Deep Gaussian Process Surrogates for Computer Experiments

Robert B. Gramacy with Annie Sauer and Dave Higdon and Andy Cooper

Virginia Tech Department of Statistics

February 2023

Where are we going?

1 Deep Gaussian Processes

Why?

What?

How?

2 Active Learning

Why?

What?

How?

3 Vecchia Approximation

Why?

What?

How?

- 1 Deep Gaussian Processes
 - Why?

- 2 Active Learning
- 3 Vecchia Approximation

Surrogates are meta-models of computer experiments.

Surrogates are used to make **predictions** with appropriate **uncertainty quantification** (UQ).

As simulations become more complex, surrogate models must keep up.

The typical surrogate model is a GP

nonlinear

DGPs

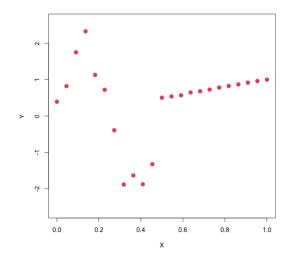
- nonparametric (mostly)
- adept at uncertainty quantification

A GP assumes a MVN prior

$$Y \sim \mathcal{N}(0, \Sigma(X))$$

All of the "work" is in the covariance

$$\Sigma(X)^{ij} = \tau^2 \left(k \left(\frac{||x_i - x_j||^2}{\theta} \right) + g \mathbb{I}_{i=j} \right)$$



"Shallow" Gaussian process (GP) surrogates

Conditioned on observed data (X, Y) and hyperparameter settings, posterior predictions at locations \mathcal{X} follow

$$Y(\mathcal{X}) \mid X, Y \sim \mathcal{N}(\mu^{\star}, \Sigma^{\star})$$

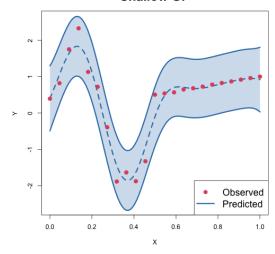
where

$$\mu^* = \Sigma(\mathcal{X}, X)\Sigma(X)^{-1}Y$$

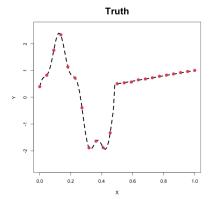
$$\Sigma^* = \Sigma(\mathcal{X}) - \Sigma(\mathcal{X}, X)\Sigma(X)^{-1}\Sigma(X, \mathcal{X})$$

Hyperparameters may be estimated through MLE or sampled through MCMC.

Shallow GP

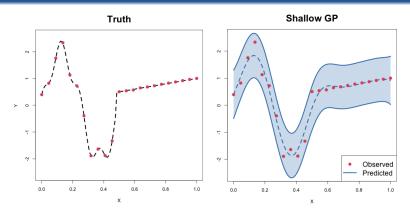


"Shallow" GP surrogates are limited by stationarity



DGPs

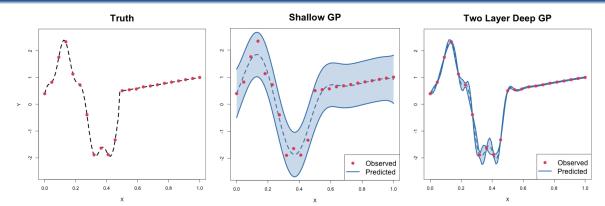
0000000000000000



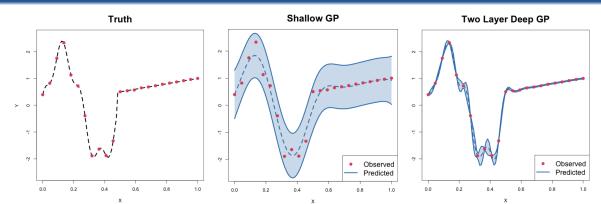
"Shallow" GP surrogates are limited by stationarity

