
Probabilistic Solvers for ODEs and PDEs
Simo Särkkä
Aalto University, Finland

November, 2022

Probabilistic Solvers for ODEs and PDEs
Simo Särkkä

2 / 32

Contents

1 Introduction

2 Probabilistic ODE solving as GP regression

3 Reformulation as Bayesian filtering and smoothing

4 Extension to partial differential equations (PDEs)

5 Conclusion

Probabilistic Solvers for ODEs and PDEs
Simo Särkkä

4 / 32

Problem formulation

Consider a ordinary differential
equation (ODE) for x(t) ∈ Rd :

dx(t)
dt

= f(x(t), t), x(0) = x0.

The aim is to find an approximate
solution x̂(t) such that
x̂(tn) ≈ x(tn) on some points
0 = t0 < t1 < · · · < tN = T .
Function f(·) is only evaluated at
points x̂(tn), and some nearby
points.
The approximate solution x̂(t) is
called a numerical solver.

Probabilistic Solvers for ODEs and PDEs
Simo Särkkä

5 / 32

Problem formulation (cont.)

Classically the error
e(t) = x(t)− x̂(t) is quantified in
terms of worst-case error.
The error is typically quantified
using Taylor’s theorem.
In probabilistic ODE solvers the
error is quantified
probabilistically.
The probabilistic solvers also
have worst-case bounds in terms
of Sobolev norms.

Probabilistic Solvers for ODEs and PDEs
Simo Särkkä

6 / 32

Classical ODE solving is polynomial fitting
Classical ODE solvers can be seen as piece-wise
polynomial approximations to the solution.
Euler method is a piece-wise linear approximation:

x(t) ≈ x(t0) +
dx(t0)

dt
(t − t0) = x(t0) + f (x(t0)) (t − t0).

Runge–Kutta methods are based on higher order
polynomial fitting:

x(t) ≈ x(t0) +
dx(t0)

dt
(t − t0) +

1
2

d2x(t0)

dt2 (t − t0) + · · ·

= c0 + c1 (t − t0) + c2 (t − t0)2 + · · ·

The worst-case error analysis possible using Taylor’s
theorem.

Probabilistic Solvers for ODEs and PDEs
Simo Särkkä

7 / 32

Classical ODE solving is polynomial fitting (cont.)

Linear approximation: Polynomial approximation:

Probabilistic Solvers for ODEs and PDEs
Simo Särkkä

8 / 32

Going beyond polynomial fitting

Machine learning and statistics
provide other than polynomial
regression models.
For example, neural networks are
flexible, but slow to train (= fit).
Gaussian processes (GPs) in
turn are fast to fit to data, and
they also provide error bounds.
Probabilistic ODE solvers replace
the polynomial approximation
with a GP.

Probabilistic Solvers for ODEs and PDEs
Simo Särkkä

10 / 32

Gaussian process regression [1/5]
Gaussian process regression considers predicting the
value of an unknown function

y = g(x)

at a certain test point x∗ based on a finite number of
training samples (xj , yj) observed from it.
As we are dealing with functions of time, let’s replace x
with t :

y = g(t).

In classic regression, we postulate parametric form of
g(t ;θ) and estimate the parameters θ.
In GP regression, we instead assume that g(t) is a sample
from a Gaussian process with a covariance function, e.g.,

K (t , t ′) = s2 exp

(
− 1

2`2
||t − t ′||2

)
.

Probabilistic Solvers for ODEs and PDEs
Simo Särkkä

11 / 32

Gaussian process regression [2/5]
Let’s denote the vector of observed points as
y = (y1, . . . , yN), and test point value as y∗ = g(t∗).
Gaussian process assumption implies that(

y
y∗

)
= N

((
0
0

)
,

(
K(t1:N , t1:N) KT(t∗, t1:N)
K(t∗, t1:N) K (t∗, t∗)

))
where

K(t1:N , t1:N) = [K (ti , tj)] is the covariance of observed points,
K (t∗, t∗) is the (co)variance of the test point,
K(t∗, t1:N) = [K (t∗, tj)] is the cross covariance.

