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Outline

My Research Overview

« Earth Al Challenges
— Ever-increasing data volume
— Data heterogeneity/variety
— Method focus difference

« Study 1: Deep Multi-Sensor Domain Adaptation on Active and Passive Satellite
Remote Sensing Data

— Deals with data volume and data variety challenges
— More at our papers at BigData2020 and SigSpatial2022

« Study 2: Quantifying Causes of Arctic Amplification via Deep Learning based Time-
series Causal Inference
— Bridge method focus difference between data science and Earth science
— More at our paper at ICMLA 2023

@ 9/11/2023 Big Data Analytics Lab (bdal.umbc.edu) 2
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My Research Portfolio

- Center on big data analytics with three
connected and supporting areas

- Distributed computing: key enabling
computing infrastructure for big data

- Data science: core research topic to learn
patterns from big data

- Real-world big data: research frontier to identify

new research challenges and evaluate research
contribution and impacts

- Holistic and end-to-end research
- Identify new and important research challenges
- Propose integrative solutions

- Evaluate from many aspects: efficiency,
effectiveness, helps to domain scientists, etc.
@ 9/11/2023
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Recent Research Topics

Earth Al and Informatics

- Sea ice forecasting: [BigData2021],
[IGARSS2022], [BDCAT2022]

- Multi-satellite cloud retrieval}
[BigData2020], [SigSpatial2022]

- Dust detection: [BigData2020],
[RemoteSensing2021]

- Ice bed topography: [ICMLA2023]

 Climate data clustering: [ECMLPKDD2023]

- Ocean eddy detection: [IGARSS2023]

Distributed Computing

- Reproducible big data analytics in the cloud:
[TransCloudComputing2023]

- Edge-cloud for stream analytics: [FGCS2022]

Causal Al

Deep learning based causal inference
[ICMLA2023]

- Causality benchmarking for sea ice:

[FrontiersinBigData2021]

- Big data causality: [BigData2019], [SMDS2020]

Streaming Data Analytics
- Flood detection on edge: [ICMLA2023]
- Camouflaged object detection on edge:

[SmartComp2023]

- Streaming data forecasting: [BigData2020]

9/11/2023 Big Data Analytics Lab (bdal.umbc.edu)



Challenges in Earth Al

« Ever-increasing data volume

— It is estimated available Earth data (simulation and observation) will increase from 100 PB in 2020
to 350 PB in 2030 [1]

« Data heterogeneity and variety

— Data are generated from various sources (simulation, flight, satellites, etc.) with different
resolution, spatial and temporal coverage

 Method focus difference: focuses of traditional data science are not applicable to
climate science [2]
— Accuracy vs. Physical plausibility and causality
« Because of these challenges, there are growing interests of applying Al and data
science techniques in Earth science A Review of Earth Artificial
— NSF Al Institute and HDR Institute on Climate and Environment (/f;ﬁilzggee:;;COmDuters & Geosciences,

— Al/DS related programs in NASA ROSES programs 105034, DOI:10.1016/j.cage0.2022.105034,
— NOAA Al and Data strategy Elsevier, 2022

@ 9/11/2023 Big Data Analytics Lab (bdal.umbc.edu) 5
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My Research Overview

« Earth Al Challenges
— Ever-increasing data volume
— Data heterogeneity/variety
— Method focus difference

« Study 1: Deep Multi-Sensor Domain Adaptation on Active and Passive Satellite
Remote Sensing Data

— Deals with data volume and data variety challenges
— More at our papers at BigData2020 and SigSpatial2022

« Study 2: Quantifying Causes of Arctic Amplification via Deep Learning based Time-
series Causal Inference

— Bridges method focus difference between data science and Earth science
— More at our paper at ICMLA 2023
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Heterogeneous Active and Passive Sensing Data