DGPs

0000000000000000



DGPs



Approaches to modeling non-stationarity

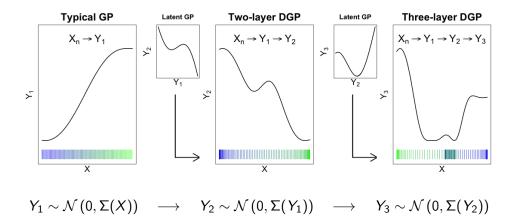
- Non-stationary kernels (Paciorek & Schervish, 2003; Higdon et al., 1999)
- Partition/Local GPs (Gramacy & Lee, 2007; Gramacy & Apley, 2015)
- Deep GPs (Damianou & Lawrence, 2012; Schmidt & O'Hagan, 2003)

- 1 Deep Gaussian Processes

 - What?
- 2 Active Learning
- 3 Vecchia Approximation

DGPs

000000000000000



Intermediate Gaussian layers are unobserved/latent

We represent a two-layer DGP prior as

Posterior inference requires

$$\mathcal{L}(Y \mid X) \propto \int \mathcal{L}(Y \mid W) \mathcal{L}(W \mid X) dW$$



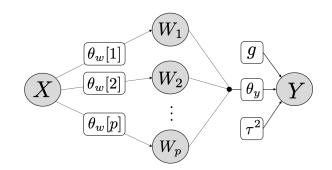
Intermediate Gaussian layers are unobserved/latent

We represent a two-layer DGP prior as

$$Y \mid W \sim \mathcal{N}(0, \Sigma(W))$$
 $W_k \stackrel{\mathrm{ind}}{\sim} \mathcal{N}(0, \Sigma(X)) \quad \forall \quad k = 1, \dots, p.$

Posterior inference requires

$$\mathcal{L}(Y \mid X) \propto \int \mathcal{L}(Y \mid W) \mathcal{L}(W \mid X) dW$$



To encourage identifiability and parsimony, we impose

- Unit scale and noise-free latent W
- Conditional independence among nodes of W
- Isotropic length scales (single θ for all dimensions of X and W)

- 1 Deep Gaussian Processes

How?

- 2 Active Learning
- 3 Vecchia Approximation

Direct posterior inference for DGPs is intractible

DGPs

0000000000000000

Direct posterior inference is intractible due to the latent layer W.

$$\mathcal{L}(Y \mid X) \propto \int \mathcal{L}(Y \mid W) \mathcal{L}(W \mid X) dW$$

Direct posterior inference for DGPs is intractible

Direct posterior inference is intractible due to the latent layer W.

$$\mathcal{L}(Y \mid X) \propto \int \mathcal{L}(Y \mid W) \mathcal{L}(W \mid X) dW$$

Methods for approximate DGP inference:

- Variational inference (Damianou & Lawrence, 2012; Salimbeni & Deisenroth, 2017; Marmin & Filippone, 2022)
- Expectation propogation (Bui et al., 2016)
- Hamiltonian Monte Carlo sampling (Havasi et al., 2018)

Direct posterior inference for DGPs is intractible

Direct posterior inference is intractible due to the latent layer W.

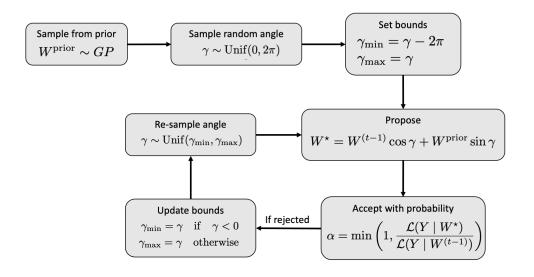
$$\mathcal{L}(Y \mid X) \propto \int \mathcal{L}(Y \mid W) \mathcal{L}(W \mid X) dW$$

To prioritize UQ, we embrace a fully-Bayesian MCMC inferential scheme.

