

The Deep Bootstrap Framework

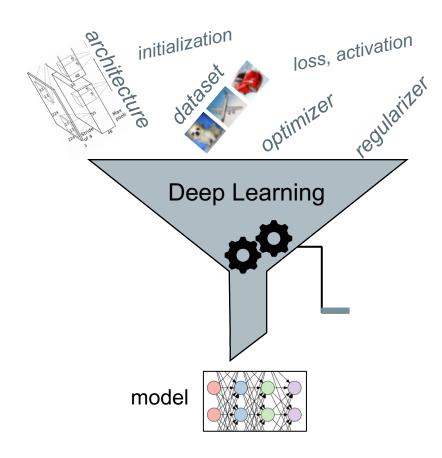
Rethinking Generalization to Understand Deep Learning

Preetum Nakkiran Harvard Behnam Neyshabur Google

Hanie Sedghi Google Brain

Appears in ICLR 2021

Motivation

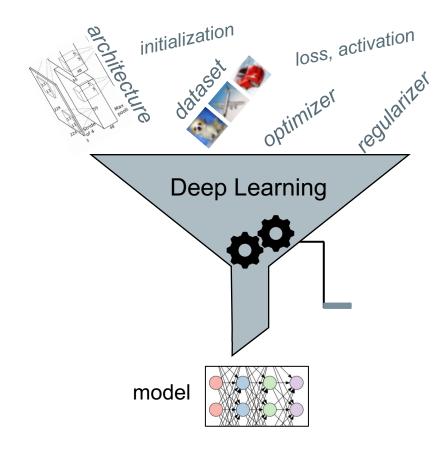


<u>Deep Learning:</u> accepts inputs (design choices), produces output (model)

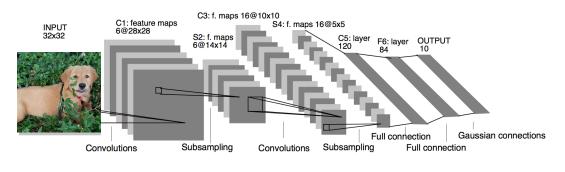
> " How does what we **do** affect what we **get?** "

- Advances in DL are unpredictable.
- Every advance = new choice of inputs
- Surprised by which choices work!

Motivation

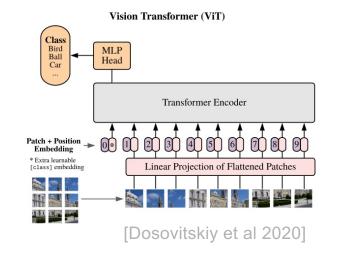


~1998-2020: ConvNets dominate vision



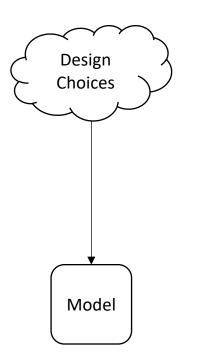
[LeCun et al 1998]

2020: Transformers (from NLP) dominate vision



Deep Learning

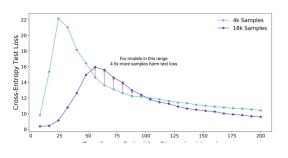
= Map from {design choices} \rightarrow model

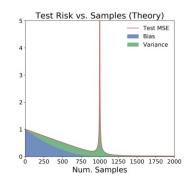


"Understanding Deep Learning" = Identifying **structure** of map

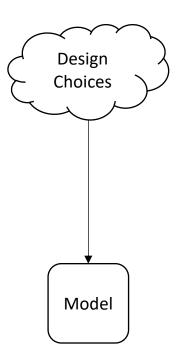
Ex of structure: **monotonicity** Q: "does training on more data always improve test perf?"

DEEP DOUBLE DESCENT: WHERE BIGGER MODELS AND MORE DATA HURT More Data Can Hurt for Linear Regression: Sample-wise Double Descent





Supervised classification



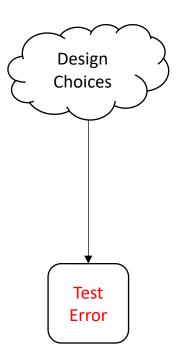
Setup:

Distribution $(x, y) \sim D$ Given: iid samples from *D*

Do: SGD* on Neural Net to minimize train error

Measure: test error $\Pr_{x,y\sim D}[f(x) \neq y]$

Supervised classification



Setup:

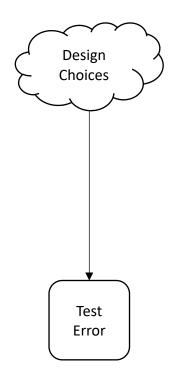
Distribution $(x, y) \sim D$ Given: iid samples from *D*

Do: SGD* on Neural Net to minimize train error

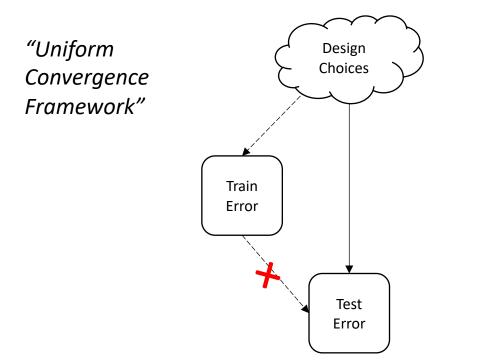
Measure: test error $\Pr_{x,y\sim D}[f(x) \neq y]$

Generalization Frameworks

= Factorization of map



Generalization Frameworks



Any "big enough" network can have Train Error ≈ 0 [Zhang et al. 2016]