Same Name Description

; gﬁigi‘g_g}g_ég 1 | VIIRS_SZA viirs solar zenith angle in degree

3 ¢ ALIOP:Lia_Fra;ti T 2 | VIIRS_SAA viirs solar azimuthal angle in degree

4 | CALIOP_Liq_Fraction_5km 3 | VIIRS_VZA viirs viewing zenith angle in degree

5 | CALIOP_Ice_Fraction_lkm 4 | VIIRS_VAA viirs viewing azimuthal angle in degree

6 | CALIOP Ice Fraction 5km 5 | VIIRS_M1 Band wavelength range 0.402-0.422pm

7 | CALIOP_Clay_Top_Altitude 6 | VIRS_M2 Band wavelength range 0.436-0.454pm

8 | CALIOP_Clay Base_Altitude 7 | VIIRS_M3 Band wavelength range 0.478-0.488um

20 gﬁﬂgi—g:y—’ll;z}s);rr;;fe::i; 8 | VIIRS_M4 Band wavelength range 0.545-0.565um

TG ALIOP:Cla§:Opti; al_szth_SSZ 9 | VIRS_M5_B | Band wavelength range 0.662-0.682um

12 | CALIOP_Clay_Opacity_Flag 10 | VIRS_M6 Band wavelength range 0.739-0.754um

13 | CALIOP_Clay_Integrated_Attenuated_Backscatter_532 11 | VIRS_M7_G | Band wavelength range 0.846-0.885um

14 | CALIOP_Clay_Integrated_Attenuated_Backscatter_1064 12 | VIIRS_M38 Band wavelength range 1.23-1.25um

15 | CALIOP_Clay_Final _Lidar_Ratio_532 13 | VIIRS_M9 Band wavelength range 1.371-1.386um

16 | CALIOP_Clay_Color_Ratio 14 | VIRS_M10_R | Band wavelength range 1.58-1.64ym

o gﬁigi,ﬂay:gp,éﬁit_udj 15 | VIRS_M11 Band wavelength range 2.23-2.28ym

g o OP: m:;’:ngi}er;g:r:mre 16 | VIIRS_M12 Band wavelength range 3.61-3.79um

20 | CALIOP_Alay_Base Temperature 17 | VIIRS_M13 Band wavelength range 3.97-4.13um

C ve 21 | CALIOP_Alay_Integrated Attenuated_Backscatter 532 18 | VIIRS_M14 Band wavelength range 8.4-8.7um
Fig. 1. An example showing the spatial coverage differences between VIIRS 22 | CHTIOR (Alay Intcgrated. (fenyated! Brckicatior 1066 1 | VIR SMDL | DAnd wave snEimtg (0126 (126
. . 23 | CALIOP_Alay_Color_Ratio 20 | VIIRS_M16 Band wavelength range 11.54-12.49um

(global coverage) and CALIOP (yellow lines) data (Credits: NASA). 24 | CALIOP Alay Optical Depth 532

25 | CALIOP_Alay_Aerosol Type_Mode

- Background: CALIOP active sensing data and VIIRS passive sensing data are heterogenous in

spatial coverage, data features and data quality

- Challenge: How to leverage the high data quality of active sensors and the global spatial
coverage of passive sensors so that we can retrieve high quality cloud properties globally?

9/11/2023
UMBC
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Domain Adaptation

* One type of transfer learning techniques to deal with distribution shift
between two domains

* Most existing deep domain adaptation methods are for homogeneous
domain adaptation in image classification

Accuracy:

80% C

Domain 1: Curated images Domain 2: Real-world images

A r :
ccuracy

51 50%

— ik

« Our work is the first deep domain adaptation approach in heterogeneous
domains and remote sensing

@ 9/11/2023
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Our Proposed Deep Domain Adaptation Model

/ Feature Layers (] Correlation Layer > \
i Input Layer e b
. — '
'|  Source Domain ] n R v c:::'q :
(CALIPSO) J ; > ;
L 1 : P E Correlation E
in shared | ' shared  shared alignment p :
I W l k'[m [ . : — coral '
Mapping : : [[ |
[ H E =-‘ " E Imf
' o - '
| Target Domain Transformed - el L
- 2 o H
(VIIRS) Target Domain - (Weak label)
i\ Input Layer — e b :