- Metropolis-Hastings sampling of covariance hyperparameters
- Elliptical slice sampling of latent Gaussian layers (Murray et al., 2010)
- Iteration in a Gibbs scheme

DGPs

0000000000000000



Elliptical slice sampling provides efficient mixing

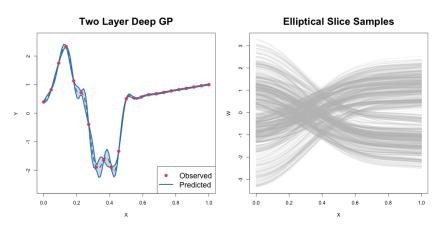
```
R> library(deepgp)
R> fit <- fit_two_layer(x, y, nmcmc = 10000)
R> fit <- trim(fit, 5000, 5)
R> fit <- predict(fit, x_pred)</pre>
```

R> library(deepgp)

R> fit <- fit_two_layer(x, y, nmcmc = 10000)

R> fit <- trim(fit, 5000, 5)</pre>

R> fit <- predict(fit, x_pred)</pre>

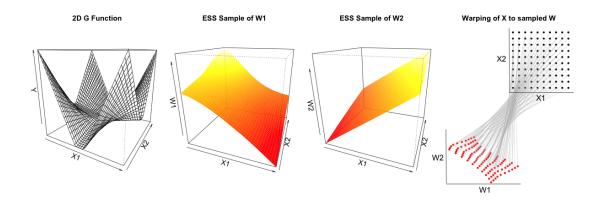


Preview of DGP predictive prowess

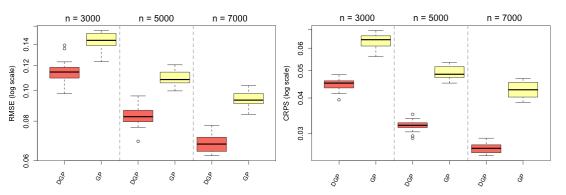
2-dimensional G-function

DGPs

0000000000000000



4-dimensional G-function (20 reps)



- RMSE = root mean squared error
- CRPS = continuous rank probability score (Gneiting & Raftery, 2007)

• Why?

- Non-stationary flexibility while maintaining the predictive prowess and uncertainty quantification of "shallow" GPs
- What?
 - Functional compositions of Gaussian layers
 - Intermediate layers are latent/unobserved
- How?
 - Bayesian MCMC hinging on elliptical slice sampling of latent layers
 - Implementation in the deepgp package

- Deep Gaussian Processes
- 2 Active Learning Why?
- 3 Vecchia Approximation

Statistical models are only as good as their data

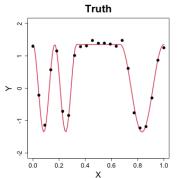
While a DGP has the flexibility to address non-stationarity, the data must reveal it.

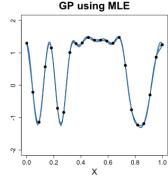
 Strategically choose input configurations to maximize learning from a limited budget (Sauer, Gramacy & Higdon, 2022; Gramacy, Sauer, & Wycoff, 2022).

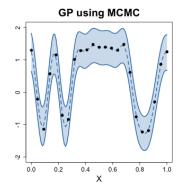
Statistical models are only as good as their data

While a DGP has the flexibility to address non-stationarity, the data must reveal it.

• Strategically choose input configurations to maximize learning from a limited budget (Sauer, Gramacy & Higdon, 2022; Gramacy, Sauer, & Wycoff, 2022).





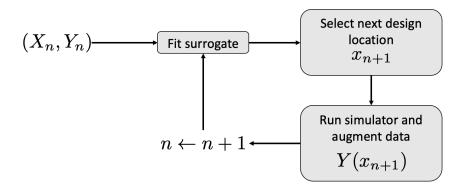


- Deep Gaussian Processes
- 2 Active Learning

What?