Fix distribution D, architecture \mathcal{F} , num samples n. Then, for all steps $t \in \mathbb{N}$ define:

Fix distribution D, architecture \mathcal{F} , num samples n. Then, for all steps $t \in \mathbb{N}$ define:

Real World(n, t)

- Sample train set $S \sim D^n$
- Initialize architecture f_0 from \mathcal{F}
- For *t* steps:
 - Sample minibatch from *S*
 - Gradient step on minibatch
- Output f_t

Ideal World(t)

Fix distribution D, architecture \mathcal{F} , num samples n. Then, for all steps $t \in \mathbb{N}$ define:

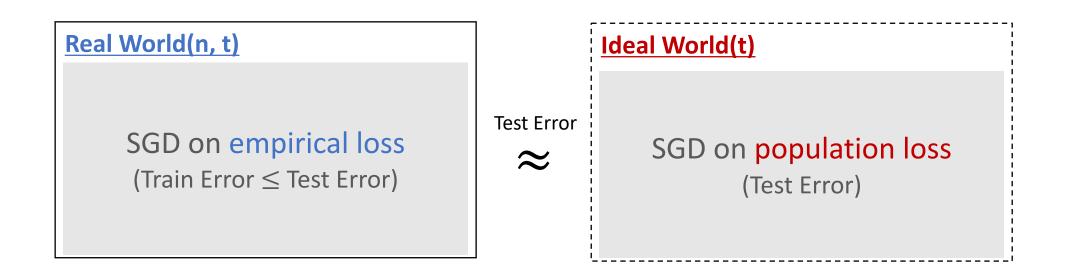
Real World(n, t)

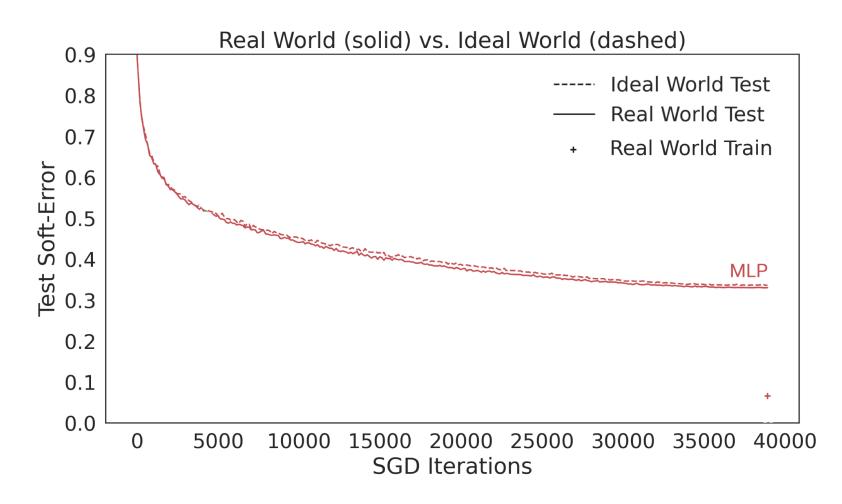
- Sample train set $S \sim D^n$
- Initialize architecture f_0 from \mathcal{F}
- For *t* steps:
 - Sample minibatch from *S*
 - Gradient step on minibatch
- Output f_t

Ideal World(t)

- Initialize architecture f_0 from ${\mathcal F}$
- For *t* steps:
 - Sample minibatch from D
 - Gradient step on minibatch
- Output f_t^{iid}

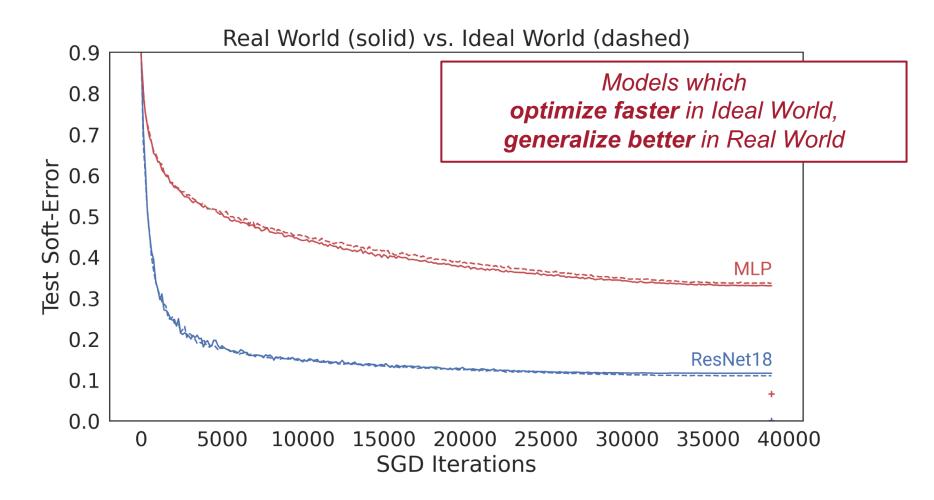
Fix distribution D, architecture \mathcal{F} , num samples n. Then, for all steps $t \in \mathbb{N}$ define:





