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What Is Bias/Fairnesse

“Bias. When scientific or technological decisions are based
on a narrow set of systemic, structural or social concepts and
norms, the resulting technology can privilege certain groups

and harm others.” — Nature comment
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Delivery to Roxbury After ™
Outcry
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Facebook Lets Advertisers
Exclude Users by Race

Facebook’s system allows advertisers to exclude black,
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What You Need To Know About Predictive
Policing

Key background reading before our discussion on predictive policing on Wednesday, February
24th.
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A Tale of Opacity, Choice, and Discrimination

Abstract: To partly address people’s concerns over web
tracking, Google has created the Ad Settings webpage
to provide information about and some choice over the
profiles Google creates on users. We present AdFisher,
an automated tool that explores how user behaviors,
Google's ads, and Ad Settings interact. AdFisher can
run browser-based experiments and analyze data using
machine learning and significance tests. Our tool uses a
rigorous experimental design and statistical analysis to

Amit Datta*, Michael Carl Tschantz, and Anupam Datta

Automated Experiments on Ad Privacy Settings

serious privacy concern. Colossal amounts of collected
data are used, sold, and resold for serving targeted
content, notably advertisements, on websites (e.g., [1]).
Many websites providing content, such as news, out-
source their advertising operations to large third-party
ad networks, such as Google's DoubleClick. These net-
works embed tracking code into webpages across many
sites providing the network with a more global view of
each user’'s behaviors.

Key background reading before our discussion on predictive policing on Wednesday, February

24th.
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Hiring In Practice

® Summer 2020: Microsoft, Wells
Fargo, Adidas, Google,
Boel ng announce major company said in June that it would double the number of Black and African

programs fo address racial American managers, senior contributors and senior leaders in the U.S. by
disparities in employment. 2025.

Microsoft, whose contracts with the U.S. government subject it to certain
rules, said Tuesday it’s confident that its diversity pledges are legal. The
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B Summer 2020: Microsoft, Wells
Fargo, Adidas, Google,

Microsoft, whose contracts with the U.S. government subject it to certain
rules, said Tuesday it’s confident that its diversity pledges are legal. The

Boein g announce mad| Or. company said in June that it would double the number of Black and African
Programs to address racial American managers, senior contributors and senior leaders in the U.S. by
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B October 2020: Labor Department goes after Microsoft and Wells Fargo asking to

prove hiring practices designed to increase racial diversity are not discriminating
based on race

TECH

Labor Department Questions Microsoft and Wells Fargo Over Pledges to
Hire More Black Employees

Agency letters ask if diversity initiatives constitute discriminaton; companies say they comply with employment law
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Legal Basis: Title VI

Race (Civil RI?hTS Act of 1964), Color (Civil
ghts Act of 1964), Religion (Civil Rights
Ac’r of 1964), National Origin (Civil Rights
Act of 1964), Citizenship (Immigration
Reform and Control Act), Age (Age
discrimino’ri?n in Employment ACTTof 1?&\673),
Pregnancy (Pregnancy Discrimination Act),
Cannot use protected Familial status (Civil Rights Act of 1968),
classes for making Di/i\abilify statugf(h Rghokgi.ll[’;gﬂolér\w ’?‘CJ]E ?; ; 8)73;
» - mericans wi isabilities Act o ,
decisions in regulated Veteran Status (Vietham Era Veterans'

domains: education, laeg?cdjus’rrgesn’r Assis’rclgnceI Act Of’r] 97é;
- niformed Services Employment an
employment, housing, Reemployment Rights Act), Genetic
public accommodation, Information (Genetic Information
. Nondiscrimination Act)
and credit

(Civil Rights Act 1964)
Disparate treatment and disparate impact

Tension between disparate impact and disparate treatment.
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How should an entity like
Microsoft fix the
underrepresentation in their
hiring pipeline - without resorfing
to disparate trreatment?
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How should an entity like
Microsoft fix the
underrepresentation in their
hiring pipeline - without resorfing
to disparate trreatment?