\<;¥ DAMA 1 DAM{fﬁ/

«  DAMA model: Domain mapping + feature extraction + correlation alignment + source classifier

« DAMA-WL model: Domain mapping + feature extraction + correlation alignment + source classifier + weak target classifier

@ 9/11/2023 Big Data Analytics Lab (bdal.umbc.edu)
UMBC



Deep Domain Mapping

e Data collocation
= Passive sensor data is collocated on active sensor’s track (on-track)
e Transform the target domain into source domain feature space with L2 loss
nt
1 2
ng -
(i=1)
@ 9/11/2023 Big Data Analytics Lab (bdal.umbc.edu) 10
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Correlation Alignment

e Correlation loss

O

: arget

T classifier

' (Weak label)
DAMAW

Measure the distance between the second order statistics (covariances) of the
source and target data

1

C, = ——(D'D, - —(17D,)" (17 D,))

1 ) ng—1" ° Ng |
lcoral:4d2HCS_CtHF 1 T | N AP
Ce = —(D{ D~ —(1"D)" (1" D))

Tl
[ ]

Combine correlation loss with source classification loss

t
[ = lsrc - Z Ailcoral

(i=1)
@ 9/11/2023
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Domain Adaptation with
Weak Supervision T oy

e Incorporate the weak label information from the target domain
e DAMA-WL: weakly supervised learning

@ 9/11/2023 Big Data Analytics Lab (bdal.umbc.edu) 12
UMBC



Experiments

TABLE II
ACCURACY ON PREDICTING THE CLOUD TYPES ON VIIRS (TARGET) DATASET WITH WEAK LABEL.

Models - Single Domain Label Source Target Day-005 Day-013 Day-019 Day-024 Day-030 Jan. 2017
Random Forest CALIOP VIIRS VIIRS 0.957 0.947 0.934 0.933 0.917 0.939
Random Forest-WL VIIRS VIIRS VIIRS 0.905 0911 0.883 0.878 0.854 0.889
MLP-VIIRS CALIOP VIIRS VIIRS 0.896 0.907 0.878 0.877 0.865 0.885
MLP-CALIOP CALIOP CALIOP CALIOP 1.000 1.000 1.000 1.000 1.000 1.000
Models - Multiple Domains

Domain Mapping Only CALIOP CALIOP VIIRS 0.910 0.913 0.890 0.896 0.885 0.899
Correlation Align. Only CALIOP CALIOP VIIRS 0.428 0.473 0.394 0.378 0.321 0.408
DAMA CALIOP CALIOP VIIRS 0.956 0.948 0.934 0.936 0.926 0.941
DAMA-WL CALIOP + VIIRS CALIOP VIIRS 0.963 0.964 0.958 0.958 0.949 0.960

- DAMA outperforms the domain adaptation baselines by ~5% to ~54%
- DAMA-WL brings additional ~2% accuracy improvement compared to the DAMA

@ 9/11/2023
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Visualization of Learned Representations

tsne embedding- with weak supervision

tsne embedding - with Coral

tsne embedding - with ddm

tsne embedding - original
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Indicates the success of our domain adaptation approach
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VDAM: VAE based Domain Adaptation for Cloud
Property Retrieval from Multi-satellite Data

PR e e I T I e I T I I S

VAE for source domain

1d- reconstructed X*_s E
|| Encoder | > ¢ »{ Decoder | — — 5 :

DDM <MMD - Lo
--------------------- »r-l-——---——---I—--|--—---—-----——-—-—--———-—-—~\\
reconstructed X*_t E
Encoder |—»(z t » Decoder :

VAE for target domain

__________________________________________________________________

Figure 2: Network architecture of the proposed VAE based domain adaptation. For each domain, we construct a customized
VAE model, which contains an encoder to extract latent features, a decoder for input data reconstruction, and a classifier for
cloud property retrieval. The domain discrepancy between the source domain and target domain is minimized by a domain
alignment technique (MMD).

