The model can be numerically solved via finite element method.

Input: x = (x1, x2) = (pressure, suction)

Output: f (x): average of thermal stress

e.g., x = (0.23, 0.71)

Figure: average of thermal stress f (0.23, 0.71) = 10.5
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Introduction Finite Element Simulations

Multi-Fidelity Simulations via Mesh Configuration

less accurate but cheaper accurate but expensive

Simulation accuracy

Simulation cost
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Introduction Finite Element Simulations

Statistical Emulation

Can we leverage both low- and high-fidelity simulations in order to

maximize the accuracy of model predictions,

while minimizing the cost associated with the simulations?

A cheaper statistical model emulating the model output based on the
simulations with multiple fidelities

Often called emulator or surrogate model

High-fidelity
data

Low-fidelity
data

Statistical
model

Model
output

Emulation
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Introduction Finite Element Simulations

Notation

fidelity level 1 2 3
output f1(x) f2(x) f3(x)

mesh size h1 > h2 > h3
cost C1 < C2 < C3

Simulation accuracy

Simulation cost
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Introduction Finite Element Simulations

Existing Methods

Modeling:
Co-kriging (Kennedy and O’Hagan, 2000, and many others)

fl (x) = ρl−1fl−1(x) + Zl−1(x), l = 2, . . . , L

where both fl−1(x) and Zl−1(x) have Gaussian Process (GP) priors.

Non-stationary GP (Tuo, Wu and Yu, 2014): emulate f∞(x) as h∞ → 0

Experimental Design: Nested space-filling
design (Qian, Ai, and Wu, 2009, and many
others)

XL ⊆ XL−1 ⊆ · · · ⊆ X1

𝑋! 𝑋"
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Introduction Finite Element Simulations

Questions

Q1: Sample size of each level?

Q2: How many fidelity levels?

Q3: Mesh size/density specification?

Q4: Is it better than single-fidelity simulation?
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Stacking Design ML Interpolator

Multi-Level Interpolator

Goal: Emulate f∞(x)

Idea: with f0(x) = 0

fL(x) = (f1(x)− f0(x)) + (f2(x)− f1(x)) + · · ·+ (fL(x)− fL−1(x))

Assume the data is nested XL ⊆ XL−1 ⊆ · · · ⊆ X1
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Stacking Design ML Interpolator

Multi-Level Interpolator

Denote the difference Dl = fl (Xl )− fl−1(Xl ) at nested sites Xl

The reproducing kernel Hilbert space (RKHS) interpolator for each
(fl (x)− fl−1(x)) is

Ẑl (x) = Φl (x,Xl )Φl (Xl ,Xl )−1Dl ,

where Φl is a positive definite kernel function.

ML Interpolator:

f̂L(x) = Ẑ1(x) + Ẑ2(x) + · · ·+ ẐL(x).
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Stacking Design ML Interpolator

Matérn kernel

Assumption: Matérn kernel Φ

Φl (x, x′) = φl (‖θl (x− x′)‖2)

with
φl (r) = σ2l

Γ(νl )2νl−1
(2√νl r)νl Bνl (2

√
νl r),

νl : smoothness parameter
θl : lengthscale parameter
σ2l : scalar parameter
Bν : the modified Bessel function of the second kind

Parameters can be estimated via either CV or MLE (by a GP
assumption)
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Stacking Design ML Interpolator

Note of ML Interpolator

Alternatively, one can assume Zl (x) follows a Gaussian process (GP)
prior.

The posterior mean is equivalent to the ML Interpolator f̂L(x).

Can be viewed as a special case of Kennedy and O’Hagan (2000)
model (ρl = 1)
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Stacking Design Error Analysis

Error Analysis of ML Interpolator

ML Interpolator f̂L(x) = Ẑ1(x) + Ẑ2(x) + · · ·+ ẐL(x)

Recall our goal is to emulate f∞(x)

|f∞(x)− f̂L(x)| ≤ |f∞(x)− fL(x)|︸ ︷︷ ︸
simulation error

+ |fL(x)− f̂L(x)|︸ ︷︷ ︸
emulation error

.
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Stacking Design Error Analysis

Idea of Stacking Design

Given a desired accuracy ε > 0

We wish ‖f∞ − f̂L‖ < ε (i.e., with target predictive accuracy!)

𝑓! − 𝑓" <
𝜖
2
																													 𝑓" − 𝑓'" <

𝜖
2

determine 𝐿 determine sample sizes 𝑛#

Stacking Design
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Stacking Design Error Analysis

Control emulation error ‖fL − f̂L‖

Proposition 1: Emulation error
Suppose that

the input space is d-dimensional and is bounded and convex,
Xl is quasi-uniform with sample size nl ,

Then,

|fL(x)− f̂L(x)| ≤ c
L∑

l=1
‖θl‖νl

2 n−νl/d
l ‖fl − fl−1‖NΦl (Ω),

where ‖ · |‖NΦl (Ω) is the RKHS norm.