Let’s first model it mathematically.
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Outline of the talk

N
B Modeling Bias

B Biased Online Secretary Problem
H Title VII: Anfi-Discrimination Law
B Extensions

H Future Work
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Data is biased

Are Emily and Greg More Employable Than
Lakisha and Jamal? A Field Experiment on
Labor Market Discrimination

Marianne Bertrand

Sendhil Mullainathan

AMERICAN ECONOMIC REVIEW
VOL. 94, NO. 4, SEPTEMBER 2004
(pp. 991-1013)
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Are Emily and Greg More Employable Than
Lakisha and Jamal? A Field Experiment on

Labor Market Discr| \Why does John get the STEM job rather

Marianne Bertrand

Sendhil Mullainathan 'th a n J en n ife r?

AMERICAN ECONOMIC REVIEW
VOL. 94, NO. 4, SEPTEMBER 2004

(Pp. 991-1013) Alexander W. Watts

Jun 2 2014
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All the Ways Hiring
Algorithms Can Introduce
Bias

by Miranda Bogen
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Data is biased n

Are Emily and Greg More Employable Than
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Labor Market Discr| \Why does John get the STEM job rather
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than Jennifer?

AME

"% Gender Bias in Academic Recruitment? Evidence

from a Survey Experiment in the NOI‘dlC Reglon 8 -

Magnus Carlsson, Henning Finseraas, Arnfinn H Midtb

Hiring | All the Ways Hiring Algorithms Can Introduce Bias

European Sociological Review, jcaa050, https://doi.o

RETAIL OCTOBER 10, 2018 / 7:04 PM / UPDATED 2 YEARS AGO

ne Ways Hiring

Am; —a s —
sho II: Currently, 97% of Fortune 500 companies organizations rely

automated algorithms for resume tracking and screening, as it is
wesd IMPOSssible for humans to sift through millions of resumes or test scores
or health records. [Raghavan et. al 2020], [Sdnchez-Monedero et. al 2021]
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Okay, this seems like a huge
oroblem. But what can we do
about ite
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s It possible to quantify bias? n

IT's unclear.

The Effects of Stereotype Threat and Double-Minority Status on the Test
Performance of Latino Women

Patricia M. Gonzales, Hart Blanton, Kevin J. Williams

First Published May 1, 2002 @ Research Article
https://doi.org/10.1177/0146167202288010

Does stereotype threat affect test performance of minorities and women? A meta-analysis of
experimental evidence.

G EXPORT K Add To My List £  © Request Permissions e Database: PSsycARTICLES  Journal Article

Bridging Algorithms, Law and Practice: Hiring and Beyond | Swati Gupta | Georgia Tech.



s It possible to quantify bias? n

I1's unclear.

The Effects of Stereotype Threat and Double-Minority Status on the Test
Performance of Latino Women

Patricia N

FistPun  Stereotype Threat and African-American Student
https://do

Achievement

Does sters
experimer CLAUDE STEELE

5> EXPORT W 4

Bridging Algorithms, Law and Practice: Hiring and Beyond | Swati Gupta | Georgia Tech.



s It possible to quantify bias? n

I1's unclear.

The Effects of Stereotype Threat and Double-Minority Status on the Test
Performance of Latino Women

Patricia N

FistPun  Stereotype Threat and African-American Student
https://do

Achievement

Does ster: p Of
experimer CLAUDE STEELE

5> EXPORT W 4

But maybe we know whether under or over-estimation.
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“poset” model of bias (partially ordered sets [Birkhoff, 1948])

Only some pairwise comparisons can be made with certainty

e.g., candidates with varied interview scores,
SAT scores with adversity accounted for.
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Each candidate belongs to a known group: Gl’ G27 Ce e Gk

Observed potentials incorporate unknown bias:

Zi — 22/67 if 7 € Gja 6]' > 1

[Kleinberg, Raghavan 2018]



Special case: Group model n

Each candidate belongs to a known group: Gl’ G27 Ce e Gk

Observed potentials incorporate unknown bias:

Zi — 22/67 if 7 € Gj, 6]’ > 1
[Kleinberg, Raghavan 2018]
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Discovering Opportunities in New York City's Discovery Program: an Analysis of Affirmative Action
Mechanisms, Faenza, Gupta, Zhang, submitted to EC 2022.
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Special case: Group model n