UMBC Big Data Analytics Lab (bdal.umbc.edu) 9/11/2023
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Spatial Feature Representation Learning

« Apply 1D-CNNs on the source branch
and target branch
o 1-D data sequence follow the CALIOP
orbiting track
o Capture spatial dependency among the
pixels sequence

[ on-Track VIIRS Pixel (1km)

. Off-Track VIIRS Pixel (1km)

CALIOP Pixel (5km)

VAE for source domain

Encoder 2 »| Decoder mt:d X*_s
N Craseif ) Figure 3: Illustration of on-track and off-track VIIRS pixels
, ) : asstier > Y as well as the collocated CALIOP track and pixels. In our
DDM R s o study, two 1D-CNN layers are applied on the overlapped
A V-1 =*Ir~:'- ----- BT e e VIIRS (green) and CALIOP (red) pixel sequences, respectively.
: ' > Classifier [—> Y-t '
— 1 1d- reconstructed X*_t i
Tnn > Encoder |—»(z » Decoder '
i‘ VAE for target domain ,E
Big Data Analytics Lab (bdal.umbc.edu) 9/11/2023

UMBC



Variational Autoencoder
Networks

e Encoder maps the input data into a latent feature space, and approximates the
posterior probability by a parameterized model
e Maximize the variational lower bound by optimizing the parameters 8 and ¢ of the
neural network
o lgg :minimize the KL divergence between approximate posterior distribution
and true posterior distribution
o Igr : maximize the expectation of the reconstructed data points sampled from
the latent vector

L0, ¢;x') = ~D1. (g4 (21xV)1pg (D)) +E (10 [log po (x 1V |2)]
o VAE for source domain (CALIOP) and VAE for target domain (VIIRS)
_ ]S S _Jt t
@ VAE = Iz +l andl =1z +lR

UMBC Big Data Analytics Lab (bdal.umbc.edu) 9/11/2023 17
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Encoder

MMD based Domain

Alignment

Encoder

domain

o Add a feature adaptation layer to the auto encoder pairs of the source and

target domain to measure the domain discrepancy loss
e MMD (maximum mean discrepancy) loss

—

_____

reconstructed X*_s E

________________________________________

o  Convert two sets of source and target domain features to a common

reproducing kernel Hilbert space (RKHS)

o Representing distances between distributions as distances between kernel

embedding of distributions

MMD(X.Y) = [I== 3" () = = > (I«
i=1 i=1

where HH is a universal RKHS, || * ||¢y is RKHS norm, and ¢ : X — H .

Big Data Analytics Lab (bdal.umbc.edu)
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S : reconstructed X*_s :
: Encoder %E S| »| Decoder L~ — 5 o
| > Classifier || s H
[ N : .

e o S T R -

vMmD >~ : :

LTI i ahhbil BESss e aaaet N e s
! : > Classifier —J—) Y_t
t : reconstructed X*_t E
Encoder [—>» |z ¢ > Decoder |[——> :

VAE for target domain

 Fully connected classification layer for source domain (CALIOP)
o Standard cross entropy loss for strong source labels

 Fully connected classification layer for target domain (VIIRS)
o Weighted cross entropy loss for weak target labels

o Assign a higher weight when weak label from target domain differs to that
of source domain

o Encourage model to learn toward the more challenging area that the classifier
IS uncertain about

(1.5 if label of s; differs to label of ¢;

Wws;.t; = 4 1.25 if label of s; is mixed cloud

@ |1 if label of s; equals to label of ¢;

UMBC Big Data Analytics Lab (bdal.umbc.edu) 9/11/2023 19



End-to-end Joint Training

o« The model trained jointly in an end-to-end fashion in order to align the
heterogeneous source and target domains and build the domain invariant
classifier

o« The joint loss is composed of 1) the loss of deep domain mapping, 2) the
losses of VAE losses for source domain and target domain, 3) the loss of
source classifier, 4) the loss of MMD based domain alignment and 5) the loss
of target classifier with weak label

[ =D+ e + ge + lnma + 15+ 15

©
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Experiments

Table 1: Accuracy on predicting the cloud types on VIIRS (target) dataset.

