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Outline
• My Research Overview
• Earth AI Challenges

– Ever-increasing data volume 
– Data heterogeneity/variety 
– Method focus difference

• Study 1: Deep Multi-Sensor Domain Adaptation on Active and Passive Satellite 
Remote Sensing Data

– Deals with data volume and data variety challenges
– More at our papers at BigData2020 and SigSpatial2022

• Study 2: Quantifying Causes of Arctic Amplification via Deep Learning based Time-
series Causal Inference 

– Bridge method focus difference between data science and Earth science
– More at our paper at ICMLA 2023 
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My Research Portfolio
• Center on big data analytics with three 

connected and supporting areas
– Distributed computing: key enabling 

computing infrastructure for big data
– Data science: core research topic to learn 

patterns from big data
– Real-world big data: research frontier to identify 

new research challenges and evaluate research 
contribution and impacts

• Holistic and end-to-end research
– Identify new and important research challenges 
– Propose integrative solutions
– Evaluate from many aspects: efficiency, 

effectiveness, helps to domain scientists, etc.
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Recent Research Topics

Earth AI and Informatics
• Sea ice forecasting: [BigData2021], 

[IGARSS2022], [BDCAT2022]
• Multi-satellite cloud retrieval: 

[BigData2020], [SigSpatial2022]
• Dust detection: [BigData2020], 

[RemoteSensing2021]
• Ice bed topography: [ICMLA2023]
• Climate data clustering: [ECMLPKDD2023]
• Ocean eddy detection: [IGARSS2023]

Causal AI
• Deep learning based causal inference: 

[ICMLA2023]
• Causality benchmarking for sea ice: 

[FrontiersinBigData2021]
• Big data causality: [BigData2019], [SMDS2020] 

Streaming Data Analytics
• Flood detection on edge: [ICMLA2023]
• Camouflaged object detection on edge: 

[SmartComp2023]
• Streaming data forecasting: [BigData2020]

Distributed Computing
• Reproducible big data analytics in the cloud: 

[TransCloudComputing2023]
• Edge-cloud for stream analytics: [FGCS2022]
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Challenges in Earth AI 
• Ever-increasing data volume 

– It is estimated available Earth data (simulation and observation) will increase from 100 PB in 2020 
to 350 PB in 2030 [1]

• Data heterogeneity and variety 
– Data are generated from various sources (simulation, flight, satellites, etc.) with different 

resolution, spatial and temporal coverage 
• Method focus difference: focuses of traditional data science are not applicable to 

climate science [2]
– Accuracy vs. Physical plausibility and causality

• Because of these challenges, there are growing interests of applying AI and data 
science techniques in Earth science

– NSF AI Institute and HDR Institute on Climate and Environment
– AI/DS related programs in NASA ROSES programs
– NOAA AI and Data strategy 
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A Review of Earth Artificial 
Intelligence, Computers & Geosciences, 
volume 159, 
105034, DOI:10.1016/j.cageo.2022.105034, 
Elsevier, 2022
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Heterogeneous Active and Passive Sensing Data

• Background: CALIOP active sensing data and VIIRS passive sensing data are heterogenous in 
spatial coverage, data features and data quality 

• Challenge: How to leverage the high data quality of active sensors and the global spatial 
coverage of passive sensors so that we can retrieve high quality cloud properties globally?
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Domain Adaptation
• One type of transfer learning techniques to deal with distribution shift 

between two domains
• Most existing deep domain adaptation methods are for homogeneous 

domain adaptation in image classification

• Our work is the first deep domain adaptation approach in heterogeneous 
domains and remote sensing
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Our Proposed Deep Domain Adaptation Model
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• DAMA model: Domain mapping + feature extraction + correlation alignment + source classifier 
• DAMA-WL model: Domain mapping + feature extraction + correlation alignment + source classifier  + weak target classifier



Deep Domain Mapping

● Data collocation
§ Passive sensor data is collocated on active sensor’s track (on-track) 

● Transform the target domain into source domain feature space with L2 loss 
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Correlation Alignment
● Correlation loss

○ Measure the distance between the second order statistics (covariances) of the 
source and target data

● Combine correlation loss with source classification loss 
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Domain Adaptation with 
Weak Supervision

● Incorporate the weak label information from the target domain
● DAMA-WL: weakly supervised learning
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Experiments

• DAMA outperforms the domain adaptation baselines by ~5% to ~54%
• DAMA-WL brings additional ~2% accuracy improvement compared to the DAMA
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Visualization of Learned Representations

