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■Summer 2020: Microsoft, Wells 
Fargo, Adidas, Google, 
Boeing announce major 
programs to address racial 
disparities in employment.

■September 2020: Microsoft 
settles with Labor Department 
for alleged race 
discrimination in hiring from 
12/2015 to 11/2018.

■October 2020: Labor Department goes after Microsoft and Wells Fargo asking to 
prove hiring practices designed to increase racial diversity are not discriminating 
based on race



Legal Basis: Title VII 7

Cannot use protected 
classes for making 

decisions in regulated 
domains: education, 

employment, housing, 
public accommodation, 

and credit

(Civil Rights Act 1964)

Race (Civil Rights Act of 1964), Color (Civil 
Rights Act of 1964), Religion (Civil Rights 
Act of 1964), National Origin (Civil Rights 

Act of 1964), Citizenship (Immigration 
Reform and Control Act), Age (Age 

discrimination in Employment Act of 1967), 
Pregnancy (Pregnancy Discrimination Act), 

Familial status (Civil Rights Act of 1968), 
Disability status (Rehabilitation Act of 1973; 

Americans with Disabilities Act of 1990), 
Veteran Status (Vietnam Era Veterans’ 
Readjustment Assistance Act of 1974; 
Uniformed Services Employment and 
Reemployment Rights Act), Genetic 

Information (Genetic Information 
Nondiscrimination Act)

Disparate treatment and disparate impact

Tension between disparate impact and disparate treatment.

Bridging Algorithms, Law and Practice: Hiring and Beyond | Swati Gupta | Georgia Tech. 
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Let’s first model it mathematically. 

Bridging Algorithms, Law and Practice: Hiring and Beyond | Swati Gupta | Georgia Tech. 



9Outline of the talk

■The Microsoft Paradox 


■Modeling Bias


■Biased Online Secretary Problem


■Title VII: Anti-Discrimination Law 


■Extensions


■Future Work

Bridging Algorithms, Law and Practice: Hiring and Beyond | Swati Gupta | Georgia Tech. 
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Bridging Algorithms, Law and Practice: Hiring and Beyond | Swati Gupta | Georgia Tech. 

!!: Currently, 97% of Fortune 500 companies organizations rely 
automated algorithms for resume tracking and screening, as it is 
impossible for humans to sift through millions of resumes or test scores 
or health records. [Raghavan et. al 2020], [Sánchez-Monedero et. al 2021] 



Okay, this seems like a huge 
problem. But what can we do 
about it? 
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Is it possible to quantify bias? 12

It’s unclear. 

But maybe we know whether under or over-estimation. 

Bridging Algorithms, Law and Practice: Hiring and Beyond | Swati Gupta | Georgia Tech. 
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13

Only some pairwise comparisons can be made with certainty
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Only some pairwise comparisons can be made with certainty

“poset” model of bias (partially ordered sets                    )[Birkhoff, 1948]

e.g., candidates with varied interview scores,  
SAT scores with adversity accounted for.

Work-ex: 0 years

GPA: 3.5 

Part-time job: 0


Work-ex: 0 years

GPA: 3.35 
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Work-ex: 2 years

GPA: 3.5 
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Special case: Group model 14

Each candidate belongs to a known group: 

Observed potentials incorporate unknown bias: 

Discovering Opportunities in New York City's Discovery Program: an Analysis of Affirmative Action 
Mechanisms, Faenza, Gupta, Zhang, submitted to EC 2022.

[Kleinberg, Raghavan 2018]
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“poset” model of bias (partially ordered sets                    )[Birkhoff, 1948]

Work experience —> 

G
PA

 in
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ol
le

ge
 —

>

Succinct Rep. of Poset:

Hasse Diagram

Potential selection criteria: sum

“misse
d opportunities”

“no overlap of regions on any axis”
Only some pairwise comparisons can be made with certainty

How to construct these posets? 
Connections to robust optimization?
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Special case: Group model

People within a group are

comparable, but not across 
groups. 
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Special case: Group model

People within a group are

comparable, but not across 
groups. 
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Each candidate belongs to a known group: 

Observed potentials incorporate unknown bias: 

[Kleinberg, Raghavan 2018]

People within a group are

comparable, but not across 
groups. This is a coarse 
approximation. 