By using the computation rules of Gaussian distributions

E[y∗ |y] = K(t∗, t1:N) K−1(t1:N , t1:N) y

Var[y∗ |y] = K (t∗, t∗)− K(t∗, t1:N) K−1(t1:N , t1:N) KT(t∗, t1:N).

These equations can be used for interpolating or
extrapolating the value of y∗ = g(t∗) at any test point t∗.

Probabilistic Solvers for ODEs and PDEs
Simo Särkkä

12 / 32

Gaussian process regression [3/5]
In practice, the measurements usually have noise:

yn = g(tn) + en, en ∼ N (0, σ2).

We want to estimate the value of the “clean” function g(t∗)
at a test point t∗.
Due to the Gaussian process assumption we now get(

y
g(t∗)

)
= N

((
0
0

)
,

(
K(t1:N , t1:N) + σ2I KT(t∗, t1:N)

K(t∗, t1:N) K (t∗, t∗)

))
The conditional mean and variance are given as

E[g(t∗) |y] = K(t∗, t1:N) (K(t1:N , t1:N) + σ2I)−1 y
Var[g(t∗) |y] = K (t∗, t∗)

− K(t∗, t1:N) (K(t1:N , t1:N) + σ2I)−1 KT(t∗, t1:N).

These are the Gaussian process regression equations in
their typical form - scalar special cases though.

Probabilistic Solvers for ODEs and PDEs
Simo Särkkä

13 / 32

Gaussian process regression [4/5]

Probabilistic Solvers for ODEs and PDEs
Simo Särkkä

13 / 32

Gaussian process regression [4/5]

Probabilistic Solvers for ODEs and PDEs
Simo Särkkä

13 / 32

Gaussian process regression [4/5]

Probabilistic Solvers for ODEs and PDEs
Simo Särkkä

14 / 32

Gaussian process regression [5/5]
We can also do GP regression with derivative
measurements

ẏn =
dg
dt

(tn) + en, en ∼ N (0, σ2).

The conditional mean and variance only change a bit

E[g(t∗) | z] =
∂K
∂t

(t∗, t1:N)

(
∂2K(t1:N , t1:N)

∂t ∂t ′
+ σ2I

)−1

ẏ

Var[g(t∗) | z] =
∂K
∂t

(t∗, t1:N)

− ∂K
∂t

(t∗, t1:N)

(
∂2K(t1:N , t1:N)

∂t ∂t ′
+ σ2I

)−1
∂KT

∂t
(t∗, t1:N).

Probabilistic Solvers for ODEs and PDEs
Simo Särkkä

15 / 32

GP solution to an ODE
Let us consider an ODE

dx(t)
dt

= f (x(t), t), x(0) = x0.

We now aim to use a GP regressor

g(t) ∼ GP(0, k(t , t ′))

to approximate the solution x(t) ≈ g(t).
The approach is to condition the Gaussian process on the
ODE at the selected grid:

dg
dt

(tn)− f (g(tn), tn) = 0.

This defines a non-linear likelihood (actually a constraint)
that can be handled with non-linear GP methods.

Probabilistic Solvers for ODEs and PDEs
Simo Särkkä

17 / 32

Computational complexity of GP regression
The GP-regression has cubic computational complexity
O(N3) in the number of measurements N.
This results from the inversion of the N × N matrix:

E[g(t∗) |y] = K(t∗, t1:N) (K(t1:N , t1:N) + σ2I)−1 y
Var[g(t∗) |y] = K (t∗, t∗)

− K(t∗, t1:N) (K(t1:N , t1:N) + σ2I)−1 KT(t∗, t1:N).

We could also use GP-based ODE solver step-by-step –
loses uncertainty information.
Various sparse, reduced-rank, and related approximations
have been developed for this purpose.
Here we can use another method – we reduce GP
regression into Kalman filtering/smoothing problem which
has linear O(N) complexity – for functions of time.