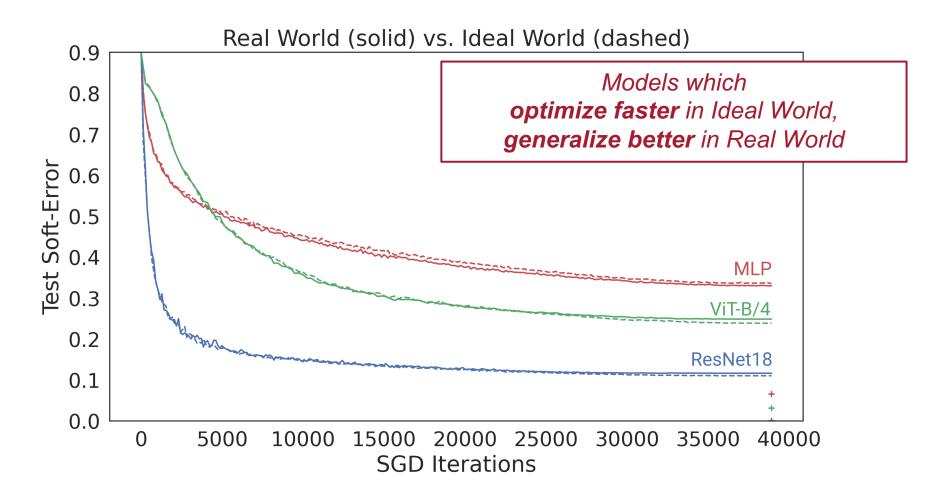
Real World: 50K samples, 100 epochs.

Ideal World: 5M samples, 1 epoch.



Real World: 50K samples, 100 epochs.

Ideal World: 5M samples, 1 epoch.

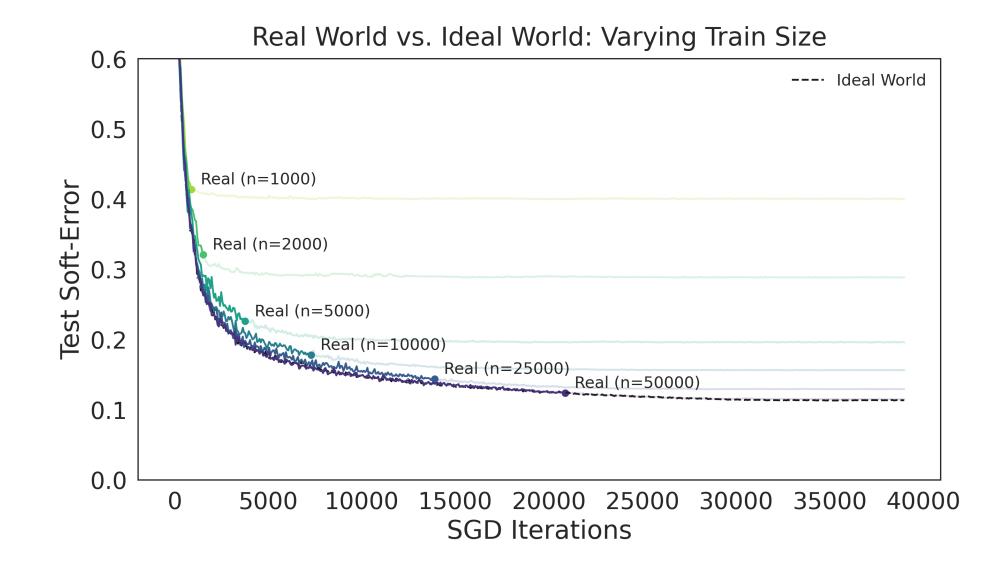


Real World: 50K samples, 100 epochs.

Ideal World: 5M samples, 1 epoch.

T(n): "Stopping time". Real World time to converge on **n** samples (< 1% train error)

Deep Bootstrap: $\forall t \leq T(n)$:RealWorld $(n, t) \approx_{\epsilon}$ IdealWorld(t)"SGD on deep nets behaves similarly
whether trained on re-used samples or fresh samples
...up until the Real World has converged"



Deep Bootstrap:

FinalError(n) \approx_{ϵ} IdealWorld(T(n))

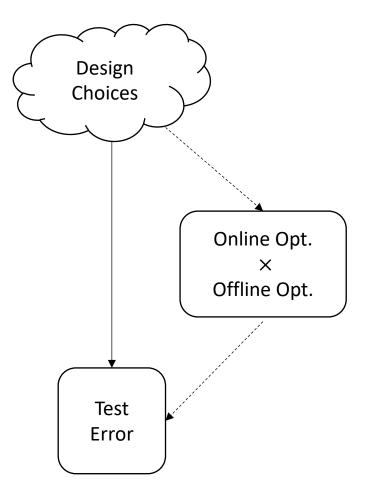
T(n): Time to converge on **n** samples

LHS: Generalization

RHS: Optimization (Online optimization & Empirical Optimization)

Deep Bootstrap:

FinalError(n) \approx_{ϵ} IdealWorld(T(n))

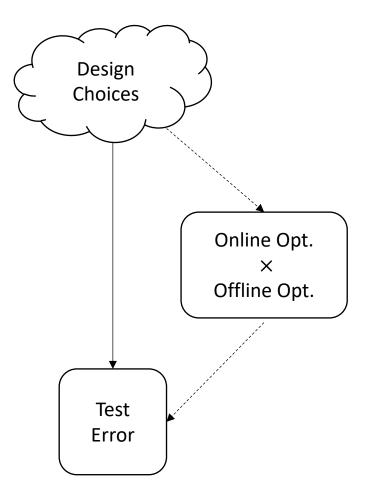


Empirically verified for varying:

- Architectures
- Model size
- Data size
- Optimizers (SGD/Adam/etc)
- Pretraining
- Data-augmentation
- Learning rate
- ...