Posets would add more 
comparisons, allow finer 
treatment. 

Special case: Group model



18Experimental Study
Aspiring Minds Employability 
Outcomes 2015 Dataset


R2 = 0.567 (m), 0.627 (f)

Bridging Algorithms, Law and Practice: Hiring and Beyond | Swati Gupta | Joint Work with Jad Salem, WINE 2020
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Center their error distributions, using training data: 
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19Potential Partial Order: 
Consider the two groups based on data: female and male. 

Center their error distributions, using training data: 


Bridging Algorithms, Law and Practice: Hiring and Beyond | Swati Gupta | Joint Work with Jad Salem, WINE 2020 | 

non-binary?

Can we design efficient 
algorithms and provide 
meaningful interventions?



20Outline of the talk

■The Microsoft Paradox 


■Modeling Bias


■Biased Online Secretary Problem


■Title VII: Anti-Discrimination Law 


■Extensions


■Future Work
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candidates  
 

Competitive Ratio: minimize “worst 
case” OPT/E(ALG) 


What if some students had an extra 
job while preparing for the test?

part-tim
e job

part-tim
e job

Secretary problems: Dynkin 
(O(e), 1963), Kleinberg (2005), 
Babaioff-Immorlica-Kleinberg 
(matroid, 2007), Kumar-Lattanzi-
Vass i lv i t sk i i -Vattan i (2011) , 
Buchbinder-Jain-Singh (2014), 
Feldman-Svensson-Zenklusen 
(2015), Soto (2013), etc. 
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Biased Secretary Problem [Salem, Gupta 2020]
22

Individuals arrive over time, poset relations are observed, 
irrevocable selection decisions to maximize total true 
utility (known to OPT, any utility consistent with poset). 

order of arrival: random or adversarial after sample. 

Minimize the Competitive ratio
(for fully adversarial)
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Desired Fairness
■ Perhaps equal opportunity to equally qualified is 

ideal, but we only know so much.


■ Ranked demographic parity (RDP): 


■Probability of selection should increase with better 
poset comparison, 

23
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a � b =) P(a = X) � P(b = X)

■ Elements indistinguishable (order-isomorphic) by the 
poset should have an equal probability of selection. 
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Obs. Let P be a poset, and suppose an algorithm has the property that a � b
implies P(a is selected)  P(b is selected). If the algorithm makes decisions
based solely on arrival order and P, then it will satisfy RDP.
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24Any competitive algorithm must hedge

Group 1

Group 2
Group 3
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on any maximal element

then competitive ratio is 
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[Salem, G.] Any algorithm for the poset k-secretary problem with access to
only partial ordinal rankings with respect to a partial order of width ! is ⌦(!)-
competitive.
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If there is zero probability 

on any maximal element

then competitive ratio is 
infinity.



25Warm-Up: k-secretary problem

N= 10, N/e = 3.67, |S| = 3, k = 1 

Algorithm 1: [Dynkin 1963]


Sample N/e elements

Select first element better than sample

Sample
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26Warm-Up: k-secretary problem

N= 10, N/e = 3.67, |S| = 3, k = 2 

Algorithm 1: [BIKK 2007]


S = Sample N/e elements

As candidates come in: 


R = Maintain top kth score so far

Select candidate which beats current R and 
candidate that attains R is in sample S.

Sample
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Requires to 
know N 

[Gh,V11], which 
will be an issue 

for posets.
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27Biased Secretary with Poset

Quotas are 
illegal!! 

1. 4 groups given with known 
sizes, want to select 5 
candidates.

• Toss a coin and select from one 
group (unfair!) 

• Select around 1.2 candidates 
from each group (hedge)

• Run classical secretary in 
parallel

• Competitive ratio for biased  
is O(eg). 