• We use t-SNE techniques to visualize the learned representations
• The result shows data records in our source domain and target domain are more 

and more mixed along the pipeline: Original->DDM->Coral -> WL
– Indicates the success of our domain adaptation approach
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VDAM: VAE based Domain Adaptation for Cloud 
Property Retrieval from Multi-satellite Data
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Spatial Feature Representation Learning

● Apply 1D-CNNs on the source branch 
and target branch
○ 1-D data sequence follow the CALIOP 

orbiting track 
○ Capture spatial dependency among the 

pixels sequence 
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Variational Autoencoder 
Networks 

● Encoder maps the input data into a latent feature space, and approximates the 
posterior probability by a parameterized model

● Maximize the variational lower bound by optimizing the parameters 𝜃 and 𝜙 of the 
neural network
○ : minimize the KL divergence between approximate posterior distribution 

and true posterior distribution
○ : maximize the expectation of the reconstructed data points sampled from 

the latent vector

● VAE for source domain (CALIOP) and VAE for target domain (VIIRS)
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MMD based Domain 
Alignment

● To minimize the distribution discrepancy between the source and target 
domain
○ Add a feature adaptation layer to the auto encoder pairs of the source and 

target domain to measure the domain discrepancy loss
● MMD (maximum mean discrepancy) loss

○ Convert two sets of source and target domain features to a common 
reproducing kernel Hilbert space (RKHS)

○ Representing distances between distributions as distances between kernel 
embedding of distributions
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Label Space Alignment

● Fully connected classification layer for source domain (CALIOP)
○ Standard cross entropy loss for strong source labels

● Fully connected classification layer for target domain (VIIRS)
○ Weighted cross entropy loss for weak target labels
○ Assign a higher weight when weak label from target domain differs to that 

of source domain
○ Encourage model to learn toward the more challenging area that the classifier 

is uncertain about
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End-to-end Joint Training

● The model trained jointly in an end-to-end fashion in order to align the 
heterogeneous source and target domains and build the domain invariant 
classifier

● The joint loss is composed of 1) the loss of deep domain mapping, 2) the 
losses of VAE losses for source domain and target domain, 3) the loss of 
source classifier, 4) the loss of MMD based domain alignment and 5) the loss 
of target classifier with weak label
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Experiments

Ablation study
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Conclusions from Study 1
• Utilizing data from multiple satellites jointly, we can achieve better information 

retrievals for targeted geophysics variables

• We proposed deep domain adaptation methods with heterogeneous domain 
mapping and correlation alignment to employ both active and passive sensing data 
in cloud type detection

• Our VAE based deep domain adaptation model outperforms the first model (DAMA-
WL) by capturing spatial feature on orbiting track, MMD based domain alignment 
and label space alignment (customized loss weights)
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Background: Dynamics Of Arctic Amplification

24
Sketch of different processes and interactions involving the cryosphere [3]
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Pressing Questions
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What is the cause / effect 
of ice melt?

What are my regions 
of interest?

Do I look in the past 
or future of sea ice?

How can I represent 
the complex dynamic 
interactions in data-

driven way?

How will I validate my 
findings?

What datasets can 
help me in my task?
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BACKGROUND 
ON
CAUSAL 
INFERENCE 

The process of inferring/quantifying the causal 
influence (strength) of one event, process, 
policy or treatment (a cause) on another event, 
process, state or outcome (an effect).

Common methods:
Calculating average causal effect (ACE) via 
intervention, i.e., do-calculus [4]
Calculating average treatment effect (ATE) via 
potential outcomes framework [5]
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Given the data Zt (covariates) at timestep t, we want to forecast observed 
(factual) as well as counterfactual values of sea ice, i.e., potential outcome 
Yt+n, at timestep t + n by intervening/perturbing on certain atmospheric 
processes, i.e., time-varying treatment Xt

We want to estimate the lagged average treatment effect (LATE) of atmospheric 
process X, on the sea-ice variations, after a lag of l timesteps

Xhat represents intervened treatment and X represents treatment without intervention or placebo effect 

Problem Statement
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Challenges and Proposed Solutions

CHALLENGE PROPOSED SOLUTION

Predicting potential time-varying outcome with 
low predictive loss and high accuracy

Utilizing deep learning models for time-series 
data

Inability to evaluate the model’s performance for 
counterfactual predictions Evaluating models on synthetic data

Tackling time-varying confounding effects
Balancing strategies: inverse probability of 
treatment weighting (IPTW), stabilized weighting 
(SW)

