

Remote-Sensing and Environmental Data Fusion for Wildfire Propagation Prediction via CNN-Segmentation and Pixel-Based Enhanced Support Vector Machine

InfernotiX

Team Members: Bahareh Alizadeh, Chih-Shen Cheng, Xukai Zhang

Faculty Advisor: Arash Noshadravan

Motivation

Challenge in Estimating Wildfire Behavior:

Complex interplay of various factors
Challenging in both spatially and temporally

Opportunity

Advanced in Artificial Intelligence (AI) and Remote Sensing

Gap

Al for **wildfire detection** and **propagation estimation** remains an under-explored area.

Ā M

 $\mathbf{\Gamma}\mathbf{E}\mathbf{X}\mathbf{A}\mathbf{S} \mathbf{A}^{\mathbf{K}}\mathbf{M}$

The Bobcat Fire is now one of the largest in Los Angeles County history after scorching more than 100,000 acres

Proposed Approach

AM

3

4

Deep Learning-based Wildfire Detection

Model: U-Net

Training Set:

Annotated Active Fire Dataset*

Data Augmentation:

Images are divided into patches of 256 pixels by 256 pixels.

*(containing 8,194 satellite images of wildfires over the world taken by a NASA/USGS operated satellite Landsat-8 between 2020 and 2022)

The architecture of U-Net model

Deep Learning-based Wildfire Detection

The results for deep learning-based wildfire detection model:

Metric	Value
Precision	86.8%
Recall	89.7%
loU	78.9%

Sample input image

Sample detection results

Proposed Approach

TEXAS A&M

AM

Case Study – Nebo Fire Dataset

Google Map in the fire area

Progression report for the fire

Ā M

TEXAS A&M

RSI

E

TY

(08/29/2022 - 09/01/2022)

Nebo Fire, OREGON

Case Study – Nebo Fire Dataset

Nebo fire

- Longitude
- Latitude
- Altitude
- Boundary
- Intensity
- (FIRMS US/CANADA) (NRT VIIRS 375 m)
- TemperaturePrecipitation
 - Humidity

Ă M

Wind

ava recipitatio Mind(mphDeu

Combustible

TEXAS A&M

material

Longitude	Lutitude	ntitude (inin	med_beig ruei_ma	rem_mgn	I CIII_IOW	Tem_uvg	recipitation	cipitatiora ind (inpripera_pointie a cipitess		DI	02	110	uni_uuy_n	ineu_kesuk	
-117.133	45.1233	1751	0 1	1 86	62	69.6	i 0	8	64.92	27.8	200	200	0	6	0
-117.127	45.1233	1823.9	0 1	1 86	62	69.6	i 0	8	64.92	27.8	200	200	0	6	0
-117.121	45.1233	1876.9	0 1	1 86	62	69.6	i 0	8	64.92	27.8	200	200	0	6	0
-117.116	45.1233	1887.5	0 1	1 86	62	69.6	i 0	8	64.92	27.8	200	200	0	6	0
-117.11	45.1233	1912.4	0 2	2 86	62	69.6	i 0	8	64.92	27.8	200	200	0	6	0
-117.104	45.1233	1930.2	0 2	2 86	62	69.6	i 0	8	64.92	27.8	200	200	0	6	0
-117.099	45.1233	1976.5	0 2	2 86	62	69.6	i 0	8	64.92	27.8	200	200	0	6	0
-117.093	45.1233	2056.8	0 2	2 86	62	69.6	i 0	8	64.92	27.8	200	200	0	6	0
-117.087	45.1233	2173.9	0 2	2 86	62	69.6	i 0	8	64.92	27.8	200	200	0	6	0
-117.082	45.1233	2124.9	0 3	3 86	62	69.6	i 0	8	64.92	27.8	200	200	0	6	0
-117.133	45.127	1882.1	0 1	1 86	62	69.6	i 0	8	64.92	27.8	200	200	0	6	0
-117.127	45.127	1927.5	0 1	1 86	62	69.6	i 0	8	64.92	27.8	200	200	0	6	0
-117.121	45.127	1978.5	0 1	1 86	62	69.6	i 0	8	64.92	27.8	200	200	0	6	0
-117.116	45.127	2023.6	0 1	1 86	62	69.6	i 0	8	64.92	27.8	200	200	0	6	0
-117.11	45.127	2090.5	0 1	1 86	62	69.6	0	8	64.92	27.8	200	200	0	6	0
-117.104	45.127	2099.9	0 1	1 86	62	69.6	i 0	8	64.92	27.8	200	200	0	6	0
-117.099	45.127	2149	0 2	2 86	62	69.6	0	8	64.92	27.8	200	200	0	6	1
-117.093	45.127	2132.4	0 2	2 86	62	69.6	0	8	64.92	27.8	200	200	0	6	0
-117.087	45.127	2085.3	0 2	2 86	62	69.6	0	8	64.92	27.8	200	200	0	6	0
-117.082	45.127	2088.2	0 2	2 86	62	69.6	0	8	64.92	27.8	200	200	0	6	0
-117.133	45.1306	1965	0 1	1 86	62	69.6	0	8	64.92	27.8	200	200	0	6	0
-117.127	45.1306	1961	0 1	1 86	62	69.6	i 0	8	64.92	27.8	200	200	0	6	0
-117.121	45.1306	2126	0 2	2 86	62	69.6	0	8	64.92	27.8	200	200	0	6	0
-117.116	45.1306	2166.5	0 1	1 86	62	69.6	0	8	64.92	27.8	200	200	0	6	0
-117.11	45.1306	2283.5	1 1	1 86	62	69.6	0	8	64.92	27.8	334.61	296.1	8.11	6	1
-117.104	45.1306	2263	0 1	1 86	62	69.6	i 0	8	64.92	27.8	200	200	0	6	1
-117.099	45.1306	2222.8	0 1	1 86	62	69.6	i 0	8	64.92	27.8	200	200	0	6	1
-117.093	45.1306	2192	0 2	2 86	62	69.6	i 0	8	64.92	27.8	200	200	0	6	0

TEXAS A&M

Results of Wildfire Prediction

Pixel-based Enhanced Support Vector Machine Model (PESVM):

Ground Truth

Accuracy: 0.55

Ă M

Accuracy: 0.86

Contributions

A novel approach is proposed for Wildfire propagation prediction by fusion of imagery data and weather prediction data.

Wildfire Propagation Prediction Framework

TEXAS A&M

Ā M

