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Optimization in large-scale machine learning

“Finite sum” form:

min
w∈Rp

F (w), F (w) =
1

n

n∑
j=1

fj(w)

I average of functions is the loss function (least squares loss for
regression, cross entropy loss for classification)

I fj(w) is the loss term associated to fitting jth training data
point to the model class parameterized by weights w ∈ Rp.

Dimensions are large – for example, dimension of each training
point, number of data points n, and number of weights p are on
order of billions.

At these scales, only simple first-order optimization methods
(methods which require only first-derivative/gradient
computations) can be implemented practically.
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Stochastic Gradient Descent (SGD)

When n is large, computing even a single gradient
∇F (w) = 1

n

∑n
j=1∇fj(w) is costly.

Significantly cheaper: Draw random index i from {1, . . . , n} and
compute a single component gradient ∇fi (w).

Ei∇fi (w) = 1
n

∑n
j=1∇fj(w) = ∇F (w).

Stochastic Gradient “Descent”:
I Initialize w1 ∈ Rp;
I Until convergence,

t + 1← t

Draw random index it from{1, . . . , n}
wt+1 ← wt − ηt∇fit (wt)
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Stochastic Gradient Descent (SGD)

Example: least squares
regression/interpolation:

F (w) = ‖Aw − y‖22

=
1

n

n∑
j=1

n(〈aj ,w〉 − yj)
2

SGD update: wt+1 = wt − ηt∇fit (wt) = wt − ηt (〈ait ,wt〉 − yit ) a
T
it

Related: Alternating Projections onto Convex sets (von Neumann 1933),

randomized Kaczmarz algorithm (Strohmer, Vershynin 2007), Stochastic

approximation (Robbins, Monro 1951).

Affine variance bound:
Eit‖∇fit (w)−∇F (w)‖22 ≤ minw F (w) + (‖A‖2F −‖A‖2)‖∇F (w)‖2
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SGD: General framework

Stochastic Gradient Descent for solving minw∈Rp F (w)

I Initialize w1 ∈ Rp;
I Until convergence:

I t + 1← t
I Generate a realization of the random variable ξt
I Compute a stochastic vector gt = g(wt , ξt)
I Choose a step-size ηt > 0
I Set the new iterate as wt+1 = wt − ηtgt

Standard Assumptions:

I {ξt} is a sequence of jointly independent random variables

I Eξtgt = ∇F (wt)

I Affine variance Eξt‖gt −∇F (wt)‖22 ≤ σ20 + σ21‖∇F (wt)‖22
I L-Lipschitz-continuous gradient:
‖∇F (w)−∇F (z)‖2 ≤ L‖w − z‖2 for all w , z ∈ Rp

I Fmin := infw F (w) > −∞
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SGD: Convergence theory

Theorem (Ghadimi and Lan, 2013, Bottou et al 2018)

Under the standard assumptions, consider the SGD algorithm with
fixed step-size ηt = η satisfying 0 < η ≤ 1

L(1+σ2
1)

. The expected

mean sum-of-squares gradients of F corresponding to the SGD
iterates satisfy for all T ∈ N:

E

[
1

T

T∑
t=1

‖∇F (wt)‖22

]
≤ ηLσ20 +

2(F (w1)− Fmin)

ηT

Corollary: Fix T ∈ N and η = min

{√
2(F (w1)−Fmin)√

Lσ0

√
T

, 1
L(1+σ2

1)

}
.

Then

min
1≤t≤T

E‖∇F (wt)‖22 ≤
C 2(1 + σ21)

T
+

Cσ0√
T

where C =
√

2L(F (w1)− Fmin).
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Proof
First, by L-smoothness of F (·),

η‖∇F (wt)‖2 ≤ F (wt)− F (wt+1) + η〈∇F (wt),∇F (wt)− gt〉+
Lη2

2
‖gt‖22

Because Eξt [gt ] = ∇F (wt),

‖∇F (wt)‖2 ≤
F (wt)− Eξt [F (wt+1)]

η
+

Lη

2
Eξt‖gt‖22

Eξt‖gt‖22 ≤ σ20 + (σ21 + 1)‖∇F (wt)‖22 by assumption, so(
1− Lη(σ21 + 1)

