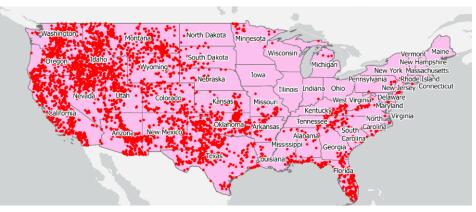
PREDICTION AND INFERENCE OF LARGE WILDFIRE BURN AREA IN THE CONTIGUOUS UNITED STATES

2023 TAMIDS Student Data Science Competition

Team – Sam's Strikers Shubham Jain Sambandh Bhusan Dhal Krishna Chaitanya Gadepally Prathik Vijaykumar

TEXAS A&M Institute of Data Science

Water Management & Hydrological Science



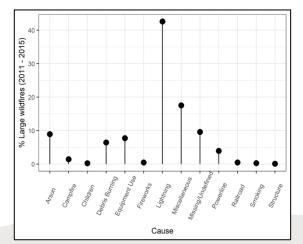
Picture Courtesy: kqed.org

Introduction

- Primary focus on two challenges: wildfire behavior prediction and effective communication of research findings
- Wildfire behavior is complex, and predicting it accurately is challenging
- Effective communication of research findings to end-users is critical in addressing the wildfire problem
- In last decade, the US witnessed 70,000 wildfires per year, burning 7 million acres of land on average
- Texas had 3,700 wildfires in 2021, burning around 200,000 acres of land
- Data-driven approaches can help in predicting wildfire spread and ultimately reducing their impact
- A **Deep Learning** approach is used to predict burn area for large wildfire occurrences based on **climate forcings** and **geological characteristics**

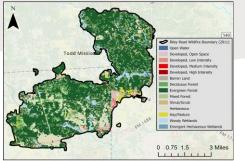
Map of large wildfire incidents in the contiguous US between 2011 and 2020 (4538 incidents)

Wildfire Data

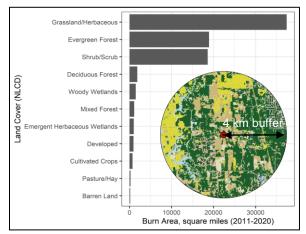

- GIS data for large wildfire locations and burn area boundaries downloaded from Monitoring Trends in Burn Severity Program.
- Large wildfire thresholds 1000 acres in Western US and 500 acres in Eastern US.
- 10 years of data collected (2011 2020)
- **4,538** incidents covering **87,305** square miles of burn area used in analysis

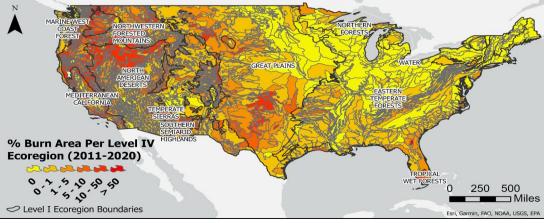
Additional wildfire data obtained from Fire Program Analysis Fire-Occurrence Database (FPA-FOD) for information on wildfire causes

Large wildfire incidents by state

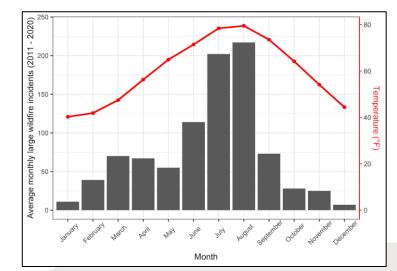


Major causes of large wildfires in US


Meteorological and Topography Data

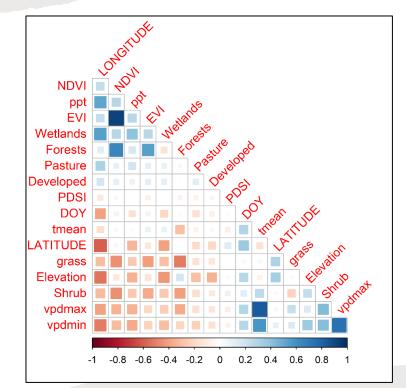

Climate —		PRISM	Precipitation, Temperature, Vapor Pressure Deficit (Minimum and Maximum)
		GRIDMET	Palmer Drought Severity Index (PDSI), Potential Evapotranspiration (PET)
Land cover	> Nati	ional Land Cover Database (NLCD 2016)	Open Water, Developed, Barren, Forests, Shrub/Scrub, Hay/Pasture, Cultivated Crops, Wetlands
MODIS		MOD13A3 Version 6	Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI)
Topography		USGS DEM	Elevation (meters)
Ecoregion		US EPA Ecoregions	Level I and Level IV ecoregion boundaries

Data Exploration



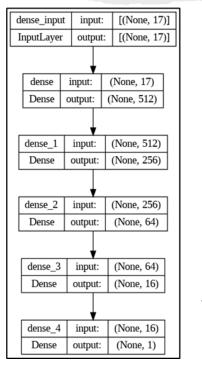
NLCD land cover for area burned in Riley Road wildfire northwest of Houston burning 19,000 acres of land

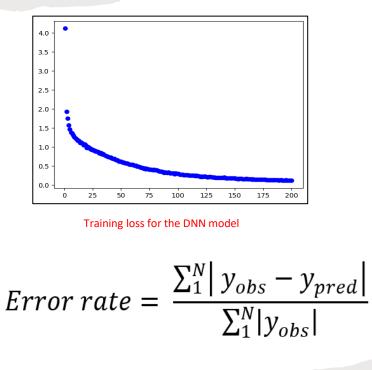
Percent of Level IV Ecoregion land burned in large wildfires between 2011 - 2020

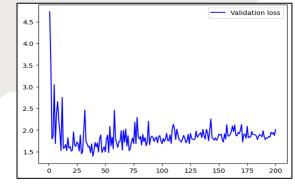

Burn area by NLCD land cover in large wildfires between 2011-2020 Average mon

Average monthly large wildfires (bar) in the contiguous US and the mean monthly temperature (line).