Models - Single Domain Label Source Target Jan.2014 Jan.2015 Jan.2016 Jan. 2017
Random Forest CALIOP VIIRS VIIRS 0.815 0.823 0.821 0.828
Random Forest-WL VIIRS VIIRS VIIRS 0.775 0.783 0.781 0.790
MLP-VIIRS CALIOP VIIRS VIIRS 0.805 0.811 0.810 0.815
MLP-CALIOP CALIOP CALIOP CALIOP 1.0 1.0 1.0 1.0
Models - Multiple Domains
Auto Encoder model CALIOP + VIIRS CALIOP  VIIRS 0.821 0.833 0.830 0.836
Model without domain mapping CALIOP + VIIRS CALIOP  VIIRS 0.512 0.533 0.530 0.539 }- Ablation study
Model without 1d-CNN CALIOP + VIIRS CALIOP  VIIRS 0.855 0.863 0.861 0.866
DAMA-WL[12] CALIOP + VIIRS CALIOP  VIIRS 0.842 0.848 0.846 0.851
The proposed model CALIOP + VIIRS CALIOP  VIIRS 0.868 0.872 0.871 0.878
: Big Data Analytics Lab (bdal.umbc.edu) 9/11/2023 21
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Conclusions from Study 1

« Utilizing data from multiple satellites jointly, we can achieve better information
retrievals for targeted geophysics variables

« We proposed deep domain adaptation methods with heterogeneous domain
mapping and correlation alignment to employ both active and passive sensing data
In cloud type detection

* Our VAE based deep domain adaptation model outperforms the first model (DAMA-
WL) by capturing spatial feature on orbiting track, MMD based domain alignment
and label space alignment (customized loss weights)

@ 9/11/2023 Big Data Analytics Lab (bdal.umbc.edu) 22
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Outline

My Research Overview

« Earth Al Challenges
— Ever-increasing data volume
— Data heterogeneity/variety
— Method focus difference

e Study 1: Deep Multi-Sensor Domain Adaptation on Active and Passive Satellite
Remote Sensing Data
— Deals with data volume and data variety challenges
— More at our papers at BigData2020 and SigSpatial2022

« Study 2: Quantifying Causes of Arctic Amplification via Deep Learning based Time-
series Causal Inference
— Bridges method focus difference between data science and Earth science
— More at our paper at ICMLA 2023

@ 9/11/2023 Big Data Analytics Lab (bdal.umbc.edu) 23
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Background: Dynamics Of Arctic Amplification
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y\winds over sea ice circulation budget

o

(&) currents impact on sea ice ice sheets &
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sea ice altimetry, elted waket
freeboard height sea surface roughness " - @ oY
oy L and winds off ’.‘, %
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Pt tyyis . — C— . \\ i i
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_ _ Sketch of different processes and interactions involving the cryosphere [3]
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Pressing Questions

What is the cause / effect
of ice melt?

What are my regions

How can | represent ﬂ of interest?
the complex dynamic , :

4= atmospheric - « 3P " "
° . ° a boundafy flux -~
interactions in data- - > . 1
. e’ <« B
drlven Way? y\winds over sea ice atzrlzsul?:::: ( $ s gﬁg;e‘
-~

(@) currents impact on sea ice ice sheets &
. g caps altimetry
sea ice altimetry, melted waket
freeboard hejght sea surface roughness - @ o e
and winds off f.‘_, ) e
MIZ/FIZ - .i -s

i L
‘;;Z,m"mwm g ‘ ,’-: sheets mass w——

sea ice extent, rioges & (G ,f,’ﬁ'gf'}ce andeg .

location, dynamics dn;b ”/;:?;,‘.5 e /m/;'% ’(.’f/’,;’;:m () s 2 subglacial Do I |OO k in th e paSt
eddies response to ice processes iy m’ﬁgﬂ;ﬁ
r > = H ?
@ N = e ) or future of sea ice?
What datasets can e L adresion ¢

release

help me in my task?