3 Vecchia Approximation

When computational costs are high, we may make the most of a stringent simulation budget through greedy acquisition: sequential design.



$$Y(x) \mid X_n, Y_n \sim \mathcal{N}\left(\mu(x), \sigma^2(x)\right) \quad \text{for} \quad \begin{array}{l} \mu(x) &= \Sigma(x, X_n) \Sigma(X_n)^{-1} Y_n \\ \sigma^2(x) &= \Sigma(x) - \Sigma(x, X_n) \Sigma(X_n)^{-1} \Sigma(X_n, x) \end{array}$$

Given augmented inputs $X_{n+1} = \{X_n, x_{n+1}\}$, the variance becomes

$$\sigma_{n+1}^2(x) = \Sigma(x) - \Sigma(x, X_{n+1}) \Sigma(X_{n+1})^{-1} \Sigma(X_{n+1}, x)$$

$$Y(x) \mid X_n, Y_n \sim \mathcal{N}\left(\mu(x), \sigma^2(x)\right) \quad \text{for} \quad \begin{array}{l} \mu(x) &= \Sigma(x, X_n) \Sigma(X_n)^{-1} Y_n \\ \sigma^2(x) &= \Sigma(x) - \Sigma(x, X_n) \Sigma(X_n)^{-1} \Sigma(X_n, x) \end{array}$$

Given augmented inputs $X_{n+1} = \{X_n, x_{n+1}\}$, the variance becomes

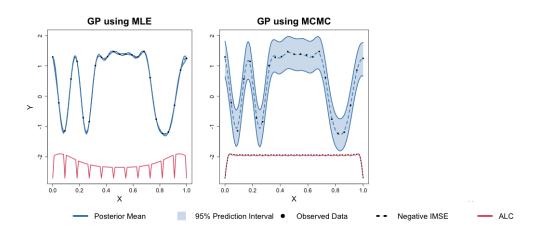
$$\sigma_{n+1}^2(x) = \Sigma(x) - \Sigma(x, X_{n+1})\Sigma(X_{n+1})^{-1}\Sigma(X_{n+1}, x)$$

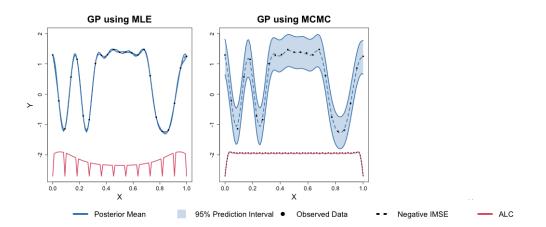
We choose acquisitions to minimize the posterior predictive variance.

$$x_{n+1} = \underset{x_{n+1}}{\operatorname{argmin}} \ \operatorname{IMSE}(x_{n+1}) \quad \text{where} \quad \operatorname{IMSE}(x_{n+1}) = \int \sigma_{n+1}^2(x) dx$$

For faster computation, we also utilize the sum approximation (Cohn, 1994).

$$x_{n+1} = \operatorname*{argmax}_{x_{n+1}} \operatorname{ALC}(x_{n+1}) \quad \text{where} \quad \operatorname{ALC}(x_{n+1}) \propto -\sum_{x \in X_{ref}} \sigma_{n+1}^2(x)$$





If the surrogate is stationary, sequential designs will end up "space-filling."

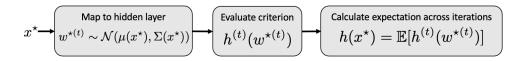
- Deep Gaussian Processes
- 2 Active Learning

How?

3 Vecchia Approximation

Novel inputs x^* are mapped to hidden layer $w^{*(t)}$ using typical GP prediction.

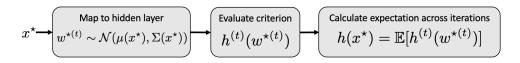
Criteria (IMSE/ALC) are calculated for $w^{\star(t)}$ and averaged across iterations.



