

TAMU 2023 Data Science Competition

Blaze Abaters

April 18, 2023

- Introduction
 - Problem Statement
- Method
 - o Data
- Models
- Visualization
 - Data Warehouse Architecture
 - o Dashboards
- Conclusions
 - Future Research
 - Recommendations

Introduction

Complexity

Academia and Startups

Time Constraint

What features lead to increased wildfire occurrences in the Denver, CO region compared to the Columbus, OH region?

Are there any peculiar variables affecting wildfires?

Data

Data pulled for: January 2014 - December 2022

Data sourced from NASA Giovanni, NASA FIRMS, Visual Crossing, ArcGIS, and the National Interagency Fire Center

Introduction •

Method •

Models •

Visualization

Methodology

Research and Data Collection	Data Wrangling	EDA and Visualization	Modelling and Performance	Results & Recommendations
Spend 70% of effort here Conduct literature study on wildfire modelling	Merge datasets on Latitude, Longitude, Year and Month columns Obtain final dataset with	Perform variable selection (lasso and forward/backward) Understand variables like	Utilize brightness temperature and coded confidence as the response	Gather facts and intuitions Observe interaction of variables like NDVI, Wind, and Soil Composition
Gaining industry knowledge	108 observations and 40 variables for each region	NDVI, Precipitation, Soil Moisture, etc.	Implement 1 Classification and 3 Regression models for each region	Analyze importance of variables like Moonphase and Transpire Assess the reliability of NN, LR, SVM and RF models for wildfire prediction
Obtain ready to download data	Average adjacent rows to fill missing values	Analyze trends in variables Evaluate differences	Test model accuracy on unseen test data	
Obtain remaining data via API pulls	Drop "severe risk" column	between two regions Communicate relationship between variables to users via Power BI dashboard and ArcGIS map	Ensure models have reliable outputs and validate problem statement	

Introduction

Method •

Models

IS •

Visualization

Conclusions

Models: Details

Model	Туре	Parameters	Response Variable	Test Error Metric	Improving Accuracy
Logistic Regression	Classification	0.5 threshold for accuracy calculation	Confidence	ROC	Perform variable transformation
XG Boosting	Regression	max_depth, alpha, gamma, lambda	Brightness Temp	RMSE	Test wider range of values for hyper parameters and use nested CV
SVM	Regression	C, Gamma, Kernel	Brightness Temp	RMSE	Reduce feature correlations
Neural Networks	Regression	ReLu, adams, 3 layers, 25 epochs	Brightness Temp	MSE/MAE	Obtain more data and perform variable selection

Introduction •

Models

Method

S •

Visualization •

Logistic Regression: ROC Plots

Models

Test Columbus, Train Denver

Test Denver, Train Columbus

Method

Introduction

Visualization

NN: Test MSE

Models

Test Denver, Train Columbus

Method

Introduction

Test Columbus, Train Denver

Conclusions

Visualization

Models: Details

Model	Туре	Parameters	Response Variable	Test Error Metric	Improving Accuracy
Logistic Regression	Classification	0.5 threshold for accuracy calculation	Confidence	ROC	Perform variable transformation
XG Boosting	Regression	max_depth, alpha, gamma, lambda	Brightness Temp	RMSE	Test wider range of values for hyper parameters and use nested CV
SVM	Regression	C, Gamma, Kernel	Brightness Temp	RMSE	Reduce feature correlations
Neural Networks	Regression	ReLu, adams, 3 layers, 25 epochs	Brightness Temp	MSE/MAE	Obtain more data and perform variable selection

Introduction •

Models

Method

S •

Visualization •

Ā

Introduction

Method

Models

Visualization

Conclusions

BLAZL

Data Visualization: Power BI

Introduction

Models

Method

Visu

Visualization

Data Visualization: Power BI

Introduction

Models

Method

Visua

Visualization •

Conclusions

BLAZE

BLAZE BRAIFRS

Introduction

Models

Method

Visualization

Introduction

Models

Method

Visualization

Introduction

Method

What features lead to increased wildfire occurrences in the Denver, CO region compared to the Columbus, OH region?

NDVI, LAI, Humidity, Windspeed, and Visibility

Are there any peculiar variables affecting wildfires?

