

TEXAS A&M UNIVERSITY Landscape Architecture & Urban Planning

Non-linearity and Spatial Heterogeneity of the Natural and Built Environment Factors to Wildfire Duration in Texas: An Interpretable Machine Learning Approach Using Random Forest and Geographically Weighted Random Forest

> Team: UrbanDS Member: Chunwu Zhu, Weishan Bai, Tianchen Huang, Jiaxin Du

## Background

Wildfires can cause widespread damage and have long-lasting impacts on both the natural environment and human communities.

To mitigate the influence of wildfires, we need to **explore the contributing factors and their relationship** to wildfires from both natural environment and built environment that bores the disaster.

Natural environment: Water surface near wildfire<sup>1</sup>



Built environment: Road network near wildfire<sup>2</sup>



1.https://www.ocregister.com/2018/09/19/mountain-lions-can-usually-escape-wildfires-but-the-blazes-can-reduce-their-habitat/

2.https://www.cnn.com/2022/07/30/weather/mckinney-wildfire-northern-california/index.html

### **Problem statement**

- 1. How to measure wildfire and its distribution?
  - How is the wildfire duration distributed in Texas?
  - Is the wildfire duration concentrated or randomly distributed?
  - If it is concentrated, where is **the hotspot** of the wildfire in Texas?

2.What factors from the natural and built environment contribute more to the duration of wildfire? What is their relationships with the duration of wildfire in Texas? Does the variable importance of natural and environmental factors vary across spatial scale? Where do these factors demonstrate greater significance?

#### 3. What are some **effective wildfire risk communication** might be?

Traditional tables and figures

Dashboard

Stable Diffusion Model Visualization

### Framework

#### Aim:

Non-linear relationship and spatial heterogeneity of influential factors to the duration of wildfire

#### Measurement:

Outcome variable: Wildfire Duration Days (WDD).

Input variables: Factors from the natural environment and built environment.

#### Methods:

Exploratory Spatial Data Analysis (ESDA)

Random Forest

Geographically Weighted Random Forest



## Data

#### **Generating dependent variable**

Analysis unit: **10404 grids with 5-mile side length** Wildfire duration days (WDD): **yearly average wildfire days within the grid (2014-2022)** from National Interagency Fire Center



### **Generating independent variables**

#### 15 natural environment variables

 Generating by calculating the sum value in each grid. For example: WindSpdZ ->wind speed from zonal direction (m/s) in grid SoilMoi ->Soil moisture (kg/m^2) in grid
Generating by proportion in each grid. For example: PForest->Percent of forest in each grid (percentage)
PAgri->Percent of agricultural land in each grid (percentage)

#### 7 Built environment variable

1. Generating by density in each grid. For example:

Pop-> population density in each grid(people)

RoadLen-> Road network density in each grid(miles)

2. Generating by distance to centroid of each grid. For example:

DFrieStn->The nearest distance to fire station from each grid(miles) DDispatch ->The nearest distance to national dispatch office(miles)

### Data

### Natural environment

| Factors  | Variables                 | Source                                      |  |  |  |  |  |  |
|----------|---------------------------|---------------------------------------------|--|--|--|--|--|--|
|          | Soil moisture             |                                             |  |  |  |  |  |  |
|          | Surface runoff            | North American                              |  |  |  |  |  |  |
|          | Surface temperature       | Land Data<br>Assimilation<br>System (NLDAS) |  |  |  |  |  |  |
|          | Evapotranspiration        |                                             |  |  |  |  |  |  |
| Climate  | Precipitation             |                                             |  |  |  |  |  |  |
|          | Wind speed (2 directions) |                                             |  |  |  |  |  |  |
|          | Developed land            |                                             |  |  |  |  |  |  |
|          | Barren land               | LISCS National                              |  |  |  |  |  |  |
|          | Forest land               | Land Cover                                  |  |  |  |  |  |  |
| Lanu Use | Grass land                | Database                                    |  |  |  |  |  |  |
|          | Agricultural land         |                                             |  |  |  |  |  |  |
|          | Wetland                   |                                             |  |  |  |  |  |  |
|          | Texas coastline           | United States                               |  |  |  |  |  |  |
| Location | Elevation                 | Census Bureau;<br>USGS DEM data             |  |  |  |  |  |  |