Active Learning for DGPs

Novel inputs x^* are mapped to hidden layer $w^{*(t)}$ using typical GP prediction.

Criteria (IMSE/ALC) are calculated for $w^{\star(t)}$ and averaged across iterations.

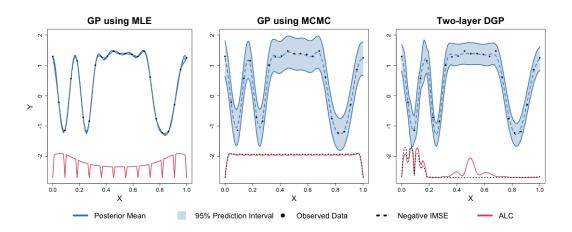


R> fit <- fit_two_layer(x, y)</pre>

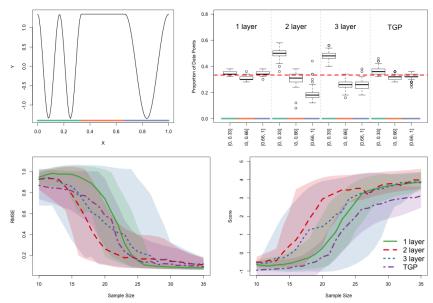
R> imse <- IMSE(fit, x_candidates)</pre>

R> alc <- ALC(fit, x_candidates)</pre>

DGPs depart from space filling and outperform on RMSE/SCORE

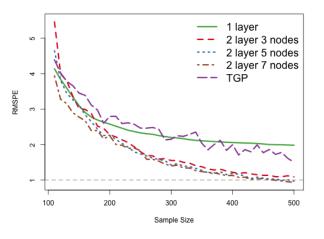


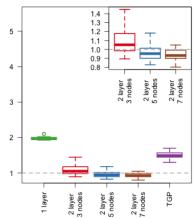
DGPs depart from space filling and outperform on RMSE/SCORE



Satellite drag computer simulation

- Test Particle Monte Carlo (TPM) simulator developed at LANL (Sun et al., 2019)
- Inputs: 7 configuration variables, satellite mesh, atmospheric composition
- Goal: RMSPE below 1% starting on a restricted domain





Active Learning for DGPs - Summary

- Why?
 - When computer simulations are expensive, the "budget" of evaluations is limited
- What?
 - Sequential selection of inputs using greedy acquisition criteria
 - IMSE or ALC (see Gramacy, Sauer, & Wycoff, 2022 for Expected Improvement)
- How?
 - Map inputs through hidden layers and evaluate criterion on mapped values
 - Sequential selections depart from space-filling and focus on regions of interest

Vecchia

•000000000000000

- 1 Deep Gaussian Processes
- 2 Active Learning
- 3 Vecchia Approximation Why?

Statistical models are only as good as their data

While a DGP has the flexibility to address non-stationarity, the data must reveal it.

Vecchia

000000000000000

 Strategically choose input configurations to maximize learning from a limited budget (Sauer, Gramacy & Higdon, 2022; Gramacy, Sauer & Wycoff, 2022).

Statistical models are only as good as their data

While a DGP has the flexibility to address non-stationarity, the data must reveal it.

Vecchia

- Strategically choose input configurations to maximize learning from a limited budget (Sauer, Gramacy & Higdon, 2022; Gramacy, Sauer & Wycoff, 2022).
- Deploy a space filling design that is large enough to pick up on changes in the response surface (Sauer, Cooper & Gramacy, 2022).

Statistical models are only as good as their data

While a DGP has the flexibility to address non-stationarity, the data must reveal it.

- Strategically choose input configurations to maximize learning from a limited budget (Sauer, Gramacy & Higdon, 2022; Gramacy, Sauer & Wycoff, 2022).
- Deploy a space filling design that is large enough to pick up on changes in the response surface (Sauer, Cooper & Gramacy, 2022).