Probabilistic Solvers for ODEs and PDEs
Simo Särkkä

18 / 32

Representations of temporal Gaussian processes

0 1 2 3 4 5 6 7 8 9 10
−2

−1

0

1

2

3

time t

x
(t

)

Sample functions

−5 0 5
0

0.2

0.4

0.6

0.8

1

τ = t−t’

C
(τ

)

Covariance function

−5 0 5
0

0.5

1

1.5

2

ω

S
(ω

)

Spectral density

Probabilistic Solvers for ODEs and PDEs
Simo Särkkä

19 / 32

Representations of temporal Gaussian processes
Example: Ornstein-Uhlenbeck process – path
representation as a stochastic differential equation (SDE):

dg(t)
dt

= −λg(t) + w(t),

where w(t) is a white noise process.
The mean and covariance functions:

m(t) = 0
k(t , t ′) = exp(−λ|t − t ′|)

Spectral density:

S(ω) =
2λ

ω2 + λ2

Ornstein-Uhlenbeck process g(t) is Markovian in the
sense that given g(t) the past {g(s), s < t} does not affect
the distribution of the future {g(s′), s′ > t}.

Probabilistic Solvers for ODEs and PDEs
Simo Särkkä

20 / 32

State-space Gaussian process regression [1/3]
Consider a Gaussian process regression problem

g(t) ∼ GP(0, k(t , t ′))

yn = g(tn) + en, en ∼ N (0, σ2
noise).

We can can now convert this to state estimation problem:
dg(t)

dt
= F g(t) + L w(t)

yn = H g(tn) + en.

This can further be converted into a discrete-time
state-space model (here gn = g(tn))

gn = An gn−1 + qn−1,

yn = H gn + en.

The GP-regression solution p(g(t∗) | y1, . . . , yN) can now
be computed in O(N) time with Kalman filter and smoother.

Probabilistic Solvers for ODEs and PDEs
Simo Särkkä

21 / 32

State-space Gaussian process regression [2/3]

Probabilistic Solvers for ODEs and PDEs
Simo Särkkä

21 / 32

State-space Gaussian process regression [2/3]

Probabilistic Solvers for ODEs and PDEs
Simo Särkkä

21 / 32

State-space Gaussian process regression [2/3]

Probabilistic Solvers for ODEs and PDEs
Simo Särkkä

21 / 32

State-space Gaussian process regression [2/3]

Probabilistic Solvers for ODEs and PDEs
Simo Särkkä

21 / 32

State-space Gaussian process regression [2/3]

Probabilistic Solvers for ODEs and PDEs
Simo Särkkä

21 / 32

State-space Gaussian process regression [2/3]

Probabilistic Solvers for ODEs and PDEs
Simo Särkkä

22 / 32

State-space Gaussian process regression [3/3]
The state g(t) of the state-space GP regression typically
contains the time derivative dg/dt as a component.
Henceforth, derivative observations can be handled with a
simple change of the observation model:

gn = An gn−1 + qn−1,

ẏn = C gn + en.

For example, if the state is g = (g,dg/dt), then observing
g corresponds to

yn =
(
1 0

)︸ ︷︷ ︸
H

gn + en.

Observing dg/dt then corresponds to

ẏn =
(
0 1

)︸ ︷︷ ︸
C

gn + en.

Probabilistic Solvers for ODEs and PDEs
Simo Särkkä

23 / 32

State-Space GP ODE solvers
Conditioning on the solution to dx/dt = f (x , t) now
corresponds to the constraint

C gn − f (H gn, tn) = 0.

If we write hn(gn) = C gn − f (H gn, tn), this corresponds to
a pseudo measurement model

zn = hn(gn) + εn,

where we observe zn = 0 and εn has a zero variance.
Combining with the state-space GP then gives

gn = An gn−1 + qn−1,

zn = hn(gn) + εn.

But this is just a non-linear filtering/smoothing problem!

Probabilistic Solvers for ODEs and PDEs
Simo Särkkä

24 / 32

Non-linear filters and smoothers as probabilistic
ODE solvers

We can now use any non-linear Bayesian filter as an
explicit probabilistic ODE solver.
For example, extended Kalman filter (EKF), unscented
Kalman filter (UKF), particle filter (the last with a catch).
The iterated extended Kalman smoother (IEKS) can be
used to compute the MAP estimate of the trajectory.
The IEKS corresponds to a form of global implicit
probabilistic ODE solver.

Probabilistic Solvers for ODEs and PDEs
Simo Särkkä

25 / 32

Example: Logistic equation (from Tronarp, Särkkä,
Hennig, 2021)

Equation: dy/dt = r y(1− y).