Deep Bootstrap:

FinalError(n) \approx_{ϵ} IdealWorld(T(n))



Good design choices:

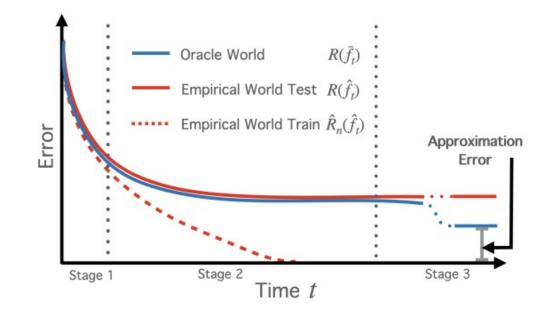
1. **Optimize quickly** in online setting (large models, skip-connections, pretraining,...)

2. **Don't optimize too** quickly on finite samples (regularization, data-aug,...)

Recent proof in Kernel setting:

The Three Stages of Learning Dynamics in High-dimensional Kernel Methods

Nikhil Ghosh¹, Song Mei¹, and Bin Yu^{1,2,3,4}



ERM decomposition: TestError
$$(f_t)$$
 = TrainError (f_t) + [TestError (f_t) - TrainError (f_t)]
Generalization gap

Our decomposition:
 TestError(
$$f_t$$
) = TestError(f_t^{iid})
 + TestError(f_t) - TestError(f_t^{iid})]

 A: Online Learning
 B: Bootstrap error

 $\varepsilon(n, \mathcal{D}, \mathcal{F}, t)$

<u>Main Claim</u>: Bootstrap error $\epsilon(n, \mathcal{D}, \mathcal{F}, t)$ is small for realistic $(n, \mathcal{D}, \mathcal{F})$, and all $t \leq T(n)$

Where "stopping time" T(n) := time when Real World reaches TrainError $\leq 1\%$.

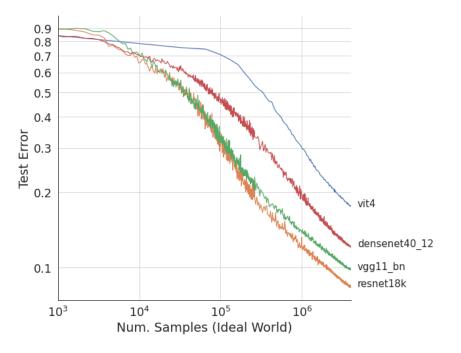
L(n): Test error on **n** samples (Real World, trained to convergence) T(n): Time to converge on **n** samples (Real World SGD steps) $\tilde{L}(t)$: Test error after **t** online SGD steps (Ideal World)

Deep Bootstrap:

 $\boldsymbol{L}(n) \approx \boldsymbol{\tilde{L}}(T(n))$

NB: Scaling exponents multiply

Assuming $T(n) \sim \Theta(n)$, (Learning curve exponent) \approx (Online optimization exponent)

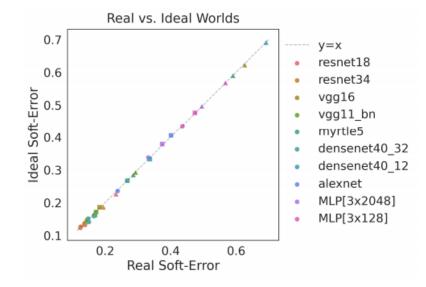


Validation: Summary of Experiments

• CIFAR-5m: 5-million synthetic samples from a generative model trained on CIFAR-10

- ImageNet-DogBird: 155K images by collapsing ImageNet catagories. Binary task.
- Varying settings: {archs, opt, LR,...} convnets, ResNets, MLPs, Image-GPT, Vision-Transformer

Samples from CIFAR-5m



(a) Standard architectures.

Figure 2: Real vs Ideal World: CIFAR-5m. SGD w $0.1 (\bullet), 0.01 (\blacksquare), 0.001 (\blacktriangle)$. (b): Random architecture

IMPLICATIONS

Deep Learning through the Bootstrap Lens

Alternate Perspectives

Generalization Perspective:

→ **Optimization Perspective:**

"ConvNets generalize better than MLPs" — "ConvNets optimize faster than MLPs"

"Pretraining helps generalization"

"Pretraining helps optimization"
(a la preconditioning)

Effect of Pretraining

Pretrained models generalize better (Real) and optimize correspondingly faster (Ideal)

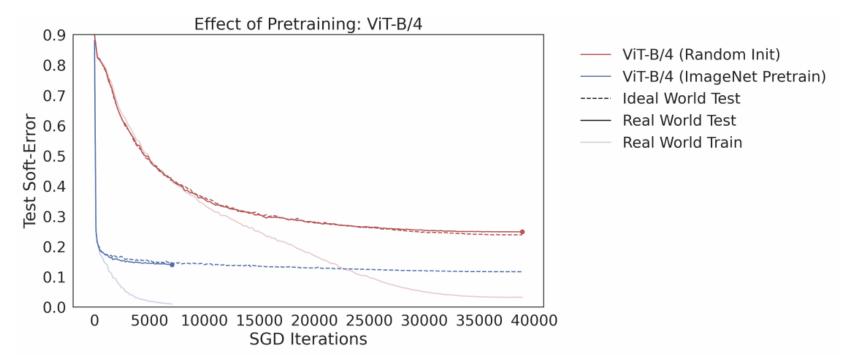


Figure 13: Real vs. Ideal Worlds for Vision Transformer on CIFAR-5m, with and w/o pretraining.