Large datasets present computational bottlenecks for GP inference $(\mathcal{O}(n^3))$.

$$\mathcal{L}(Y\mid X) \propto |\Sigma(X)|^{-1/2} \exp\left(-rac{1}{2}Y^{ op}\Sigma(X)^{-1}Y
ight)$$

These are compounded in a Bayesian DGP setting.

Competing implementations for DGP inference ...

 Variational inference (Damianou & Lawrence, 2012; Salimbeni & Deisenroth, 2017; Marmin & Filippone, 2022)

Vecchia

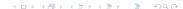
000000000000000

- Expectation propagation (Bui et al., 2016)
- Hamiltonian Monte Carlo sampling (Havasi et al., 2018)

All (but one) use **inducing point** approximations to handle large data sizes (Snelson & Ghahramani, 2006; Banerjee et al., 2008):

 observe covariance through fixed set of "knots" which are tricky to place and result in blurry predictions (Garton et al., 2020; Wu et al., 2022).

Marmin & Filippone (2022) utilize random feature expansions.



Vecchia

000**0000**00000000

- 1 Deep Gaussian Processes
- 2 Active Learning
- 3 Vecchia Approximation

Why?

What?

Vecchia approximation from conditional distributions

Any joint distribution may be represented as a product of conditional distributions, i.e.

$$f(y_3, y_2, y_1) = f(y_3 \mid y_2, y_1) f(y_2 \mid y_1) f(y_1).$$

Vecchia approximation from conditional distributions

Any joint distribution may be represented as a product of conditional distributions, i.e.

$$f(y_3, y_2, y_1) = f(y_3 \mid y_2, y_1) f(y_2 \mid y_1) f(y_1).$$

In general,

$$\mathcal{L}(Y) = \prod_{i=1}^{n} \mathcal{L}(y_i \mid Y_{c(i)}) \quad \text{for} \quad c_0 = \emptyset \quad \text{and} \quad c_i = \{1, 2, \dots, i-1\} \quad \forall i = 2, \dots, n.$$

The Vecchia approximation (Vecchia, 1988) instead takes the subset

$$c_i \subset \{1, 2, \dots, i-1\}$$
 of size $|c_i| = \min(m, i-1)$.

Vecchia approximation of GPs

In a typical "shallow" GP setting we have

$$\mathcal{L}(Y) = \prod_{i=1}^{n} \mathcal{L}(y_i \mid Y_{c(i)}),$$

Vecchia

000**00000**00000000

where

$$\mathcal{L}(y_i \mid Y_{c(i)}) \sim \mathcal{N}_1(\mu_i(X), \sigma_i^2(X)) \quad \text{for} \quad \begin{array}{l} B_i(X) &= \Sigma(x_i, X_{c(i)}) \Sigma(X_{c(i)})^{-1} \\ \mu_i(X) &= B_i(X) Y_{c(i)} \\ \sigma_i^2(X) &= \Sigma(x_i) - B_i(X) \Sigma(X_{c(i)}, x_i). \end{array}$$

This converts an $\mathcal{O}(n^3)$ computation into *n*-many $\mathcal{O}(m^3)$ computations.

Stein et al., 2004; Datta et al., 2016; Stroud et al., 2017; Finley et al., 2019; Katzfuss & Guinness 2020, 2021

Vecchia

Vecchia approximation induces sparsity in precision matrix

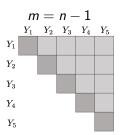
The Cholesky decomposition of the precision matrix is sparse.

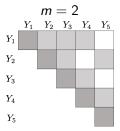
$$Y \sim \mathcal{N}\left(0, \Sigma = Q^{-1} = (UU^{\top})^{-1}\right)$$

The upper triangular U matrix has closed-form

$$U^{ji} = egin{cases} rac{1}{\sigma_i(X)} & i = j \ -rac{1}{\sigma_i(X)} B_i(X) [\# j \in c(i)] & j \in c(i) \ 0 & ext{otherwise} \end{cases}$$

whose entries may be populated in parallel.