Denote qX = min1≤j 6=k≤n ‖xj − xk‖/2 and hX ,Ω as the fill distance.
A design Xn satisfying hX ,Ω/qX ≤ C for some constant C is called a
quasi-uniform design.
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Stacking Design Error Analysis

Sample size determination nl

Sample size nl can be determined by minimizing the error bound and
the total cost by the method of Lagrange multipliers

L∑
l=1
‖θl‖νl

2 nl
−νl/d‖fl − fl−1‖NΦl (Ω) + λ

L∑
l=1

nlCl ,

which gives

nl = µ

(‖θl‖νl

Cl
‖fl − fl−1‖NΦl (Ω)

)d/(νl +d)

for some constant µ > 0.

Find µ such that ‖fL − f̂L‖ < ε/2
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Stacking Design Error Analysis

Sample size determination nl

‖fL − f̂L‖ <
L∑

l=1
‖Pl‖‖fl − fl−1‖NΦl (Ω) < ε/2

Pl (x) is a power function

‖fl − fl−1‖NΦl (Ω) can be estimated by ‖Ẑl‖NΦl (Ω)
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Stacking Design Error Analysis

Sample size determination nl

‖fL − f̂L‖ <
L∑

l=1
‖Pl‖‖fl − fl−1‖NΦl (Ω) < ε/2

Pl (x) is a power function

‖fl − fl−1‖NΦl (Ω) can be estimated by ‖Ẑl‖NΦl (Ω)

𝜇∗ ≈ 2.75

Chih-Li Sung (MSU) Stacking Designs TAMIDS 19 / 41



Stacking Design Error Analysis

Questions

Q1: Sample size of each level? nl

Q2: How many fidelity levels?

Q3: Mesh size/density specification?

Q4: Is it better than single-fidelity simulation?
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Stacking Design Error Analysis

Control simulation error ‖f∞ − fL‖

Error Rate of finite element simulations
(Brenner and Scott, 2007, Tuo, Wu and Yu, 2014) Under some regularity
conditions, for a constant α ∈ N,

|f∞(x)− fL(x)| < chαL .

Recall hL is the mesh size.
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Stacking Design Error Analysis

Determine the fidelity level L

Let hl = h02−l where h0/2 is the mesh size of the lowest fidelity
simulator f1(x).

Suppose |f∞(x)− fL(x)| ≈ chαL = c1hα0 2−αL

One can show that

‖f∞ − fL‖ <
‖fL − fL−1‖
2α − 1 ,

where ‖fL − fL−1‖ can be approximated by ‖ẐL‖.

Find L that ensures ‖ẐL‖
2α−1 ≤ ε/2
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Stacking Design Error Analysis

Determination of α

Tuo, Wu and Yu (2014) determines α according to the quantity of
interest

Alternatively, it can be determined by collected data (can be done
only when L ≥ 3) (details omitted)

lo
g
𝑓 !
𝑥
−
𝑓 !
"
#
𝑥

log 2"$!log 2"$!

lo
g
𝑓 !
𝑥
−
𝑓 !
"
#
𝑥

𝛼" ≈ 1

Chih-Li Sung (MSU) Stacking Designs TAMIDS 23 / 41



Stacking Design Error Analysis

Determination of α

Tuo, Wu and Yu (2014) determines α according to the quantity of
interest

Alternatively, it can be determined by collected data (can be done
only when L ≥ 3) (details omitted)

lo
g
𝑓 !
𝑥
−
𝑓 !
"
#
𝑥

log 2"$!log 2"$!

lo
g
𝑓 !
𝑥
−
𝑓 !
"
#
𝑥

𝛼" ≈ 1
Chih-Li Sung (MSU) Stacking Designs TAMIDS 23 / 41



Stacking Design Error Analysis

Questions

Q1: Sample size of each level? nl

Q2: How many fidelity levels? L

Q3: Mesh size/density specification? hl = h02−l

Q4: Is it better than single-fidelity simulation?

Chih-Li Sung (MSU) Stacking Designs TAMIDS 24 / 41



Stacking Design Stacking design with target predictive accuracy

Stacking design with error upper bound ε

Idea: Start with low-fidelity simulations and sequentially increase the
fidelity level until ‖ẐL‖

2α−1 ≤ ε/2.

Start with 𝐿 = 1
(mesh size
ℎ! = ℎ"/2)

(lowest fidelity)

Find 𝑛# and run 
𝑓# 𝑥 of size 𝑛#

for each 𝑙

Is
!"!

#"$%
< &

#
?

no

𝐿 ≔ 𝐿 + 1
(increase fidelity)

ℎ$ ≔ ℎ$/2

yes
Return the 
MLGP 𝑓-$Control 𝑓! − 𝑓#! Control 𝑓% − 𝑓$
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2α−1 ≤ ε/2.

Start with 𝐿 = 1
(mesh size
ℎ! = ℎ"/2)

(lowest fidelity)

Find 𝑛# and run 
𝑓# 𝑥 of size 𝑛#

for each 𝑙

Is
!"!