Probabilistic Solvers for ODEs and PDEs
Simo Särkkä

27 / 32

Extension to Cauchy-type PDEs

We can also extend the approach
to Cauchy-type of PDEs such as

∂x(t , r)

∂t
= f

(
x,
∂x(t , r)

∂r
,
∂2x(t , r)

∂r2 , . . .

)
This includes, for example,
Burger’s equation (sorry for
notation change):

ut + (F (u))x = 0.

Hard non-linear PDE with shocks.

Probabilistic Solvers for ODEs and PDEs
Simo Särkkä

28 / 32

Recipe for probabilistic solving of PDEs

A simple approach is to space-discretize the PDE which
results in a high-dimensional ODE (method of lines).
The GP prior should be spatio-temporal, which can be
represented as infinite-dimensional SDE.
The infinite-dimensional SDE can be space-discretized in
analogous way.
Possible methods:

Finite-difference methods.
Ritz–Galerkin methods.
Finite element method (FEM).

The resulting finite-dimensional state-estimation problem
can be tackled with EKF, UKF, IEKS, PF, etc.

Probabilistic Solvers for ODEs and PDEs
Simo Särkkä

29 / 32

Example: Approximating Burger’s as an ODE via
discretization

The Burger’s equation can be
space-discretized as

duj

dt
+

1
2∆x

(F (uj+1(t))−F (uj−1(t))) = 0,

where uj(t) = u(t , xj).
We can then formulate the GP prior
as infinite-dimensional SDE

∂g(x , t)
∂t

= Ag(x , t) + L w(x , t),

where A is a (pseudo) differential
operator.

Probabilistic Solvers for ODEs and PDEs
Simo Särkkä

31 / 32

Conclusion

Probabilistic ODE solvers aim to provide probabilistic
uncertainty bounds for ODE solutions.
Based on replacing the classical polynomial approximation
with a Gaussian process (GP) regressor.
GP-based ODE solvers can be reformulated as Bayesian
filtering and smoothing problems.
Explicit obtained solvers via EKF, UKF, and PF, implicit
global solution with IEKS.
The concept can be extended to partial differential
equations (PDEs) of Cauchy form.

Probabilistic Solvers for ODEs and PDEs
Simo Särkkä

32 / 32

References
References (incomplete list)

Kersting H, Hennig P (2016). Active uncertainty calibration in Bayesian ODE solvers. Uncertainty in
Artificial Intelligence (UAI).

Nicholas Krämer, Jonathan Schmidt, Philipp Hennig (2022). Probabilistic Numerical Method of Lines for
Time-Dependent Partial Differential Equations. Proceedings of The 25th International Conference on
Artificial Intelligence and Statistics.

Simo Särkkä (2013). Bayesian Filtering and Smoothing. Cambridge University Press.

S. Särkkä, A. Solin, and J. Hartikainen (2013). Spatio-Temporal Learning via Infinite-Dimensional
Bayesian Filtering and Smoothing. IEEE Signal Processing Magazine, Volume 30, Issue 4, Pages 51-61.

Schober M, Duvenaud D, Hennig P (2014). Probabilistic ODE solvers with Runge–Kutta means. In:
Advances in Neural Information Processing Systems (NIPS).

Schober M, Särkkä S, Hennig P (2019). A probabilistic model for the numerical solution of initial value
problems. Statistics and Computing 29(1):99–122.

J. Skilling. Bayesian solution of ordinary differential equations. Maximum Entropy and Bayesian
Methods, Seattle, 1991.

Filip Tronarp, Hans Kersting, Simo Särkkä, Philipp Hennig (2019). Probabilistic Solutions To Ordinary
Differential Equations As Non-Linear Bayesian Filtering: A New Perspective. Statistics and
Computing, Volume 29, pages 1297-1315.

Filip Tronarp, Simo Särkkä, and Philipp Hennig (2021). Bayesian ODE Solvers: The Maximum A
Posteriori Estimate. Statistics and Computing 31, 23.

	Introduction
	Probabilistic ODE solving as GP regression
	Reformulation as Bayesian filtering and smoothing
	Extension to partial differential equations (PDEs)
	Conclusion