Effect of Data Augmentation

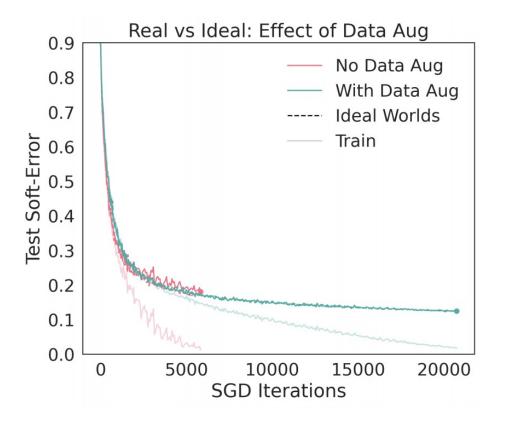
Data-aug in the Ideal World = Augment each sample once

Two potential effects:

- 1. Ideal World Optimization Speed
- 2. Real World Convergence Speed

Good data-augs:

- 1. Don't hurt learning in Ideal World
- 2. Decelerate optimization in Real World (train for longer)



see "Affinity and Diversity" of [Gontijo-Lopes et al.]

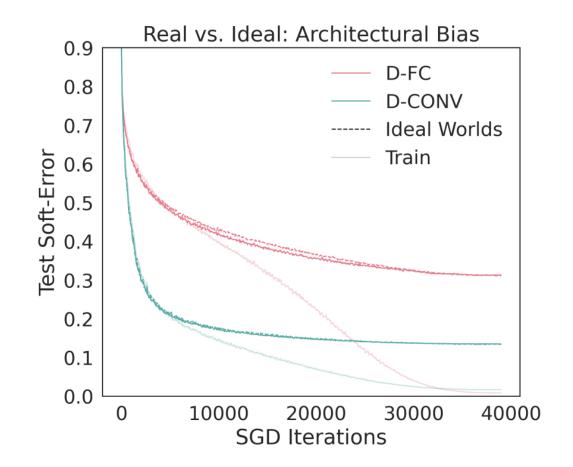
Implicit Bias \rightarrow Explicit Optimization

Two archs from [Neyshabur 2020]: D-CONV (convnet) $\subset D$ -FC (mlp)

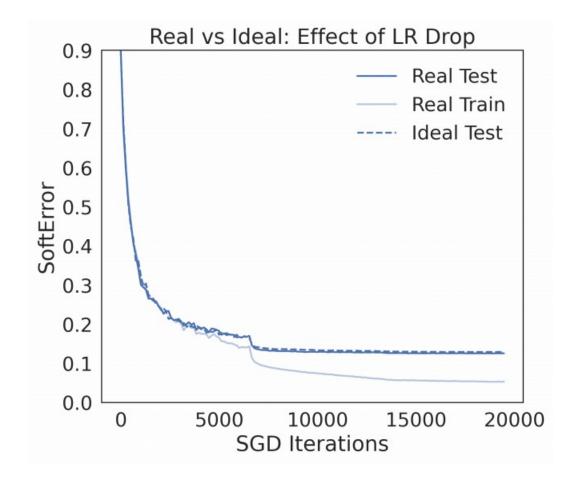
Both train to 0 Train Error, but convnet generalizes better.

Traditionally: due to "implicit bias" of SGD on the convnet.

Our view: due to better optimization in the Ideal World



Effect of Learning Rate



Random Labels (Thought Experiment)

"Understanding deep learning requires rethinking generalization" [Zhang et al. 2016]

- Train on randomly-labeled inputs.
- 0% train error, 90%/trivial test error.

Here, rethinking:

- Real World: Test Error >> Train Error
- Real World Test \approx Ideal World Test

Insights on a Practical Mystery

Two regimes in practice:

1. Effectively infinite data (e.g. train on internet, 1B+ samples) want architectures which optimize quickly

2. Small finite data (e.g. 50K samples) want architectures which generalize well

<u>Mystery</u>: Why do we use the same architectures in both regimes?

<u>Deep Bootstrap:</u> Not a coincidence...

Choice of Metric Matters!

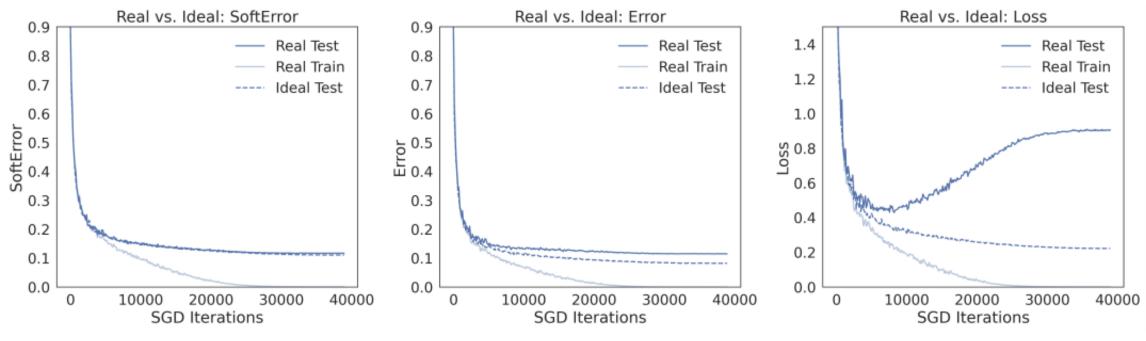
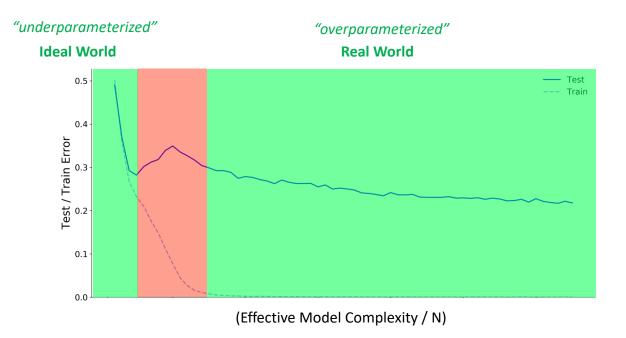


Figure 6: SoftError vs. Error vs. Loss: ResNet-18.