GP tasks hinge on the sparse U matrix

Likelihood Evaluation

$$\log \mathcal{L}(Y) \propto \sum_{i=1}^n \log(U^{ii}) - rac{1}{2} Y^ op U U^ op Y$$

Prior Samples

$$Y^* = (U^\top)^{-1}z$$
$$z \sim \mathcal{N}(0, \mathbb{I})$$

Posterior Predictions

$$\begin{split} \mathcal{Y} \mid Y, X &\sim \mathcal{N} \left(\mu^{\star}, \Sigma^{\star} \right) \\ \mu^{\star} &= - (U_{\mathcal{X}}^{\top})^{-1} U_{x, \mathcal{X}}^{\top} Y \\ \Sigma^{\star} &= \left(U_{\mathcal{X}} U_{\mathcal{X}}^{\top} \right)^{-1} \end{split}$$

Vecchia

0000000000000000

- 1 Deep Gaussian Processes
- 2 Active Learning
- 3 Vecchia Approximation

How?

Vecchia-approximated DGPs

Recall our "un-approximated" DGP model

$$Y \mid W \sim \mathcal{N}(0, \Sigma(W))$$
 $W_k \stackrel{\text{ind}}{\sim} \mathcal{N}(0, \Sigma(X)) \quad \forall \ k = 1, \ldots, p.$

Vecchia-approximated DGPs

Recall our "un-approximated" DGP model

$$Y \mid W \sim \mathcal{N}(0, \Sigma(W))$$
 $W_k \stackrel{\text{ind}}{\sim} \mathcal{N}(0, \Sigma(X)) \quad \forall \ k = 1, \dots, p.$

In our DGP-Vecchia model, we impose a Vecchia approximation at each GP

$$Y \mid W \sim \mathcal{N}\left(0, (U_w U_w^\top)^{-1}\right) \qquad W_k \stackrel{\text{ind}}{\sim} \mathcal{N}_n\left(0, \left((U_x^{(k)})(U_x^{(k)})^\top\right)^{-1}\right) \quad \forall \quad k = 1, \ldots, p.$$

Vecchia-approximated DGPs

Recall our "un-approximated" DGP model

$$Y \mid W \sim \mathcal{N}\left(0, \Sigma(W)\right) \qquad W_k \stackrel{\mathrm{ind}}{\sim} \mathcal{N}\left(0, \Sigma(X)\right) \;\; orall \;\; k = 1, \ldots, p.$$

In our DGP-Vecchia model, we impose a Vecchia approximation at each GP

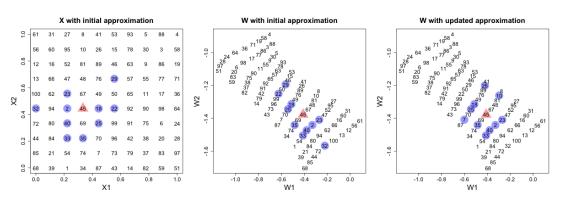
$$Y \mid W \sim \mathcal{N}\left(0, (U_w U_w^\top)^{-1}\right) \qquad W_k \stackrel{\text{ind}}{\sim} \mathcal{N}_n\left(0, \left((U_x^{(k)})(U_x^{(k)})^\top\right)^{-1}\right) \quad \forall \quad k = 1, \ldots, p.$$

Within our DGP MCMC algorithm, we replace every (i) likelihood evaluation, (ii) prior sample, and (iii) GP prediction with its Vecchia-approximated counterpart.