Each candidate belongs to a known group: Gl’ G27 Ce e Gk

Observed potentials incorporate unknown bias:
Zi — 22/67 if 7 € Gj, 6]’ > 1
[Kleinberg, Raghavan 2018]
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Special case: Group model

Each candidate belongs to a known group: Gl) G27 ce ey Gk

Observed potentials incorporate unknown bias:

Zi — 22/67 if 7 € Gj, 5]’ > 1
[Kleinberg, Raghavan 2018]
Q Q 9
People within a group are

comparable, but not across
(A) (A) Q groups. This is a coarse

approximation.

comparisons, allow finer

O (A) Posets would add more
Q tfreatment.




Experimental Study

| Gender ] 10percent | 12percent | College tier | College GPA | College city tier [ English I Logical |

Aspiring Minds Em p|oyC1 b|||1'y -16.95 [ -02193 [ 02372 [ -1850 | 1182 ] 1.563 [0.02541 | 0.1429
Quant I Domain I ElectronicsAndSemicon | Computer science | Mechanical eng. I Electrical eng.
Outcomes 2015 Dataset [0.1199] 1775 | -0.09960 [ 0006473 | 03314 | 8072 |
| Telecom. eng. | Civil eng. | Conscientiousness | Agreeableness I Extraversion | Neuroticism I
[ -80.72 [ 04119 | -4.598 | 2.649 | -3256 | -4.508 |

| Openness to experience | Graduation age |
| 3.565 | 0.1764 |

Coefficients (partial derivatives) of the linear prediction model for computer programming.

Computer Programming Scores by Gender Computer Programming-Derived Scores by Gender
0.16 Female 0.17 Female
Male Male
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Figure 3 The left figure plots the true computer programming scores by gender for the entire dataset. The right

figure plots the predicted computer science scores by gender for the test dataset. R2=0.547 (m) 0.627 (f)
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Potential Partial Order: n

non-binarye
Consider the two groups based on data: female and male.
Center their error distributions, using training data:
Oy

[— (@(a) - ua) + iy — Aa,

0y

Oy

- (@(a) - ua) + py + Affj]

—~

Y

= [:/y\transf. (a’) o )‘aﬁ :/y\tranSf' (a) L5 /\aj]
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Center their error distributions, using training data:
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Outline of the talk

N
N

® Biased Online Secretary Problem
H Title VII: Anfi-Discrimination Law
B Extensions

H Future Work
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Online “Secretary” Problem n

Applications
For
Olympiad
Team of Two
People
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Online “Secretary”

)
Applications !' e ’
For

Olympiad S
Team of Two
People 90 95
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Secretary Problem:
Maximize total ufility of hired
candidates

Competitive Ratio: minimize “worst
case” OPT/E(ALG)
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Online “Secretary”

)
Applications !' % ’
For S

Olympiad -
Team of Two
People 90

Secretary Problem:
Maximize total ufility of hired
candidates

Competitive Ratio: minimize “worst
case” OPT/E(ALG)

What if some students had an extra
job while preparing for the teste
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Secretary problems: Dynkin
(O(e), 1963), Kleinberg (2005),
Babaioff-Immorlica-Kleinberg
(matroid, 2007), Kumar-Lattanzi-
Vassilvitskii-Vattani (2011),
Buchbinder-Jain-Singh (2014),
Feldman-Svensson-Zenklusen
(2015), Soto (2013), etc.
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Biased Secretary Problem scem cuptazo m

Individuals arrive over time, poset relations are observed,
imrevocable selection decisions fo maximize total true

utility (known fo OPT, any utility consistent with poset).
order of arrival: random or adversarial after sample.

Minimize the Competitive ratio

(for fully adversarial)

sup Opt(w)
P,w *‘3[Alg(77, W)]
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Individuals arrive over time, poset relations are observed,
imrevocable selection decisions fo maximize total true
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Maya O April
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Desired Fairness

B Perhaps equal opportunity to equally qualified is
ideal, but we only know so much.