2

)
‖∇F (wt)‖2 ≤

F (wt)− Eξt [F (wt+1)]

η
+
ηLσ20

2

Using η ≤ 1
L(1+σ2

1)
, summing over 1 ≤ t ≤ T and applying the law

of total expectation,

E

[
1

T

T∑
t=1

‖∇F (wt)‖22

]
≤ ηLσ20 +

2(F (w1)− Fmin)

ηT
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SGD: Optimality

Under the smoothness assumptions here, any algorithm accessing a
smooth function through a stochastic first-order oracle satisfying
Eξtgt = ∇F (wt) and Eξt‖gt −∇F (wt)‖22 ≤ σ20 requires

Ω(L(F (w1)− Fmin)σ20ε
−4)

oracle queries to find a point w such that E‖∇F (w)‖ ≤ ε

Arjevani et al, Lower Bounds for Non-Convex Stochastic Optimization,
2019.



SGD: from theory to practice

A shortcoming of SGD is that the convergence is very sensitive to
the choice of step-size schedule. The smoothness parameter L and
noise variance parameters σ20, and σ21 determining a good step-size
schedule in theory are not known in practice.

Line search heuristics for adaptively choosing the step-size at each
iteration – which solve the problem in the setting of standard
gradient descent – do not work in the presence of noise (yet)



Implementing SGD in practice

In practice, a good step-size schedule is found by manual trial and
error, searching over schedules of form

ηj =


α, t = 1, . . . ,T1

τα, t = T1 + 1, . . . ,T2

τ2α, t = T2 + 1, . . .

I Using adaptive step-size variations of SGD which learn a good
step-size along the way are useful for making convergence
more automatic and robust



AdaGrad: adaptive step-size updates1

SGD with Adagrad step-size updates

I Initialize w1 ∈ Rp, b0 = ε, and scalar η > 0;
I Until convergence:

I t + 1← t

I Generate a realization of the random variable ξt

I Compute a stochastic vector gt = g(wt , ξt)

I Per coordinate, update b2t,j = b2t−1,j + |gt,j |2

Coordinate step-size update ηt,j = η
bt,j

= η√
ε2+

∑t
s=1 |gs,j |2

I Update new iterate per coordinate as wt+1,j = wt,j − ηt,jgt,j

AdaGrad became popular for always converging reasonably well
without step-size tuning

1[Duchi, Hazan, Singer 2011], [McMahan, Streeter, 2010]
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AdaGrad-Norm adaptive step-size update rule 2

Simple starting point for analysis: SGD with scalar Adagrad
step-size update

I Initialize w1 ∈ Rp and scalars η > 0 and b0 = ε > 0;
I Until convergence:

I t + 1← t

I Generate a realization of the random variable ξt

I Compute a stochastic vector gt = g(wt , ξt)

I Update b2t = b2t−1 + ‖gt‖22 = b20 +
∑t

s=1 ‖gs‖22;

Use step-size ηt = η
bt

= η√
ε2+

∑t
s=1 ‖gs‖22

I Set the new iterate as wt+1 = wt − ηtgt

2[Li, Orabona 2018], [W,Wu, Bottou 2018]



SGD: General framework
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SGD with AG-Norm step-size always converges

Theorem
Under the standard assumptions, SGD with AG-Norm adaptive
step-size update exhibits convergence at the rate

E

[
1

T

T∑
t=1

‖∇F (wt)‖22

]
≤ C0√

T
logs(T ) +

C1

T
logs(T ),

where C0,C1 depend ‘reasonably’ on F (w1)− Fmin, σ0, ηL, σ1. Moreover,
C0 = 0 when σ0 = σ1 = 0.

I Adagrad-Norm has order-optimal (up to log factors)
convergence rate of SGD with carefully tuned step-sizes in
terms of L, σ0, σ1.