- GRAPHICIN.DIIGGEL. GF 2

How will | validate my

Big Data Analytics Lab (bdal.umbc.ed findings? 9/11/2023
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BACKGROUND The process of inferring/quantifying the causal

ON influence (strength) of one event, process,
policy or treatment (@ cause) on another event,
CAUSAL process, state or outcome (an effect).

INFERENCE

Common methods:

Calculating average causal effect (ACE) via
intervention, i.e., do-calculus [4]

Calculating average treatment effect (ATE) via
potential outcomes framework [5]

UMBC Big Data Analytics Lab (bdal.umbc.edu) 9/11/2023 26



Problem Statement

Given the data Z, (covariates) at timestep ¢, we want to forecast observed
(factual) as well as counterfactual values of sea ice, i.e., potential outcome

Y..,, at timestep ¢ + n by intervening/perturbing on certain atmospheric
processes, i.e., time-varying treatment X,

A

Yiri(X = x1) = f(Zs, 24) Yi(X = 2¢) = f(Zs, 44)

X,.. represents intervened treatment and X represents treatment without intervention or placebo effect

We want to estimate the lagged average treatment effect (LATE) of atmospheric
process X, on the sea-ice variations, after a lag of / timesteps

LATE(l) = %ZE[Yt—H(Xt) — Y31 (X))

@

UMBC Big Data Analytics Lab (bdal.umbc.edu) 9/11/2023 27
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Challenges and Proposed Solutions

CHALLENGE PROPOSED SOLUTION

Predicting potential time-varying outcome with
low predictive loss and high accuracy

Inability to evaluate the model’s performance for
counterfactual predictions

Tackling time-varying confounding effects

Big Data Analytics Lab (bdal.umbc.edu)

Utilizing deep learning models for time-series
data

Evaluating models on synthetic data

Balancing strategies: inverse probability of
treatment weighting (IPTW), stabilized weighting

(SW)

9/11/2023 28



Related Work: Causal Inference Methods

Causal Inference

1.1.D Data

Statistical Methods Deep learning methods
- Propensity score - Meta learners
matching - GAN based
methods methods
Regression based
methods

©
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Time-series Data

Statistical Methods Deep learning methods
-  Time-based Recurrent marginal
regression structural models
- Marginal Factor models

structural models Time-series
deconfounders

9/11/2023 29



Balancing Strategies — G-Methods

Generalized Propensity Score [6]

P’T'Ob(Xt|Xt_1, Zt)

Inverse Probability of Treatment Weight [7]

1
[PTW =TIF , ——
=1 f(X|2)

where, X = (X1, Xo.....X}) Z = (Zl.ZQ....,Zt)

©

UMBC Big Data Analytics Lab (bdal.umbc.edu)

leads to unstable estimates
and inflated variance [5]

9/11/2023
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Balancing Strategies (Cont')

Stabilized Weights for Binary Treatment [8]

f( X4 Xi-1)

— 1k i 4
SW(k) =1 f(X| Xi—1, Zt)

where, X = eGP oD € 7 = (Zl-ZQe---:Zt)

What to do if treatment is continuous?