289/11/2023Big Data Analytics Lab (bdal.umbc.edu)



Related Work: Causal Inference Methods 
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Causal Inference

I.I.D Data Time-series Data

Deep learning methods
- Recurrent marginal 

structural models
- Factor models
- Time-series 

deconfounders

Statistical Methods
- Time-based 

regression
- Marginal 

structural models

Deep learning methods
- Meta learners
- GAN based 

methods

Statistical Methods
- Propensity score 

matching 
methods

- Regression based 
methods
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Balancing Strategies – G-Methods
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Generalized Propensity Score [6] 

Inverse Probability of Treatment Weight [7]

where,        ,

leads to unstable estimates 
and inflated variance [5]
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Stabilized Weights for Binary Treatment [8]

where, 

Balancing Strategies (Cont')

31

can be estimated using 
logistic regression in case 
of binary/discrete treatment

What to do if treatment is continuous?
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Stabilized Weights for Continuous Treatment

where, 

Estimating the probability density function (PDF) 
mathematically  [9]      

Balancing Strategies (2)

32

Here, f is the probability 
density function
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What We Propose

Calculating Stabilized Weights using Probabilistic Modeling.

We leverage Gaussian Mixture Model (GMM) for density estimation at every 

timestep t
Learn the underlying distribution of treatment history and covariates using GMM to get its 

mean 𝞵 and covariance 𝚺
Calculate the probability density of current treatment using the density estimation formula:

339/11/2023Big Data Analytics Lab (bdal.umbc.edu)



34

Calculating Stabilized Weights for Continuous Treatment 
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TRAIN PHASE

INFERENCE 
PHASE

TCINET (Time-Series Causal Inference Network)
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Dataset: Synthetic Data

Non-linear time-series

(where, ε is Gaussian noise)
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Dataset: Observational Data

§ Time period: 1979 – 2018
• Daily data: 14,610 temporal records

§ Geolocation: 
• Barents Sea, Kara Sea 

§ Sources: 
• Nimbus-7 SSMR and DMSP SSM/I-SSMIS 

passive microwave data version.
• ERA-5 global reanalysis product

Variable Range Unit

specific humidity [0,0.1] KG/KG

shortwave radiation [0,1500] W/m2

longwave radiation [0,700] W/m2

rainfall rate [0,800] mm/day

sea surface temperature [200,350] K

air temperature [200,350] K

Greenland blocking index [5000,5500] m

sea ice extent [3 x 106, 14 x 106] NSIDC
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Evaluation Metrics

§ Root Mean Square Error

§ Precision Estimation of Heterogeneous Effects (PEHE)

where, ATE is the Average Treatment Effect
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Results – Synthetic Data
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Results – Observational Data

Fig: Annual mean sea ice extent (SIE) predictions under interventional GBI where 
each data point represents summer (JJA) mean SIE for that year.

Case study: 
How does increased Greenland Blocking (GBI) affect 
summertime regional Arctic sea ice melting given snowfall 
rate and solar radiation data.

Treatments: 
- Treatment 1: GBI✝ = 40 -year-averaged daily GBI
- Treatment 2: GBI + 2x  GBI✝
- Treatment 3: GBI + 3x  GBI✝
- Treatment 4: GBI + 4x  GBI✝
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Conclusions from Study 2
§ We propose a time-series based causal inference model for continuous treatment effect 

estimation

§ We propose a novel probabilistic weighting technique to balance time-varying 
confoundedness by leveraging Gaussian Mixture Model (GMM)

§ We compare model performance with state-of-the-art (SOTA) methods using synthetic 
time-series data for fixed and continuous time-delayed treatments

§ We utilize the developed model to quantify the causal effects of thermodynamic processes 
on the Arctic sea ice melt and our results aligns with physics based understanding in [10]

§ To the best of our knowledge, we are the first one to calculate stabilized weights for 
continuous treatment effects estimation
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THANK YOU!
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KEY TERMINOLOGIES
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Bias due to Time Varying Confounding
The common influence a past treatment Tt or covariate Xt might have on the future 
treatments Tt+1 and the future outcome Yt+1

Propensity Score
The probability of a unit being assigned to a particular treatment given a set of observed 
covariates.

Balancing strategies to reduce bias
Methods to reduce bias caused by time-varying treatment and covariates on the potential 
outcome, such as g-methods, propensity score matching, etc.
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CAUSAL ASSUMPTIONS
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