### **Built environment**

| Factors                | Variables                                           | Source                                 |  |  |  |  |  |
|------------------------|-----------------------------------------------------|----------------------------------------|--|--|--|--|--|
| Population             | Population<br>density                               | LandScan Global<br>Population Database |  |  |  |  |  |
| Road                   | Road Length                                         | TxDOT Roadway<br>Inventory             |  |  |  |  |  |
| Fire station           | Fire station                                        | Google Map Place<br>API                |  |  |  |  |  |
| State Park             | Texas State Park                                    | TPWD SPATIAL<br>DATA                   |  |  |  |  |  |
| Weather station        | National Dispatch<br>Office                         | National Interacency                   |  |  |  |  |  |
| and dispatch<br>office | Interagency<br>Remote Automatic<br>Weather Stations | Fire Center                            |  |  |  |  |  |
| Reservoir              | Existing Reservoirs                                 | Texas Water<br>Development             |  |  |  |  |  |

### Methods

#### **Random Forest**

Random Forest is an ensemble machine learning method that uses decision trees to predict outcomes.

We run random forest in Python using sklearn package.

We also calculate variable importance and draw partial dependence plots (PDP) to interpretation the **non-linear relationship** of variables.

#### Geographically Weighted Random Forest (GWRF)

GWRF is a spatially explicit version of Random Forest that allows us to account for spatial heterogeneity in the relationship between environmental variables and wildfire duration.

We use the package 'SpatialML' in R to run GWRF.

We also plot the local variable importance graphs to demonstrate the **spatial heterogeneity** of the influential factors.

### **Exploratory Spatial Data Analysis**

Moran's I is a spatial statistical index that measures the degree of concentration.

The global Moran's I of WDD is 0.32 (p<0.01), indicating **WDD is significantly concentrated** across whole Texas.



Figure 2. Moran's I index of WDD

### **Exploratory Spatial Data Analysis**

We plot the hotspots of WDD using Getis-Ord Gi\* Statistics.

Hotspots of WDD located at the **east region** of Texas where there are more forest.



Figure 3. Hot spot analysis of WDD

### **Correlation Matrix**

Correlation matrix show that Perciptation, Evapotrans, SurRunOff, and SurSkiTem are highly correlated.