Big Data Analytics Lab (bdal.umbc.edu)

can be estimated using
logistic regression in case
of binary/discrete treatment

9/11/2023
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Balancing Strategies (2)

Stabilized Weights for Continuous Treatment

f(Xt |Xt_1) Here, f'is the probability
= = “ density function
(Xt Xe—1, Zt)

SW (k) =TI
(k) H_lf

Where, X — (XleXt) Z —. (ZlZZZt>

Estimating the probability density function (PDF)
mathematically [9]

_ 1 1 _
FX|Kimr) = —=eap{—5 5 (X — (X 10))%)
v 7 1 1 v 1 7T 2
@ F(Xe| Xi—1,2t) = . 27T6xp{_ﬁ[Xt_(Xt—la+Zt B)°}
Big Data Analytics Lab (bdal.umbc.edu) 9/11/2023
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What We Propose

Calculating Stabilized Weights using Probabilistic Modeling.
We leverage Gaussian Mixture Model (GMM) for density estimation at every

timestep ¢

Learn the underlying distribution of treatment history and covariates using GMM to get its

mean u and covariance X

Calculate the probability density of current treatment using the density estimation formula:

1 1
emyir s P |2

f(Xe|p, ) = ( (X — )" 27N (X, — )

©
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Calculating Stabilized Weights for Continuous Treatment

Data: Treatment Data: X, Treatment History: Xhist,
Time-varying Covariates: Z
Result: Stabilized Weight Estimates
1 Function PDF_calc (X, Xuu Z =[]):
// Concatenate the treatment
history and covariates

XZ «+ concat(Xnist, Z) ; 15 X_pdf +PDF calc(X, Xhlst)
l(—.length of sequence X Z; 16 XZ_pdf +~PDF calc(X Xhlsta Z)

for i <~ 1 to ! do )
Neomp <— Number of components for GMM; // Calculate stabilized welghts at

// Create a GMM object :
6 gmm < GaussianMixture(ncomp) ; et § timest ep

// Fit the GMM model 17 fOl’ k <_ 1 tO t[lmes[eps dO

7 gmmfit(X Z;); df |k

// Extract model parameters: 18 L SW[k] — X—éf)p—_éfL[;cT

8 (a, p, X) « (gmm.weights, gmm.means,

gmm.covariances);

// Estimate PDF for every
component

9 for j < 1 to ngyy, do

: 1

10 Pdfcomp[j] (m)*

1 exp [—3(Xi — py) "S5 (Xi — pj)]s

// Sum PDF over all components

12 pdf[’t] «— anmp (pdfcomp [J] X O[[j])

// Take product of PDFs over all
sub-sequences

pdfproduct — Hizlpdf[l]
B return pdf product >

wn A W N

UMBC Big Data Analytics Lab (bdal.umbc.edu) 9/11/2023



TCINET (Time-Series Causal Inference Network)

TRAIN PHASE

INFERENCE

UMBC

> Gaussian Mixture
Model
Potential Outcome Model ' Stabilized Weights
(POM)
lswt
X, (Treatment) | 2 2 E 3 ‘3? § ! \
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Dataset: Synthetic Data

Non-linear time-series
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(where, € is Gaussian noise)
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Dataset: Observational Data

Variable Range Unit
= Time period: 1979 - 2018 specific humidity [0,0.1] KG/KG
* Daily data: 14,610 temporal records shortwave radiation 10,1500] W2
= (Geolocation:
longwave radiation [0,700] W/m?
* Barents Sea, Kara Sea
» Sources: rainfall rate [0,800] mm/day
* Nimbus-7 SSMR and DMSP SSM/I-SSMIS sea surface temperature  [200,350] K
passive microwave data version.
e ERA-5 global reanalysis product air temperature [200,350] K
Greenland blocking index [5000,5500] m
sea ice extent [3x 108, 14 x 109] NSIDC
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Evaluation Metrics

= Root Mean Square Error e )
RMSE = 3, (Y - Yi)?