B Ranked demographic parity (RDP):

. : : : Maya
B Probability of selection should increase with better 4

poset comparison,
a-b = Pla=Vv)>Pb=V) Q Fiar Q>

®m Elements indistinguishable (order-isomorphic) by the O
poset should have an equal probability of selection. Q

Pla = v) = P(¢(a) = V) 0O O
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Desired Fairness

B Perhaps equal opportunity to equally qualified is
ideal, but we only know so much.

B Ranked demographic parity (RDP):
Maya

B Probability of selection should increase with better
poset comparison,

a-b = Pla=Vv)>Pb="V) O Piar Q3

®m Elements indistinguishable (order-isomorphic) by the O
poset should have an equal probability of selection. Q

Pla = v) = P(¢(a) = V) 0O O

Obs. Let P be a poset, and suppose an algorithm has the property that a < b
implies P(a is selected) < P(b is selected). If the algorithm makes decisions
based solely on arrival order and P, then it will satisty RDP.
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Any competitive algorithm must hedge

Q
Q
Q

O

Group 1

Q

{
O

Group 2

>O

O—O—0O—0O

Group 3

C —

sup Opt(w)

8>0,w B[Alg(8, w)]

If there is zero probability
on any maximal element
then competitive ratio is

iNnfinity.
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Any competitive algorithm must hedge

Q Q Opt(w)

Q c = sup
Q Q
Q

8>0,w B[Alg(8, w)]
O

Group 2
O )

If there is zero probability
on any maximal element
then competitive ratio is

Q
Q
O infinity.
}

Group 3
Group 1

[Salem, G.] Any algorithm for the poset k-secretary problem with access to
only partial ordinal rankings with respect to a partial order of width w is Q(w)-
competitive.
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Warm-Up: k-secretary problem 25
Algorithm 1: [Dynkin 1963]

Sample N/e elements
Select first element better than sample

N=10, N/e =3.67, |S| =3, k=11

Sample
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Algorithm 1: [Dynkin 1963]
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N=10, N/e =3.67, |S| =3, k=11
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Warm-Up: k-secretary problem 2%

Algorithm 1: [BIKK 2007]

S =Sample N/e elements

As candidates come In:
R = Maintain top kth score so far
Select candidate which beats current R and
candidate that attains R is in sample S.

N=10, N/Je =3.67, |S| =3, k=2

Sample
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Warm-Up: k-secretary problem 2%

Algorithm 1: [BIKK 2007]

S = Sample N/e elements Requires to
As candidates come in; — know N |
R = Maintain top kth score so far [Gh.V11], which
will be an issue

Select candidate which beats current R and

candidate that attains R is in sample S. for posefts.

N=10, N/Je =3.67, |S| =3, k=2

COOOLHO®O®O

Sample

2nd highest so far =9 ()




Bilased Secretary with Poset
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Bilased Secretary with Poset

1. 4 groups given with known
sizes, want to select 5
candidates.
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Bilased Secretary with Poset

1. 4 groups given with known
sizes, want to select 5
candidates.

e Toss a coin and select from one
group (unfairl)
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Bilased Secretary with Poset

1. 4 groups given with known
sizes, want to select 5
candidates.

e Toss a coin and select from one
group (unfairl)

e Select around 1.2 candidates

from each group (hedge)

r&—0—0

r§ —€
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Bilased Secretary with Poset

1. 4 groups given with known Al A2 A3 A

sizes, want to select 5 ® O e O
candidates.
* Tossa coin andselectfromone @ O @ O
group (unfairl)
e Select around 1.2 candidates
from each group (hedge) ¢ © © O
e Run classical secretary in O O 0
parallel o
© @ O
®
®
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1. 4 groups given with known Al A2 A3 A

sizes, want to select 5 ® ®@ O
candidates.
* Toss a coin and select from one ® ® O
group (unfairl)
e Select around 1.2 candidates ® ® 0O
from each group (hedge)
e Run classical secretary in O 0
parallel o
o« Competitive ratio for biased ® O
is O(eq). ®
®
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Bilased Secretary with Poset

1. 4 groups given with known Al A2 A3 MM

sizes, want to select 5 v ®@ O
candidates.
* Toss a coin and select from one ® O e O
group (unfairl)
e Select around 1.2 candidates
from each group (hedge) ¢ © ‘ O
e Run classical secretary in O 0 0
parallel o
o« Competitive ratio for biased 0O ® O
is O(eq). -
/\

Quotas are
illegall!!
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Poset Secretary Algorithms n

We would like to select maximal elements as they arrive..