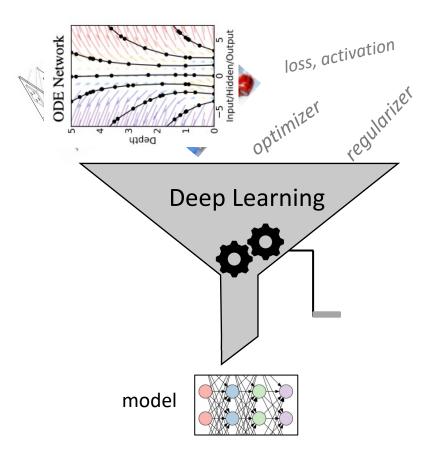
Conclusions

Assuming bootstrap claim: Reduces *generalization* to *optimization*. Hope: Refocus attention on online optimization aspects of deep learning (some modern models actually in "Ideal World")

Connects *overparametrized* and *underparameterized* regimes: Models which fit their train sets "behave like" models trained on infinite data



Conclusions



Many *diverse* choices in deep learning "work" (generalize)

Want theory of generalization that applies to all.

Deep Bootstrap:

"Any choice that works for online optimization will work for offline generalization."

Speculation: Holds much more generically than deep learning...

Thanks!

preetum@nakkiran.org preetum.nakkiran.org

EXTRAS

Open Problems

Mysteries of Online Learning:

- (essentially all mysteries in ML remain)
- Why do certain architectures optimize faster on certain distributions?
- How to characterize interaction between: {architecture, optimizer, task}?
- Why does pretraining act as a preconditioner?
- Out-of-distribution robustness
- Why do we "learn representations"?
- ...

Beyond Test Error: Similarities between Real & Ideal World

- Similar behavior under distribution shift?
- Similar representations?
- Similar transfer performance

Ideal World as a Testbed:

- To compare optimizers
- Calibration/uncertainty/ensembling

- **Setup:** Take CIFAR-10 train set, apply label noise: cats \rightarrow dog w.p. 30%. Train a ResNet to 0 train error. What happens on test samples?
- **Result:** Cats \rightarrow dog w.p. ~30% on test set! (other classes unaffected)

Surprising because:

- Not close to Bayes-optimal classifier
- Ideal World won't do this
 - (unless we consider randomized softmax instead of argmax)

"Distributional Generalization" [Nakkiran, Bansal 2020]

When Bootstrap Fails

- 1. Near Double-Descent region (Real World has pathology)
 - Or any setting with non-monotonic Soft-Error
- 2. Potentially: weird distributions / architectures / optimizers? (seems to work in any setting with "real data", regardless of model)

Why Soft-Error?

Want: $F(RealWorld) - F(IdealWorld) \rightarrow 0$ as (model, data) $\rightarrow \infty$.

This doesn't happen for F = TestError, if:

(1) Bayes risk $\neq 0$.

(2) Take overparameterized limit: (model, data) $\rightarrow \infty$, model \gg data

"Distributional Generalization" [Nakkiran, Bansal 2020]

Why Soft-Error?

Want: F(RealWorld) – F(IdealWorld) $\rightarrow 0$ as (model, data) $\rightarrow \infty$. This doesn't happen for F = TestError, if Bayes risk $\neq 0$.

Suppose Real World takes overparameterized limit: (model, data) $\rightarrow \infty$

Ideal World converges to *Bayes-optimal classifier*:

$$\lim_{T \to \infty, S \to \infty} \tilde{f}_{S,T}(x) = \operatorname{argmax}_{y} p(y \mid x)$$

Real World converges to *optimal sampler:*

$$\lim_{N\to\infty, S\to\infty} f_{S,N}(x) \sim p(y|x)$$

"Distributional Generalization" [Nakkiran, Bansal 2020]

What about Non-Deep Learning?

- Not true for wellspecified linear regression!
- Can be contrived to be true for misspecified regression

 $\begin{aligned} x &\sim \mathcal{N}(0, V) \\ y &:= \sigma(\langle \beta^*, x \rangle) \end{aligned}$