Predicting Burn Area


Features gathered for 4,536 large wildfires

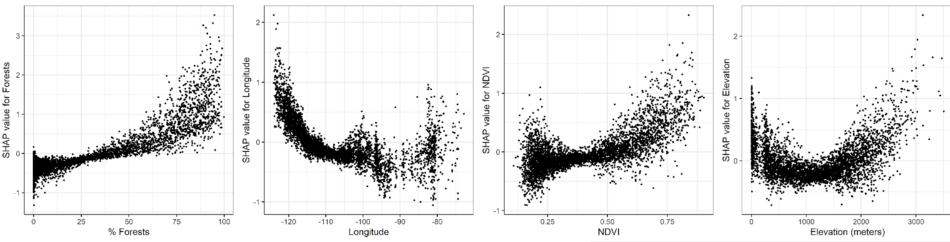

Feature	Description	Min	Max
LATITUDE	Latitude coordinates of wildfire occurrence (decimal degrees)	25.2	49
LONGITUDE	Longitude coordinates of wildfire occurrence (decimal degrees)	-124.1	-72.8
DOY	Wildfire ignition day of year	1	365
ppt	Total monthly precipitation for month of wildfire ignition	0	1063.2
tmean	Average monthly temperature for month of wildfire ignition	-5.3	36.8
vpdmax	Maximum vapor pressure deficit for month of wildfire ignition	2.7	81.8
vpdmin	Minimum vapor pressure deficit for month of wildfire ignition	0	35.3
PDSI	Palmer Drought Severtiy Index during ignition date	-8.1	7.6
Developed	% NLCD developed around 4-kilometer buffer of wildfire ignition	0	64.2
Forests	% NLCD forests around 4-kilometer buffer of wildfire ignition	0	99.8
Shrub	% NLCD shrub/scrub around 4-kilometer buffer of wildfire ignition	0	100
grass	% NLCD grasslands/herbaceous around 4-kilometer buffer of wildfire ignition	0	100
Pasture	% NLCD hay/pasture around 4-kilometer buffer of wildfire ignition	0	74
Wetlands	% NLCD wetlands around 4-kilometer buffer of wildfire ignition	0	100
NDVI	Normalized Difference Vegetation Index for month of wildfire occurrence	0.1	0.9
EVI	Enhance Vegetation Index for month of wildfire occurrence	0	0.7
Elevation	Elevation of wildfire occurrence	-2	3507



Correlation plot for features used in the study

Modeling and Analysis

Model Specifications:


- Train/Test split ratio 80/20
- Number of repeats: 3
- Activation function: **ReLU**
- Learning rate: 0.001
- Batch size: **32**
- Number of Epochs: 200
- Test Error (MSE): 0.055 to 0.06

DNN architecture used in the study

Model Inference

- Using **shapley values** (from game theory) for feature interactions and importance
- Positive SHAP value indicated increase in model's prediction due to the feature in analysis, and vice-versa for negative values
- For any observation -

Model prediction = Average prediction + sum of all SHAP values

grass Forests

Shrub

Feature importance in the DNN model obtained from SHAP values

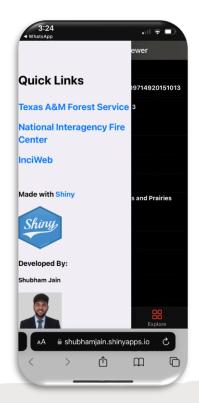
Importance (mean(abs(SHAP values)))

Partial Dependence Plots showing the interactions between features and burn area using SHAP values

Conclusion and Recommendations

- The DNN model performed reasonably well with an average test MSE of 0.055
- Land cover and location of wildfire occurrence were most influential in determining burn area
- Future work could involve learning the effects of other features such as **soil** characteristics and dead fuel moisture on burn area
- **Data collection, modeling** and **on-ground action** need to be looked together for an effective strategy to mitigate impact of forest fires
- Promoting **interdisciplinary research** with more collaboration between Natural Sciences and Data Science
- A prototype interactive web-tool to visualize wildfire data and characteristics for end-users

https://shubhamjain.shinyapps.io/Wildfires/


Mobile friendly data visualization tool

Web tool

3:23 WhatsApp	all ≑ ∎)
US Large	Wildfires Viewer
Data	Value
FIRE_ID	TX3007509714920151013
Ignition Date	2015-10-13
Latitude	30.081
Longitude	-97.183
Burn Area (acres)	3807
Level 4 Ecoregion ID	33e
Ecoregion	Oak Woods and Prairies Section
Monthly Precipitation (mm)	274.844
Mean Temperature (Degree Celsius)	21.959
Maximum Vapour Pressure Deficit (h Pa)	27.159
Minimum Vapour Pressure Deficit (h Pa)	1.173
Palmer Drought	
Map Wi	Idfire Data Explore
Y	njain.shinyapps.io
< >	ΰ m G

Team – Sam's Strikers

Shubham Jain PhD Student Water Management and

Hydrological Science

Bhusan Dhal PhD Candidate Electrical and Computer Engineering

Sambandh

Krishna Chaitanya Gadepally MS Student Electrical and Computer Engineering

Prathik Vijaykumar MS Student Electrical and Computer Engineering

Hearty gratitude:

TEXAS A&M Institute of Data Science

School of Performance, Visualization & Fine Arts

Thank You!

Questions?