.. but we don’'t know the structure of
the poset up front!

t O e O ¢
4 IV§>N
?\9

Poset 2 (width = 5)
o © .
Width dictates lower bound on
Poset 1 (width = 2) competitive ratio.
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Poset Secretary Algorithms n

Width = minimum number of chains to decompose the poset
[Dilworth’s Theorem, Rudnicki 2009]

Tempting to use
online chain
partitioning [e.g.,
Keirstead, Trotter (1981)
for interval orders].

Still non-trivial due to
sizes of chains (N?).
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Width = minimum number of chains to decompose the poset
[Dilworth’s Theorem, Rudnicki 2009]

Tempting to use
online chain
partitioning [e.g.,
Keirstead, Trotter (1981)
for interval orders].

Still non-trivial due to
sizes of chains (N?).

We use a random partitioning technique (soto, 2013], [Babaioff e.t al 2009]
Assign each candidate to an independent label, . 7
Select a single candidate from each “label”, O(Bw & )
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Poset Secretary Algorithms n

Width = minimum number of chains to decompose the poset
[Dilworth’s Theorem, Rudnicki 2009]

Tempting to use
online chain
partitioning [e.g.,
Keirstead, Trotter (1981)
for interval orders].

Still non-trivial due to
sizes of chains (N?).

We use a random partitioning technique (soto, 2013], [Babaioff e.t al 2009]
Assign each candidate to an independent label, . 7
Select a single candidate from each “label”, O(Sw & )

but RDP is not satisfied (due to properties of chain decomposition).
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Selection in the Poset Model m

Algorithm Gap-K-POSET:

1. We will assign labels in [k] to each
candidate.

2. Sample, estimate the width of full
poset.

3. Correct sample size if needed.

4. Within each label, select maximal
element compared to sample if
none selected so far.

L1 L2 L3 L4
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Algorithm Gap-K-POSET:

1. We.wnl assign labels in [k] to each L1 12 13 L4
candidate.

2. Sample, estimate the width of full O

poset.

3. Correct sample size if needed.

4. Within each label, select maximal

element compared to sample if

none selected so far.
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poset.
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Selection In the Poset Model

Algorithm Gap-K-POSET:
1. We will assign labels in [k] to each

candidate. X’ .

2. Sample, estimate the width of full O O O O
poseft. R
3. Correct sample size if needed.

4. Within each label, select maximal

element compared to sample if
none selected so far.
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Selection In the Poset Model

Algorithm Gap-K-POSET:
1. We will assign labels in [k] to each

candidate. X’ .

2. Sample, estimate the width of full O O O O
poset. 3
3. Correct sample size if needed.

4. Within each label, select maximal ’

element compared to sample if
none selected so far.
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Selection in the Poset Model n

Algorithm Gap-K-POSET:

1. We will assign labels in [k] to each
candidate.

2. Sample, estimate the width of full
poset.

3. Correct sample size if needed.

4. Within each label, select maximal
element compared to sample if
none selected so far.

Estimated width = 4

Is sample size enough? Yes!
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Selection in the Poset Model n

Estimated width = 4
Algorithm Gap-K-POSET:

1. We will assign labels in [k] to each

bl
~

1 12 3 L4

candidate. X -

2. Sample, estimate the width of full <O O O
poseft. 3 3
3. Correct sample size if needed. (L (L l
4. Within each label, select maximal < ’
element compared to sample if

none selected so far. &

Is sample size enough? Yes!
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Selection in the Poset Model n

Estimated width = 4
Algorithm Gap-K-POSET:

1. We will assign labels in [k] to each

bl
~

1 12 3 L4

candidate. X -

2. Sample, estimate the width of full <O O O
poseft. 3 3
3. Correct sample size if needed. (L (L l
4. Within each label, select maximal < ’
element compared to sample if

none selected so far. &

Is sample size enough? Yes!