| Рор          | 1       | 0.41    | -0.11    | -0.12  | -0.11     | -0.052   | 0.013    | -0.11    | 0.16         | 0.11       | 0.14      | 0.16      | 0.23    | 0.0073 | 0.87   | 0.013   | -0.022  | -0.3   | -0.063 | -0.0087  | -0.12      | -0.14     | -0.12  |
|--------------|---------|---------|----------|--------|-----------|----------|----------|----------|--------------|------------|-----------|-----------|---------|--------|--------|---------|---------|--------|--------|----------|------------|-----------|--------|
| RoadLen      | 0.41    | 1       | -0.23    | -0.14  | -0.12     | -0.024   | -0.073   | -0.044   | 0.12         | 0.11       | 0.12      | 0.12      | 0.14    | -0.038 | 0.48   | 0.0036  | 0.0073  | -0.19  | 0.012  | -0.015   | -0.12      | -0.096    | -0.068 |
| DFireStn     | -0.11   | -0.23   | 1        | 0.28   | 0.3       | 0.25     | 0.16     | 0.12     | -0.51        | -0.51      | -0.5      | -0.49     | -0.21   | -0.09  | -0.25  | 0.05    | -0.32   | 0.45   | -0.14  | -0.17    | 0.43       | 0.39      | 0.28   |
| DPark        | -0.12   | -0.14   | 0.28     | 1      | 0.16      | 0.47     | -0.091   | 0.46     |              |            |           |           | -0.28   | -0.11  | -0.19  | -0.029  | -0.37   | 0.15   | 0.29   | -0.18    | 0.45       | 0.5       | 0.52   |
| DDispatch    | -0.11   | -0.12   | 0.3      | 0.16   | 1         | 0.17     | 0.36     | 0.074    |              |            |           |           | -0.14   | -0.064 | -0.2   | 0.067   | -0.51   | 0.4    | 0.12   |          | 0.17       | 0.14      | 0.11   |
| DWeather     | -0.052  | -0.024  | 0.25     | 0.47   | 0.17      | 1        | 0.057    | 0.2      |              |            |           |           | -0.24   | -0.092 | -0.1   | -0.033  | -0.38   | 0.18   | 0.22   | -0.22    | 0.35       | 0.36      | 0.37   |
| WindSpdZ     | 0.013   | -0.073  | 0.16     | -0.091 | 0.36      | 0.057    | 1        | -0.41    | -0.083       | -0.024     | -0.016    | 0.021     | -0.21   | 0.13   | -0.016 | 0.14    | -0.12   | 0.097  | -0.12  | 0.056    | 0.14       | -0.36     | -0.53  |
| WindSpdM     | -0.11   | -0.044  | 0.12     | 0.46   | 0.074     | 0.2      | -0.41    | 1        | -0.44        | -0.43      | -0.45     | -0.51     | -0.12   | -0.15  | -0.16  | -0.05   | -0.26   | 0.13   | 0.28   | -0.27    | 0.24       |           |        |
| Preciptation | 0.16    | 0.12    | -0.51    | -0.46  | -0.58     | -0.45    | -0.083   | -0.44    | 1            | 0.96       | 0.96      | 0.98      | 0.45    | 0.15   | 0.29   | -0.034  | 0.62    | -0.55  | -0.14  | 0.51     | -0.51      | -0.75     | -0.65  |
| Evapotrans   | 0.11    | 0.11    |          |        |           |          | -0.024   | -0.43    | 0.96         |            |           | 0.96      | 0.5     | 0.098  | 0.24   | -0.034  |         |        | -0.1   | 0.45     |            | -0.77     | -0.68  |
| SurRunoff    | 0.14    | 0.12    |          |        |           |          | -0.016   | -0.45    | 0.96         |            |           | 0.97      |         | 0.1    | 0.27   | -0.031  |         |        | -0.11  | 0.46     |            | -0.77     | -0.69  |
| SurSkiTem    | 0.16    | 0.12    |          |        |           |          | 0.021    | -0.51    | 0.98         | 0.96       | 0.97      |           | 0.42    | 0.11   | 0.29   | -0.019  |         |        | -0.16  | 0.49     |            | -0.81     | -0.73  |
| SoilMoi      | 0.23    | 0.14    | -0.21    | -0.28  | -0.14     | -0.24    | -0.21    | -0.12    | 0.45         | 0.5        | 0.53      | 0.42      | 1       | 0.062  | 0.28   | -0.017  | 0.062   | -0.27  | 0.067  | 0.18     |            | -0.28     | -0.19  |
| PWater       | 0.0073  | -0.038  | -0.09    | -0.11  | -0.064    | -0.092   | 0.13     | -0.15    | 0.15         | 0.098      | 0.1       | 0.11      | 0.062   | 1      | 0.03   | 0.15    | -0.017  | -0.3   | -0.081 | 0.18     | -0.15      | -0.2      | -0.23  |
| PDvlpd       | 0.87    | 0.48    | -0.25    | -0.19  | -0.2      | -0.1     | -0.016   | -0.16    | 0.29         | 0.24       | 0.27      | 0.29      | 0.28    | 0.03   |        | 0.019   | 0.044   |        | -0.041 | 0.039    | -0.21      | -0.24     | -0.2   |
| PBarren      | 0.013   | 0.0036  | 0.05     | -0.029 | 0.067     | -0.033   | 0.14     | -0.05    | -0.034       | -0.034     | -0.031    | -0.019    | -0.017  | 0.15   | 0.019  | 1       | -0.042  | -0.074 | -0.058 | 0.14     | 0.0038     | -0.075    | -0.076 |
| PForest      | -0.022  | 0.0073  | -0.32    | -0.37  | -0.51     |          | -0.12    | -0.26    | 0.62         | 0.62       | 0.59      | 0.62      | 0.062   | -0.017 | 0.044  | -0.042  | 1       |        | -0.28  | 0.25     | -0.28      |           |        |
| PGrass       | -0.3    | -0.19   | 0.45     | 0.15   | 0.4       | 0.18     | 0.097    | 0.13     |              |            |           |           | -0.27   | -0.3   | -0.42  | -0.074  | -0.43   | 1      | -0.51  | -0.42    | 0.39       | 0.36      | 0.29   |
| PAgri        | -0.063  | 0.012   | -0.14    | 0.29   | 0.12      | 0.22     | -0.12    | 0.28     | -0.14        | -0.1       | -0.11     | -0.16     | 0.067   | -0.081 | -0.041 | -0.058  | -0.28   | -0.51  | 1      | -0.13    | -0.07      | 0.19      | 0.26   |
| PWetland     | -0.0087 | -0.015  | -0.17    | -0.18  | -0.37     | -0.22    | 0.056    | -0.27    | 0.51         | 0.45       | 0.46      | 0.49      | 0.18    | 0.18   | 0.039  | 0.14    | 0.25    |        | -0.13  | 1        | -0.18      | -0.38     | -0.39  |
| DReservoir   | -0.12   | -0.12   | 0.43     | 0.45   | 0.17      | 0.35     | 0.14     | 0.24     | -0.51        | -0.54      | -0.53     | -0.5      | -0.36   | -0.15  | -0.21  | 0.0038  | -0.28   | 0.39   | -0.07  | -0.18    | 1          | 0.49      | 0.32   |
| Elevation    | -0.14   | -0.096  | 0.39     | 0.5    | 0.14      | 0.36     | -0.36    | 0.67     | -0.75        | -0.77      | -0.77     | -0.81     | -0.28   | -0.2   | -0.24  | -0.075  | -0.41   | 0.36   | 0.19   | -0.38    | 0.49       | 1         | 0.88   |
| DSea         | -0.12   | -0.068  | 0.28     |        | 0.11      | 0.37     | -0.53    |          | -0.65        | -0.68      | -0.69     | -0.73     | -0.19   | -0.23  | -0.2   | -0.076  |         | 0.29   | 0.26   |          | 0.32       | 0.88      |        |
|              | Pop     | RoadLen | DFireStn | DPark  | DDispatch | DWeather | WindSpdZ | WindSpdM | Preciptation | Evapotrans | SurRunoff | SurSkiTem | SoilMoi | PWater | PDvlpd | PBarren | PForest | PGrass | PAgri  | PWetland | DReservoir | Elevation | DSea   |