#"$%
< &

#
?

no

𝐿 ≔ 𝐿 + 1
(increase fidelity)

ℎ$ ≔ ℎ$/2

yes
Return the 
MLGP 𝑓-$Control 𝑓! − 𝑓#! Control 𝑓% − 𝑓$
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Real Application

Revisit motivated example

(Mpa)

Input: x = (x1, x2) = (pressure, suction)
Output: f (x): average of thermal stress

Test data: Simulations with mesh size h ≈ 0 at 20 uniform test input
locations are conducted to examine the performance
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Real Application

Revisit motivated example
We wish ‖f∞ − f̂L‖L2(Ω) < ε = 5

𝐿 = 1
0.05ℎ!
0.62𝐶! (sec.)
2.411𝑓! − 𝑓(! !!(#)

NA𝑓% − 𝑓! !!(#)
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Real Application

Revisit motivated example
We wish ‖f∞ − f̂L‖ < ε = 5

𝐿 = 2𝐿 = 1
0.0250.05ℎ!
1.030.62𝐶! (sec.)
2.4072.411𝑓! − 𝑓)! !!(#)

NANA𝑓% − 𝑓! !!(#)

Chih-Li Sung (MSU) Stacking Designs TAMIDS 28 / 41



Real Application

Revisit motivated example
We wish ‖f∞ − f̂L‖ < ε = 5

𝐿 = 3𝐿 = 2𝐿 = 1
0.01250.0250.05ℎ!
2.281.030.62𝐶! (sec.)
2.4452.4072.411𝑓! − 𝑓*! !!(#)

2.943NANA𝑓% − 𝑓! !!(#)
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Real Application

Revisit motivated example

We wish ‖f∞ − f̂L‖ < ε = 5

<
𝜖
2

<
𝜖
2

RMSE of 𝑓%!
= 2.01

𝐿 = 4𝐿 = 3𝐿 = 2𝐿 = 1
0.006250.01250.0250.05ℎ"
12.582.281.030.62𝐶" (sec.)
2.482.4452.4072.411𝑓" − 𝑓%" "!($)

0.9742.943NANA𝑓& − 𝑓" "!($)
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Real Application

Determination of α

lo
g
𝑓 !
𝑥
−
𝑓 !
"
#
𝑥

log 2"$!log 2"$!

lo
g
𝑓 !
𝑥
−
𝑓 !
"
#
𝑥

𝛼" ≈ 1
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Real Application

Visualize f̂L(x)
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Cost Complexity Theorem

Cost complexity theorem

Theorem
Suppose that

ν := ν1 = · · · = νL

|f∞(x)− fl (x)| < c12−αl

Cl < c22βl

Under some regularity conditions, it follows that

|f∞(x)− f̂L(x)| < ε,

with a total computational cost Ctot bounded by

Ctot ≤


c3ε−

d
ν , α

β >
2ν
d ,

c3ε−
d
ν log(ε−1)1+ d

ν , α
β = 2ν

d ,

c3ε−
d
ν
− 2βν−αd

2α(ν+d) , α
β <

2ν
d .
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Cost Complexity Theorem

Insight on budget allocation

When α
β >

2ν
d , the budget Ctot is expended on coarser mesh

When α
β <

2ν
d , the budget Ctot is expended on denser mesh

When α
β = 2ν

d , evenly spread

α
β

2ν
d

simulation error reduction
over the rate computational
cost as fidelity increases

the rate of convergence of
RKHS interpolator as
sample size increases
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Cost Complexity Theorem

Single-fidelity vs Multi-fidelity

What if all the budget is expanded on single fidelity simulations?

Independent kriging vs co-kriging?

Negative transfer?

Zhang et al. (2021) A Survey on Negative Transfer. IEEE 
Transactions on Neural Networks and Learning Systems
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Cost Complexity Theorem

Complexity of single-fidelity interpolator

Corollary
Let f̂H(x) be the RKHS interpolator based on single-fidelity data
(XH , fH(XH))

Suppose that (ε/2)1+ αd
2νβ ≤ c1hαH ≤ ε/2

Under some regularity conditions, it follows that

|f∞(x)− f̂H(x)| < ε,

with a total computational cost CH bounded by

CH ≤ chε
− β
α
− d

2ν .
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Cost Complexity Theorem

Single-fidelity vs Multi-fidelity

When α
β <

2ν
d ⇒ ML interpolator has a slower cost rate

When α
β ≥

2ν
d ⇒ Single-fidelity RKHS interpolator has a slower cost

rate

Example 1: β is small and α is large
C1 = 2.9 and C5 = 3
|f∞(x)− f1(x)| = 10, and |f∞(x)− f5(x)| = 0.001

Example 2: ν is very small (i.e., nonsmooth (fl − fl−1))
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Cost Complexity Theorem

Questions

Q1: Sample size of each level? nl

Q2: How many fidelity levels? L

Q3: Mesh size/density specification? hl = h02−l

Q4: Is it better than single-fidelity simulation? In some cases, yes
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Conclusion

Conclusion

Stacking design for multi-fidelity simulations with desired accuracy
Sample determination
Mesh size determination

Cost complexity
Budget allocation
Comparison with single fidelity simulation

Chih-Li Sung (MSU) Stacking Designs TAMIDS 39 / 41



Conclusion

Arxiv
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