S, G., 2020]:
O(2¢” (2w + 1) (1 + o(1)))
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Selection in the Poset Model n

Estimated width = 4

Algorithm Gap-K-POSET:
1. We will assign labels in [k] to each

bl
~

1 12 3 L4

candidafte. X -

2. Sample, estimate the width of full 4O O O

poseft. , 3

3. Correct sample size if needed. (L J) l

4. Within each label, select maximal < ’

element compared to sample if

none selected so far. " Is sampile size enough? Yes!
Key takeaways are managerial: 15, G., 2020]:

* Estimates from prior samples, O(2¢e® (2w + 1) (1 + o(1)))

* Independent selection committees via labels,

e Select maximal in each label,

e Don'f disregard comparative information (RDP for posefts),

» Decrease width of poset for better performance,

* Asymptotic methods: adaptive thresholds as more information.
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Summary of competitive ratios

Competitive ratio Algorithm
Poset model

- (w+1)e GAP-K-LABEL

(Corollary [5.1) (Algorithm [1)

K e’ (dw+2)(14+0(1)) | GAP-K-POSET

gl b il (Proposition [5.3) (Algorithm [3)
w unknown W (1 -~ S8 8l ) " | ADATHRESHOLD

vk .
w<logk (Corollary [5.9) (Algorithm [3)
Competitive ratio Algorithm

Group model

) (g+1)e? GAP-K-LABEL
Adversarial (Corollary [5.1) (Algorithm ])
. 9f(k/g) -
Adversarial (Proposition E ) | (Algorithm 4)
_ 2e(1 +0(1) GAP-K-CApP
Stochastic (Proposition [6.3) | (Algorithm [3)

Open questions:
width for posets (4e
gap), asymptotic k

without regimes,

N unknown (constant
not possible [GY,
2011]), privacy
sensitive construction
of posets, network
models, biased
matroid secretary
(partition matroid),
other applications:
school admissions.
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Experimental Study

| Gender ] 10percent | 12percent | College tier | College GPA | College city tier [ English I Logical |

Aspiring Minds Em p|oyC1 b|||1'y -16.95 [ -02193 [ 02372 [ -1850 | 1182 ] 1.563 [0.02541 | 0.1429
Quant I Domain I ElectronicsAndSemicon | Computer science | Mechanical eng. I Electrical eng.
Outcomes 2015 Dataset [0.1199] 1775 | -0.09960 [ 0006473 | 03314 | 8072 |
| Telecom. eng. | Civil eng. | Conscientiousness | Agreeableness I Extraversion | Neuroticism I
[ -80.72 [ 04119 | -4.598 | 2.649 | -3256 | -4.508 |

| Openness to experience | Graduation age |
| 3.565 | 0.1764 |

Coefficients (partial derivatives) of the linear prediction model for computer programming.

Computer Programming Scores by Gender Computer Programming-Derived Scores by Gender
0.16 Female 0.17 Female
Male Male

2> 0.14 3 0.14
c c
o) o)
Z 0.11 4
£ go10
3 3
£ 008 R
@ o
= = 0.07
5 0.05 5
z z

0.03 0.03

0.00 0.00

0 100 200 300 400 500 600 700 800 200 300 400 500 600 700
Computer programming score Computer programming prediction

Figure 3 The left figure plots the true computer programming scores by gender for the entire dataset. The right

figure plots the predicted computer science scores by gender for the test dataset. R2=0.547 (m) 0.627 (f)
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Selection rate

Experimental Study

Selection rates with unshifted distributions
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Online selection of 25
candidates, from a pool
of 612,
using centered error
distributions to construct
the poset.

Enforcing quotas (or even group model) overcorrects. Accounting for
inconsistencies in data and learned decisions can improve selection
ratios, while adhering to “fair’” properties!