 $f_{\beta}(x) := \langle \beta, x \rangle$

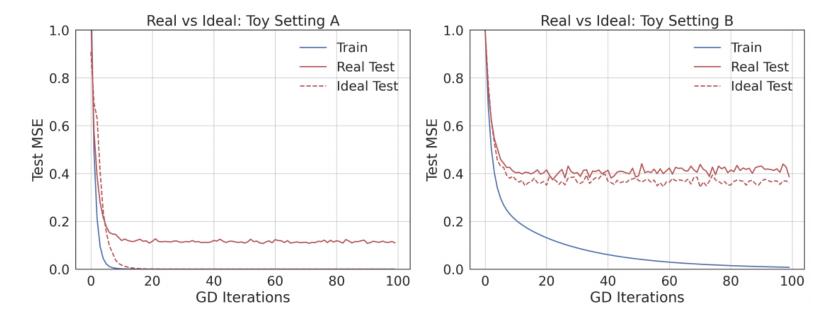
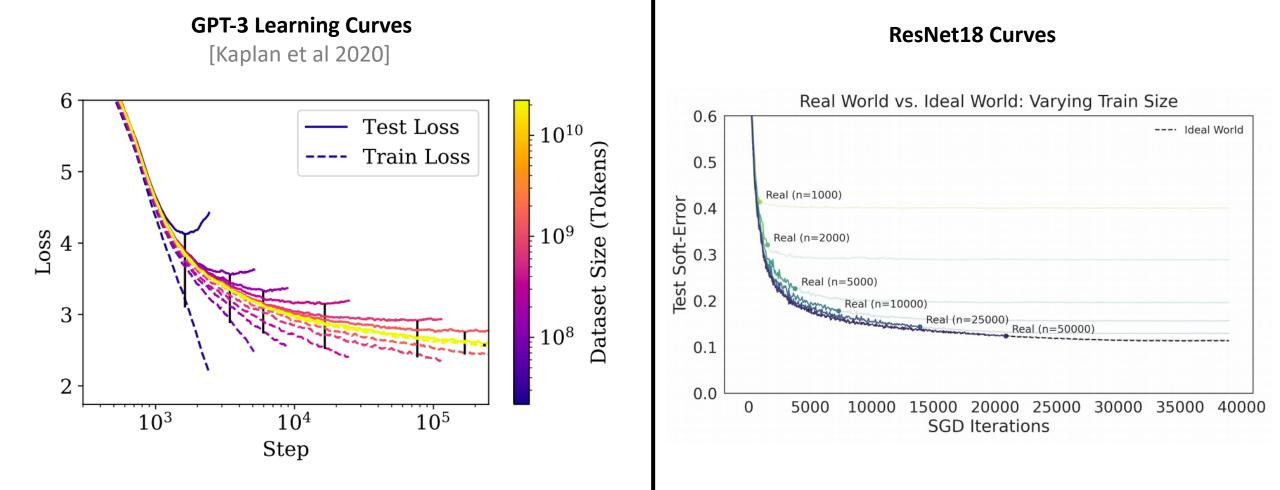


Figure 7: Toy Example. Examples of settings with large and small bootstrap error.

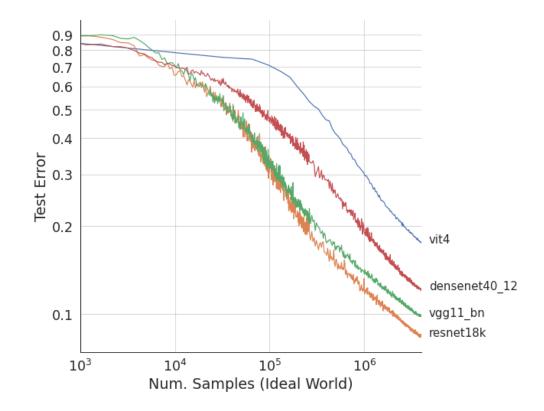
- Setting A. Linear activation $\sigma(x) = x$. With n = 20 train samples.
- Setting B. Sign activation $\sigma(x) = \operatorname{sgn}(x)$. With n = 100 train samples.



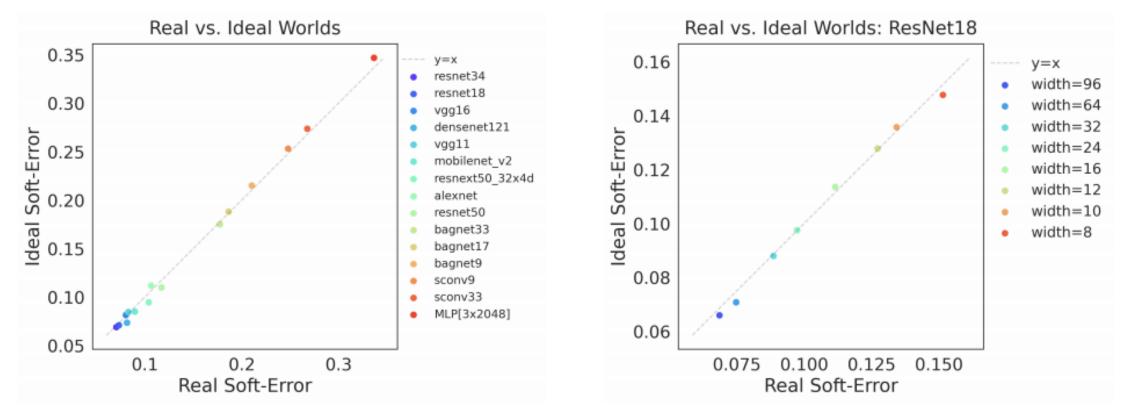
Scaling Laws in Ideal World

L(t) : Ideal-world learning curve

Empirically: power law $L(t) \sim t^{-\alpha}$



ImageNet Experiments

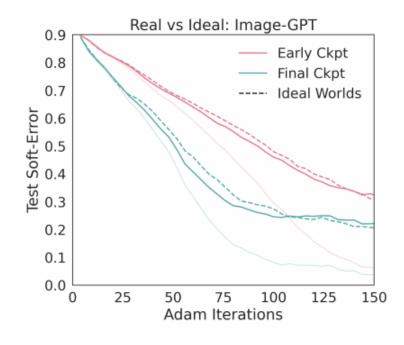


(a) Standard architectures.

(b) ResNet-18s of varying width.

Figure 3: ImageNet-DogBird. Real World models trained on 10K samples.

Effect of Pretraining



(b) Pretrain: Image-GPT (n = 2K).

When Data-Aug Hurts

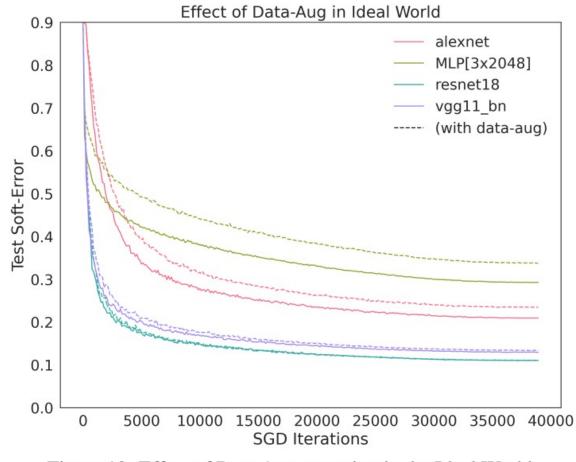


Figure 10: Effect of Data Augmentation in the Ideal World.