Moon Phase and Transpiration

Visualization

Conclusions

Models

Future Research

Introduction

Models

Visualization

Recommendations

Research grants for future research topics

Comprehensive data repository

Money to maintain/support data warehouse, cloud storage and BI platform

Increase data science positions in related industry

Emphasis on synergy of variables

Using ensembling of models

Using remote sensing data for real time prediction

QUESTIONS

Backup Slides

Expanded Methodology

Models: Gradient Boosting

Feature Importance Plot: Model trained using Denver data, tested on Columbus data

Feature Importance Plot: Model trained using Columbus data, tested on Denver data

Models: SVM

Feature Importance Plot: Model trained using Denver data, tested on Columbus data

Feature Importance Plot: Model trained using Columbus data, tested on Denver data

Models: F/B Selection & Lasso Regression

Variables chosen by Forward/Backward (F/B) selection were used as the input for the gradient boosting and neural . network models, and those chosen by lasso regression for logistic regression and SVM.

Forward/Backward Selection

Denver Model

NDVI SurfPS Dust SoilMoisture LAI Canopy h2o **Transpire** tempmin Humidity precipprob snow snowdepth

windgust windspeed winddir sealevelpressure visibilitv solarradiation uvindex moonphase dew

Columbus Model SurfTemp Dust SoilMoisture

WindVelocity Canopy h2o **Transpire** confidence feelslikemin precipprob snowdepth

solarradiation

Denver Model NDVI SurfPS Dust SoilMoisture LAI **Transpire** confidence tempmax tempmin feelslikemax dew humidity

Lasso Regression

Columbus Model Dust SoilMoisture **Transpire** humidity sealevelpressure precipprob snowdepth sealevelpressure cloudcover moonphase confidence WindVelocity

Legend:

Yellow: Common to both regions for both methods Green: Found only in Denver region for both methods

precipcover

snowdepth

windspeed

solarradiation

solarenergy

moonphase

uvindex

snow

Gradient Boosting: Test RMSE

Test Columbus, Train Denver

Test Denver, Train Columbus

A M

Facts/Intuition	Validated by model(s)	Comments
More fires in Denver area compared to Columbus area	Yes	Occurrences Variable, and Dashboard
Multiple factors are responsible for the wildfire	Yes	Variable Selection
Denver area is more susceptible to wildfires	Yes	Brightness and Confidence, Dashboard
More healthy vegetation in Columbus area	Yes	NDVI Index
Interaction of variables is crucial for understanding wildfire	Yes	Difference in models for the two regions, Optimal variable selection
Indirect variables might affect wildfire	Yes	Inclusion of moonphase in the models
Reliability of results	Yes	Actual test error
Importance of ensembling	Pending	Work in progress
Accuracy of results	Pending	Work in Progress
Going in the right direction	Yes	Our entire work.

References

Day, Joshua. 2016. "The Wind Zone Model." *Risk Management Magazine*. U.S. Army Combat Readiness Center. https://safety.army.mil/MEDIA/Risk-Management-Magazine/ArtMID/7428/ArticleID/5514/The-Wind-Zone-Model.

Esri. 2023. "Terrain: Slope Map." https://elevation.arcgis.com/arcgis/rest/services/WorldElevation/Terrain/ImageServer.

Esri Data and Maps. 2022. "USA Parks." https://services.arcgis.com/P3ePLMYs2RVChkJx/arcgis/rest/services/USA_Parks/FeatureServer/0.

Federal_User_Community. 2022. "US Electric Power Transmission Lines OGC.". https://services2.arcgis.com/FiaPA4ga0iQKduv3/arcgis/rest/services/US_Electric_Power_Transmission_Lines_OGC/OGCFeatureServer.

Halperin, Sandra and Oliver Heath. 2017. "Political Research: Methods and Practical Skills." Oxford University Press: Oxford.

Kohyama, Tubasa, and John M. Wallace. 2016. "Rainfall Variations Induced by the Lunar Gravitational Atmospheric Tide and their Implications for the Relationship Between Tropical Rainfall and Humidity." *Geophys. Res. Lett.*, 43, 918–923, doi:10.1002/2015GL067342.

National Aeronautics and Space Administration. 2023a. "Giovanni:The Bridge Between Data and Science v 4.38." *EarthData*. https://giovanni.gsfc.nasa.gov/giovanni/.

National Aeronautics and Space Administration. 2023b." Fire Information and Resource Management System: FIRMS Fire Map." https://firms.modaps.eosdis.nasa.gov/map/#d:24hrs;@0.0,0.0,3z.

National Interagency Fire Center. 2022. "Wildland Fire Incident Locations." https://data-nifc.opendata.arcgis.com/datasets/nifc::wildland-fire-incident-locations/about.

Visual Crossing Corporation. 2023. "Total Weather Data." https://www.visualcrossing.com/weather-data