Selection rate

Experimental Study
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Vanilla Parallelized (quotas) Poset

Online selection of 25
candidates, from a pool
of 612,
using centered error
distributions to construct
the poset.

Enforcing quotas (or even group model) overcorrects. Accounting for
inconsistencies in data and learned decisions can improve selection
ratios, while adhering to “fair’” properties!

Joint with Jad Salem (GT —> US Naval Academy),
WINE 2020, minor revision in Management Science
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Experimental Sfudy n

Selection rates with unshifted distributions

—— Male
0.147 — Female —I_ ‘
0.12 A
0.10 - | Q. How do we quantify the variability in
008 - . data we have, based on the contexte Can
| 9 this itself fix the "unfairness” in downstream
0061 7 _— decisions?
0.04 | %
1
0.02 A o) ‘
O 0
o) ®)
0.00 A o)

Vanilla Parallelized (quotas) Poset

Enforcing quotas (or even group model) overcorrects. Accounting for
inconsistencies in data and learned decisions can improve selection
ratios, while adhering to “fair’” properties!

Joint with Jad Salem (GT —> US Naval Academy),
WINE 2020, minor revision in Management Science
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I'm concerned that my workforce under-represents women and
minorities. We just don't get good enough underrepresented
candidates to apply for our jobs. | heard Microsoft got sued for
wanting to promote AA managers. What can we do fo improve
representation and stay within legal constraintse Isn’t the 4/5th rule
good enough?
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minorities. We just don't get good enough underrepresented
candidates to apply for our jobs. | heard Microsoft got sued for
wanting to promote AA managers. What can we do fo improve
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* 4/5th rule only trigger: does not fix underrepresentation. (Ro. Rule/NFL)

 Documenting imbalances in workforce: a case to remove “built in
headwinds” [Ricci v. DeStefano]

* Plan must not insulate the individual from comparison with all other
candidates for the available seats. [Johnson v. Transportation Agency.]

* People as numbers not allowed: ..if dictates hiring “solely by reference to
staftistics” or “by reflexive adherence to a numerical standard, the plan is
likely not to be allowed. [Johnson v. Transportation Agency]

e Posets: fransparent way for uncertainty in candidate evaluations. This
allows an employer to design a “practice in order to provide a fair
opportunity for all individuals, regardless of race” before deploying it. mzazs
[Ricci v. DeStefano] e
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I'm concerned that my workforce under-represents women and
minorities. We just don't get good enough underrepresented
candidates to apply for our jobs. What can we do to improve
representation and stay within legal constrainise | heard Microsoft got
sued for wanting to promote AA managers. Isn't the 4/5th rule good
enough?

* Posets do not enforce quotas: final selections dependent on uncertainty
and distributions in input data

* Use of protected class in uncertainty sets: if a plan takes "numerous
factors...into account in making hiring decisions, including specifically
the qualifications of [all] applicants for particular jobs,” the plan may
take a protected class into account as part of the overall evaluation.
[Johnson v. Transportation Agency]

* Banding approaches: Confidence intervals, yes! [Bradley v. City of Lynn]

e “Are we there yet”’: adapftivity of uncertainty sets

Don't let Ricci v. DeStefano Hold You Back: A Bias-Aware Legal Solution to the Hiring Paradox, 3 iF.
Jad Salem, Deven Desai, Swati Gupta. FAccT 2022 and UC Davis Law Review 2023.
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Models for variability in data can help us test
“what if” scenarios, and help policy makers.




Impact on Admissions

1. Can bias-models help us understand most
impactful ways of providing resources?
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Errors in observed/recorded data
may e structured due to the
- problem domain.




Translating Domain Constraints

2. Bias-models help us quantify our trust in evaluations and
allow for uncertainty. In what other ways can we quantify trust in

data?

Racial Bias in Pulse Oximetry Measurement

Clinicians and ICU doctors
can often look at charts and
detect errors or discount
untrustworthy labs. Can we
translate their domain
knowledge into

mathematical constraints?¢
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2. Bias-models help us quantify our trust in evaluations and
allow for uncertainty. In what other ways can we quantify trust in

data?
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Corrected data using
symptomatic histories

Distance of new patient data to different sets will guide
confidence in the label for sepsis/COVID-19.