= Precision Estimation of Heterogeneous Effects (PEHE)

1 A
VPEHE = \/ NS (ATE; — ATE;)?

where, ATE is the Average Treatment Effect
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Results — Synthetic Data

TABLE III Rt
CAUSAL INFERENCE MODEL PERFORMANCE ON SYNTHETIC DATA CAUSAL INFERENCE MODEL PERFORMANCE ON SYNTHETIC DATA
UNDER FIXED TREATMENT FOR ONE-STEP AHEAD PREDICTION (TRUE UNDER CONTINUOUS TREATMENT FOR ONE-STEP AHEAD PREDICTION
=-0.0514)
MODEL TEST  ESTIMATED PEHE MODEL TEsST  ESTIMATED PEHE
RMSE LATE RMSE LATE
TCINET} 1.079  -0.040 1.132 TCINET] 1.026  -0.036 1.221
TCINET-LR 1.142 -0.037 1.227 TCINET-LR 1.000 -0.049 1.143
TCINET-GMM 1.023 -0.051 1.004 TCINET-GMM 0.998 -0.050 1.102
Cl1V [40] N/A -0.219 N/A C1V 40| N/A U010 N/A
CAUSAL IMPACT [7] N/A -0.060 1.110 CAUSAL IMPACT [7] N/A -0.040 | I i 5.
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Results — Observational Data

1e6 JJA Average SIE Predictions (2003-2018)

—— [Counterfactual] SIE under 2*trend GBI

—  \ —— [Factual] SIE under Observed JJA GBI
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Fig: Annual mean sea ice extent (SIE) predictions under interventional GBI where
each data point represents summer (JJA) mean SIE for that year.
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Case study:

How does increased Greenland Blocking (GBI) affect
summertime regional Arctic sea ice melting given snowfall
rate and solar radiation data.

Treatments:

- Treatment 1: GBI® = 40 -year-averaged daily GBI
- Treatment 2: GBI + 2x GBI®

- Treatment 3: GBI + 3x GBI®

- Treatment 4: GBI + 4x GB|®

TABLE V
CAUSAL EFFECT ESTIMATION BY TCINET-GMM (IN million km?) ON
OBSERVATIONAL ARCTIC DATA UNDER CONTINUOUS TREATMENTS.

TREATMENT ESTIMATED LATE (TCINET-GMM)

40YR-AVG-GBI -0.60 million km?

GBI (2x TREND) -0.64 million km?

GBI (3x TREND) -0.65 million km?

GBI (4x TREND) -0.69 million km?
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Conclusions from Study 2

= We propose a time-series based causal inference model for continuous treatment effect
estimation

- We propose a novel probabilistic weighting techniqgue to balance time-varying
confoundedness by leveraging Gaussian Mixture Model (GMM)

« We compare model performance with state-of-the-art (SOTA) methods using synthetic
time-series data for fixed and continuous time-delayed treatments

«  We utilize the developed model to quantify the causal effects of thermodynamic processes
on the Arctic sea ice melt and our results aligns with physics based understanding in [10]

To the best of our knowledge, we are the first one to calculate stabilized weights for
continuous treatment effects estimation
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KEY TERMINOLOGIES

Bias due to Time Varying Confounding

The common influence a past treatment T, or covariate X; might have on the future
treatments T,,4, and the future outcome Y,

Propensity Score

The probability of a unit being assigned to a particular treatment given a set of observed
covariates.

Balancing strategies to reduce bias

Methods to reduce bias caused by time-varying treatment and covariates on the potential
outcome, such as g-methods, propensity score matching, etc.
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CAUSAL ASSUMPTIONS

= Consistency
= The potential outcome for the treated subject Y_; is considered equal to the observed outcome Y.
" Positivity
= The probability of receiving treatment given some covariates X is always greater than zero. That is,
Pr(T=t|X =x)> 0 where Pr(X=x) # 0
= Conditional Exchangeability

®  The conditional probability of receiving treatment depends only on the covariates X, that is, Y and
treatment T are are statistically independent, given every possible value of X.

= Stable Unit Treatment Value Assumption (SUTVA)

= The potential outcome Y; on one unit 1 is not affected by the treatment effect on other units and there is no

hidden variations of treatment.
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