Figure 3. Variable Correlation Matrix

-0.50

-0.75

#### **Random forest**

Calculate variable Precipitation-Evaporation Index (PEI) using Principle Component Analysis (PCA) for Precipitation, Evapotrans, SurRunOff, and SurSkiTem.

Compare model using PEI and using only one of the variable (We choose SurSkiTem), split the training set and test set to 8:2.

Table 1. Model Performance Comparison between Standardized and Unstandardized Model with PEI and SurSkiTem

| Models                                        | RMSE<br>(Test Set) | R2<br>(Training Set) |  |  |  |  |
|-----------------------------------------------|--------------------|----------------------|--|--|--|--|
| Random Forest with PEI                        | 0.58               | 0.20                 |  |  |  |  |
| Random Forest with PEI (standardized)         | 0.58               | 0.20                 |  |  |  |  |
| Random Forest with SurSkiTem                  | 0.65               | 0.19                 |  |  |  |  |
| Random Forest with<br>SurSkiTem(standardized) | 0.65               | 0.19                 |  |  |  |  |

#### Variable importance

Proportion of Forest, Distance to Weather Station, Proportion of Grass land, and Distance to Dispatch are the top 4 influential factors.

Forest and grass are related to the happening of wildfire, while weather station and dispatch office are related to the discovery and suppression of wildfire.



#### Figure 5. Variable Importance of the Random Forest Model



Figure 5. Partial Dependence Plots for All Variables

### Local variable importance(GWRF)

Spatial heterogeneity of, for example:

**Proportion of forest:** Proportion of forest is more important in the west region, north region, and southwestern part.

**Proportion of Agricultural land:** Proportion of Agricultural land is more important in north region, but not influential in the remaining region.

Agricultural land involves massive human activities which might help to discover and suppress the wildfire faster



Figure 6. Local variable importance plots

### Dashboard

https://tamu.maps.arcgis.com/apps/dashboards/83a779c859a84203addb316bcf30c012

Github repo: https://github.com/UrbanDS/UrbanDS\_Team



### **Stable Diffusion model**

Simulate what the fire would look like in your familiar places



#### Visualization of Wildfire in Sam Houston National Forest

Team member: Jiaxin du, Zhunwu Zhu, Tianchen Huang, Weishan Bai



These pictures visualize an assumed wild in Sam Houston National Forest, Texas. Th mages include an existing situa fire situation for each scer we use to generate these on fire situation ned on text descriptions th iso be applied to other tasks such as i nling, outpainting, and generating in



On fire situation - Bird' eve view 1





isting situation - Bird' eye view 2

On fire situation - Bird' eye view 2





On fire situation - Bird' eve view 3





On fire situation - Perspective 1

On fire situation - Persper



TEXAS A&M UNIVERSITY Landscape Architecture & Urban Planning

# Acknowledgement

Special thanks to Professor Xinyue.Ye for his guidance and to Shoujia Li for her support in the work.



TEXAS A&M UNIVERSITY Landscape Architecture & Urban Planning



Thank you all for your listening !