“Enabling Rapid and Trustworthy predictions of Sepsis via Translation of Clinical Domain
Knowledge into High-Dimensional Mathematical Constraints”, Mehak Arora, Hassan Mortagy*,
Nathan Dwarshuis, Swati Gupta, Andre Holder, Rishi Kaomaleswaran, under submission to PNAS.
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OR For Policy Impact

3. Can we provide a lever for
audits for algorithms?
dependent on uncertainty
sets and algorithmic pipeline,
this can give us a
characterization of outcome
space.

Histogram of diversity outcomes
based on algorithmic choices
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Mathematically Quantifying Gerrymandering and the Non-responsiveness of the 2021
Georgia Congressional Districting Plan, Joint work with J. Mattingly, D. Randall, G. ey
Herschlag, C. Hettle, Z. Zhao, 2022, EAAMO 2022. SCAN ME
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* SOURCE: Department of Agriculture, Centers for Disease Control



OR For Policy Impact

5. Can we guide policy-makers
into taking informed decisions,
by highlighting properties of

potential solutions? Fair Facility Location
- pq 1/p
: 1 . .
in Yo |5 {3y 3 i)
1eF | sE[r] j€Dy |
T \ \ Reduces to min max

Cost of opening

facilities “r" groups of people for p=infinity

Theorem [GMS22]|. There is a polynomial-time algorithm that gives a 4-
approximation for the p-norm fair facility location problem for any p € [1, c0].
Moreover, we can find a set S of log,(r) — 1 solutions such that for all norms
p € [1,00], there is some solution in S that is an 8-approrimation to the p-norm
fair facility location problem.
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Theorem [GMS22]|. There is a polynomial-time algorithm that gives a 4-
approzimation for the p-norm fair facility location problem for any p € [1, c0].
Moreover, we can find a set S of log,(r) — 1 solutions such that for all norms
p € [1,00], there is some solution in S that is an 8-approrimation to the p-norm
fair facility location problem.

Socially Fair and Hierarchical Facility Location Problems, Joint work with Jai Moondra and
Mohit Singh, 2022, under submission to Math of OR.
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Changing legal landscape

5. To adapt our pursuits of efficiency and cost minimization to

a changing legal landscape, we might need to enforce more
domain constraints.

MARY McQUEEN and VICTORIA BALLINGER, | No.
on behalf of themselves and all others similarly
situated, CLASS ACTION COMPLAINT FOR
VIOLATION OF CALIFORNIA’S UNFAIR
Plaintiffs, COMPETITION LAW, UNJUST

ENRICHMENT, AND NEGLIGENCE
V.

AMAZON.COM, INC., a Delaware corporation, JURY

California Consumer Privacy Act (CCPA)

Home Privacy California Consumer Privacy Act (CCPA)

Defendant.

o
Of:
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infermediate iterates in online
optimization (e.g., demand
learning) so that some
properties like monotonicity
are satisfied?
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“Algorithmic Challenges in Ensuring Fairness at the Time of Decision”, Jad Salem,
Vijay Kamble, Swati Gupta, WINE 2022. Under submission to Operations Research.




Summary

1. Models for bias: partially ordered sefts, e.qg., interval, network, group
2. Poset Online Secretary with ranked demographic parity
3. Lower bound dependent on the width of the poset
4. For poset bias:
+ Width and Labels: O(e2(w+1)) if known width, o/w O(e3(4w+2)).
5. For group bias:
+ Labels: O((g+1)e?) in AG/AU, O(ge) in RG/AU, O(2¢e) in RG/RU
+ Asymptotic: O(g(1+0o(1))) for asymptotic k, in AG/AU setting.

6. Legal basis: built-in headwinds, no quotas using posets, individuals as
numbers, banding, 4/5th rule is only a trigger.

/. Extensions: inferventions for admissions, discovery program, audits as in
districting, domain constraints for demand learning.

Questions? Thank you for listening! Q U es-l-io n s 7

www.swatigupta.tech