A1 A2 A3 A4
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Poset Secretary Algorithms 28

We would like to select maximal elements as they arrive..
.. but we don’t know the structure of 
the poset up front! 

Width dictates lower bound on 
competitive ratio. 

Poset 2 (width = 5)

Poset 1 (width = 2)
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Poset Secretary Algorithms 29

Width = minimum number of chains to decompose the poset 
[Dilworth’s Theorem, Rudnicki 2009]

Tempting to use 
online chain 

partitioning [e.g., 
Keirstead, Trotter (1981) 

for interval orders].

 


Still non-trivial due to 
sizes of chains (N?).                         
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O(3!0
e
2)

We use a random partitioning technique [Soto, 2013], [Babaioff e.t al 2009]

Assign each candidate to an independent label,


Select a single candidate from each “label”,

Bridging Algorithms, Law and Practice: Hiring and Beyond | Swati Gupta | Joint Work with Jad Salem, WINE 2020



Poset Secretary Algorithms 29

Width = minimum number of chains to decompose the poset 
[Dilworth’s Theorem, Rudnicki 2009]
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Selection in the Poset Model 30

Algorithm Gap-K-POSET: 

1. We will assign labels in [k] to each 
candidate. 

2. Sample, estimate the width of full 
poset. 

3. Correct sample size if needed.

4. Within each label, select maximal 
element compared to sample if 
none selected so far. 
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Algorithm Gap-K-POSET: 

1. We will assign labels in [k] to each 
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Key takeaways are managerial: 

• Estimates from prior samples, 

• Independent selection committees via labels, 

• Select maximal in each label, 

• Don’t disregard comparative information (RDP for posets), 

• Decrease width of poset for better performance, 

• Asymptotic methods: adaptive thresholds as more information.


Estimated width = 4 
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Summary of competitive ratios 31

Open questions: 

width for posets (4e 
gap), asymptotic k 

without regimes, 

N unknown (constant 

not possible [GV, 
2011]), privacy 

sensitive construction 
of posets, network 

models, biased 
matroid secretary 
(partition matroid), 
other applications: 
school admissions. 
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32Experimental Study
Aspiring Minds Employability 
Outcomes 2015 Dataset


R2 = 0.567 (m), 0.627 (f)
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of 612, 

using centered error 

distributions to construct 
the poset. 

Joint with Jad Salem (GT —> US Naval Academy), 
 WINE 2020, minor revision in Management Science

Q. How do we quantify the variability in 
data we have, based on the context? Can 
this itself fix the “unfairness” in downstream 

decisions?  
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• Documenting imbalances in workforce: a case to remove “built in 

headwinds” [Ricci v. DeStefano]
• Plan must not insulate the individual from comparison with all other 

candidates for the available seats. [Johnson v. Transportation Agency.]
• People as numbers not allowed: ..if dictates hiring “solely by reference to 

statistics” or “by reflexive adherence to a numerical standard, the plan is 
likely not to be allowed. [Johnson v. Transportation Agency]

• Posets: transparent way for uncertainty in candidate evaluations. This 
allows an employer to design a “practice in order to provide a fair 
opportunity for all individuals, regardless of race” before deploying it. 
[Ricci v. DeStefano]
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I’m concerned that my workforce under-represents women and 
minorities. We just don’t get good enough underrepresented 
candidates to apply for our jobs. What can we do to improve 
representation and stay within legal constraints? I heard Microsoft got 
sued for wanting to promote AA managers. Isn’t the 4/5th rule good 
enough?

• Posets do not enforce quotas: final selections dependent on uncertainty 
and distributions in input data

• Use of protected class in uncertainty sets: if a plan takes ``numerous 
factors...into account in making hiring decisions, including specifically 
the qualifications of [all] applicants for particular jobs,'' the plan may 
take a protected class into account as part of the overall evaluation. 
[Johnson v. Transportation Agency]

• Banding approaches: Confidence intervals, yes! [Bradley v. City of Lynn]
• “Are we there yet”: adaptivity of uncertainty sets 

Don’t let Ricci v. DeStefano Hold You Back: A Bias-Aware Legal Solution to the Hiring Paradox, 
Jad Salem, Deven Desai, Swati Gupta. FAccT 2022 and UC Davis Law Review 2023. 
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Models for variability in data can help us test 
“what if” scenarios, and help policy makers.