*Faw, Tziotis, Caramanis, Mokhtari, Shakkottai, W 2022;
W, Wu, Bottou 2018 Li and Orabona 2018



Challenges of adaptive analysis

Start with the standard first step in SGD analysis of L-smooth
F (·):

ηt‖∇F (wt)‖2 ≤ F (wt)− F (wt+1) + ηt〈∇F (wt),∇F (wt)− gt〉+
Lη2t

2
‖gt‖2

To obtain the target Õ(1/
√
T ) rate we want

1√
T

T∑
t=1

E
[
‖∇F (wt)‖2

]
≤ F (w1)− Fmin + const log(T )

In the adaptive step-size setting ηt = η√
ε2+

∑t
s=1 ‖gs‖

2
2

:

I Good news: E
[∑T

t=1 η
2
t ‖gt‖2

]
= O(log(T ))

⇒ variance term is bounded3

I Bad news: The inner-product term is not mean-zero (since ηt is a random

variable and depends on gt)

I Not clear if ηt ≥ 1/
√
t, even in expectation

3For a1 ≥ 1 and a2, . . . , an ≥ 0,
∑n

k=1
ak∑k
j=1 aj

≤ log(
∑n

j=1 aj) + 1



Challenges of adaptive analysis

Start with the standard first step in SGD analysis of L-smooth
F (·):

ηt‖∇F (wt)‖2 ≤ F (wt)− F (wt+1) + ηt〈∇F (wt),∇F (wt)− gt〉+
Lη2t

2
‖gt‖2

To obtain the target Õ(1/
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Challenges of adaptivity

ηt‖∇F (wt)‖2 ≤ (F (wt)− F (wt+1) + ηt〈∇F (wt),∇F (wt)− gt〉+
Lη2t

2
‖gt‖2

I Bounding the biased inner-product term: introduce
“surrogate” step-size η̃t = η√

b2t−1+(1+σ2
1)‖∇F (wt)‖2+σ2

0

for

analysis

I Lower bounding ηt (in expectation)

I First prove that E
[∑T

t=1 ‖∇F (wt)‖2
]

= Õ(T 3)

deterministically
I Starting from the crude polynomial bound, recursively refine

the bound



Extension to coordinate Adagrad

I Zou et al (2019) extended Õ(1/
√
T ) convergence of

Adagrad-Norm to coordinate-wise Adagrad

I Careful: Wilson et al (2017): The marginal value of adaptive
gradient methods in machine learning



Adam: Adagrad + Momentum4

SGD with Adam step-size updates
I Initialize w1 ∈ Rp, b0 = ε, m0 = 0, and

scalars η > 0, 0 < β2 ≤ 1, 0 ≤ β1 < β2;

I Until convergence:
I t + 1← t

I Generate a realization of the random variable ξt

I Compute a stochastic vector gt = g(wt , ξt)

I Per coordinate updates:

mt,j = β1mt−1,j + gt,j

b2
t,j = β2b

2
t−1,j + |gt,j |2

I Update coordinate step-sizes ηt,j = η
bt,j

Update wt+1,j = wt,j − ηt,jmt,j

β1 = 0, β2 = 1 recovers Adagrad.

4[Kingman, Ba 2014]



Adam: Adagrad + Momentum

Adam has remained one of the most popular optimization
algorithms for deep learning, even as state-of-art architectures
change

Standard
NN

Transformer
Networks

Recurrent 
NN

Convolutional
NN

Generative 
Adversarial
Networks



How can we understand Adam?

I Defossez et al (2020): extended Õ(1/
√
T ) convergence to a

family of adaptive gradient methods, including Adam. Careful:
momentum benefit in Adam remains to be shown.

I We must go beyond the standard assumptions (since SGD and
Adagrad achieve lower bound Ω(ε−4) oracle queries to reach
ε-stationary point)

I In the case of linear regression, and provided the stochastic
noise level is sufficiently small, Stochastic Heavy Ball
Momentum converges faster than SGD

Can et al 2019, Bollapragada et al 2022



Summary

Stochastic Gradient Descent (SGD) is the workhorse algorithm for
large-scale optimization problems in machine learning.

The introduced stochasticity allows SGD to scale to very large
problems, but SGD algorithm comes with many hyperparameters
(such as step sizes).

Variations of SGD with automatic adaptive step-size updates were
popular in practice but not understood theoretically in this context.

We gave a first theoretical proof of convergence for an adaptive
gradient variation of SGD, showing the order-optimal convergence
rate of SGD with carefully chosen step-sizes, but without needing
to know the smoothness and noise parameters in advance.



Thank You!

Questions?
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