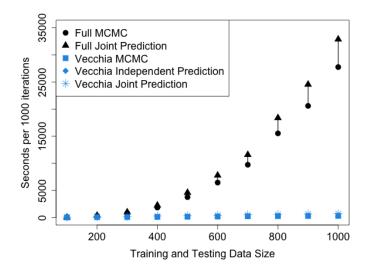
Ordering/conditioning specifications

We utilize

- Random orderings at each Gaussian layer (Guinness, 2018; Wu et al., 2022)
- Nearest-neighbor conditioning sets (Datta et al., 2016)
- Updating of conditioning sets based on learned latent layer warpings



Computation scales linearly



Vecchia

Deep and shallow competitors

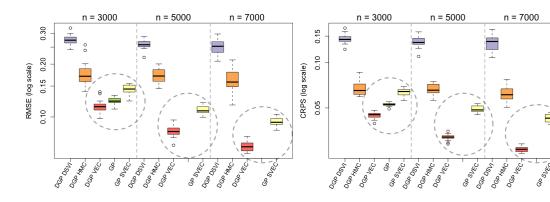
- DGP DSVI: "doubly stochastic" VI (Salimbeni & Deisenroth, 2017)
 - utilizes inducing points
- DGP HMC: Hamiltonian Monte Carlo (Havasi et al., 2018)
 - utilizes inducing points
- DGP VEC: our Vecchia-approximated ESS (Sauer, Cooper, & Gramacy, 2022)

Vecchia

- GP: full un-approximated GP (when feasible)
- GP SVEC: Scaled Vecchia "shallow" GP (Katzfuss et al., 2020)

DGP-Vecchia outperforms both deep and shallow competitors

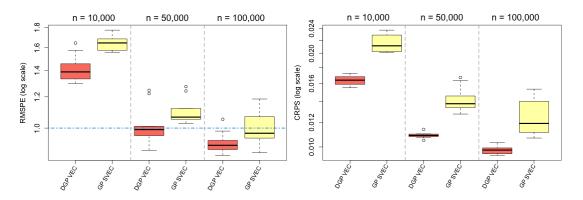
4-dimensional G-function (20 reps)



Vecchia

Satellite drag computer simulation

- Same TPM simulator, bigger data set/domain
- Same Goal: RMSPE below 1%



DGP DSVI and DGP HMC omitted from figure with RMSPE's 30-35%

Vecchia approximation for DGPs - Summary

- Why?
 - Cubic computational bottlenecks, compounded in DGP MCMC
- What?
 - Imposing sparsity in the precision matrix (and its Cholesky decomposition)
 - Maintaining global scale
- How?
 - Same DGP MCMC scheme with Vecchia-approximation for each GP component
 - Random ordering at each layer
 - Nearest-neighbor conditioning, optionally adjusted based on learned latent layer

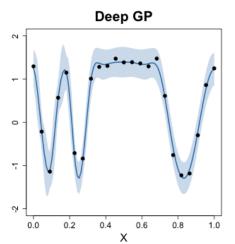
Thanks!

Everything you saw today is supported by

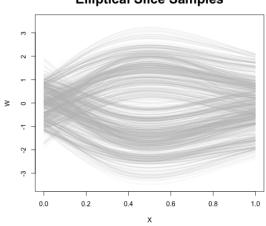
- deepgp for R on CRAN (Sauer, 2022)
- and a git repo of examples:

https://bitbucket.org/gramacylab/deepgp-ex/

Many thanks for your attention!

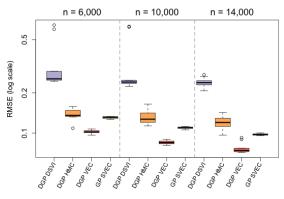


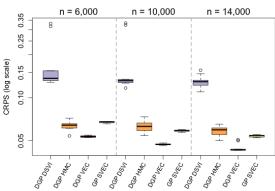
Elliptical Slice Samples



Simulation with noise

4-dimensional G-function with white noise





Active Learning Vecchia Concluding

Larger scale simulation

6-dimensional G-function