38
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Reducing the Feeder Effect in Public School Admissions: A Bias-aware Analysis for Targeted 
Interventions, Faenza, Gupta, Zhang, under submission to M&SOM.

1. Can bias-models help us understand most 
impactful ways of providing resources?  

(a) Quantify which students are impacted 
most due to bias in a continuous market

(b) Under continuous matching market, 
average performers benefit most by 
resources.
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Errors in observed/recorded data 
may be structured due to the 

problem domain.
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2. Bias-models help us quantify our trust in evaluations and 
allow for uncertainty. In what other ways can we quantify trust in 
data? 

“Enabling Rapid and Trustworthy predictions of Sepsis via Translation of Clinical Domain 
Knowledge into High-Dimensional Mathematical Constraints”, Mehak Arora, Hassan Mortagy*, 
Nathan Dwarshuis, Swati Gupta, Andre Holder, Rishi Kamaleswaran, under submission to PNAS.  

Clinicians and ICU doctors 
can often look at charts and 

detect errors or discount 
untrustworthy labs. Can we 

translate their domain 
knowledge into 

mathematical constraints? 
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Can OR help guide policy 
makers? 



OR For Policy Impact
3. Can we provide a lever for 
audits for algorithms? 
dependent on uncertainty 
sets and algorithmic pipeline, 
this can give us a 
characterization of outcome 
space. 
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Mathematically Quantifying Gerrymandering and the Non-responsiveness of the 2021 
Georgia Congressional Districting Plan, Joint work with J. Mattingly, D. Randall, G. 
Herschlag, C. Hettle, Z. Zhao, 2022, EAAMO 2022. 

Diversity —>

Histogram of diversity outcomes 
based on algorithmic choices



OR For Policy Impact
5. Can we guide policy-makers 
into taking informed decisions, 
by highlighting properties of 
potential solutions?
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Theorem [GMS22]. There is a polynomial-time algorithm that gives a 4-
approximation for the p-norm fair facility location problem for any p 2 [1,1].
Moreover, we can find a set S of log2(r) � 1 solutions such that for all norms
p 2 [1,1], there is some solution in S that is an 8-approximation to the p-norm
fair facility location problem.
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Socially Fair and Hierarchical Facility Location Problems, Joint work with Jai Moondra and 
Mohit Singh, 2022, under submission to Math of OR. 
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Can we design algorithms 
that are robust to lawsuits?
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5. To adapt our pursuits of efficiency and cost minimization to 
a changing legal landscape, we might need to enforce more 
domain constraints. 

Can we enforce constraints on 
intermediate iterates in online 
optimization (e.g., demand 
learning) so that some 
properties like monotonicity 
are satisfied? 

“Algorithmic Challenges in Ensuring Fairness at the Time of Decision”, Jad Salem, 
Vijay Kamble, Swati Gupta, WINE 2022. Under submission to Operations Research. 
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1. Models for bias: partially ordered sets, e.g., interval, network, group

2. Poset Online Secretary with ranked demographic parity

3. Lower bound dependent on the width of the poset

4. For poset bias: 


 Width and Labels: O(e2(w+1)) if known width, o/w O(e3(4w+2)).

5. For group bias: 


 Labels: O((g+1)e2) in AG/AU, O(ge) in RG/AU, O(2e) in RG/RU

 Asymptotic: O(g(1+o(1))) for asymptotic k, in AG/AU setting. 


6. Legal basis: built-in headwinds, no quotas using posets, individuals as 
numbers, banding, 4/5th rule is only a trigger. 

7. Extensions: interventions for admissions, discovery program, audits as in 
districting, domain constraints for demand learning. 

Questions? Thank you for listening! 
www.swatigupta.tech Questions?