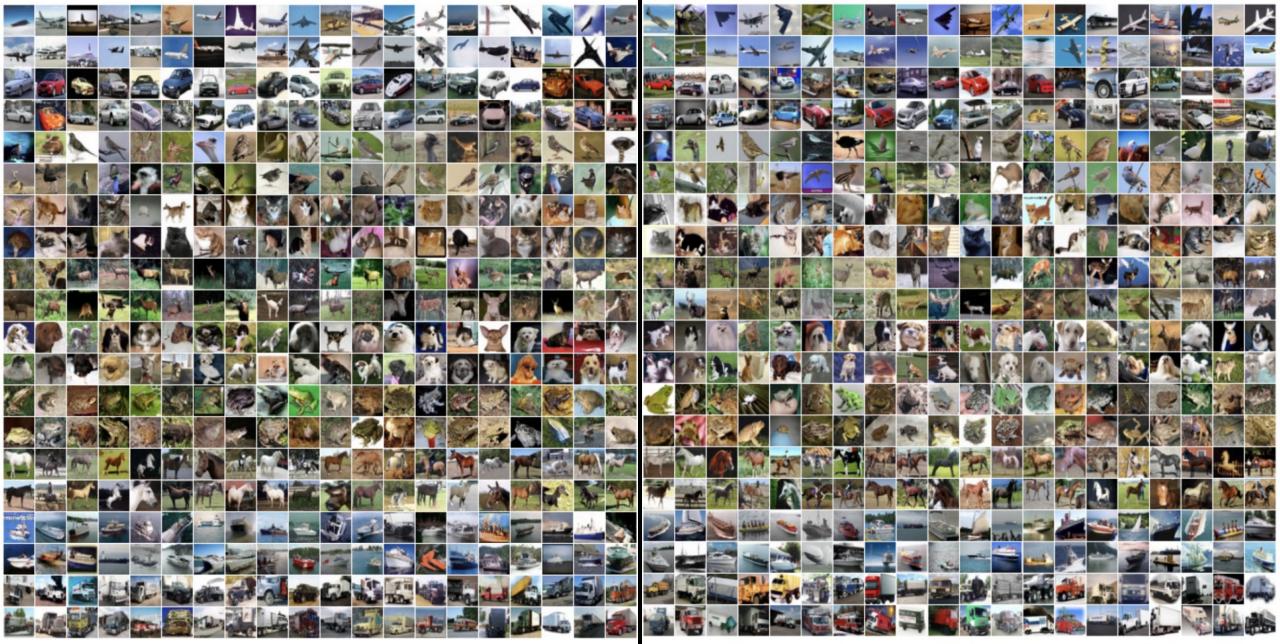


Figure 17: CIFAR-5m Samples. Random samples from each class (by row).

Figure 18: CIFAR-10 Samples. Random samples from each class (by row).

Trained On	Test Error On	
	CIFAR-10	CIFAR-5m
CIFAR-10 CIFAR 5m	0.032	0.091
CIFAR-5m	0.088	0.097

Table 2: WRN28-10 + cutout on CIFAR-10/5m

norwegian_elkhound

norwich_terrier

german_short-haired_pointer

silky_terrier

hummingbird

jacamar

ptarmigan

brittany_spaniel

irish terrier

italian_greyhound

english_springer

gordon_setter

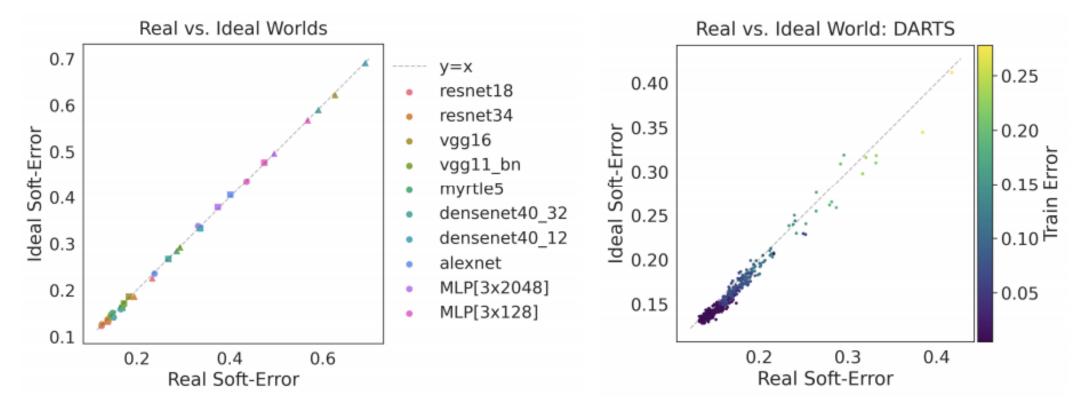
flat-coated_retriever

cocker_spaniel

great_grey_owl

vulture

CIFAR-5m Experiments



(a) Standard architectures.

(b) Random DARTS architectures.

Figure 2: Real vs Ideal World: CIFAR-5m. SGD with 50K samples. (a): Varying learning-rates $0.1 (\bullet), 0.01 (\blacksquare), 0.001 (\blacktriangle)$. (b): Random architectures from DARTS space (Liu et al., 2019).

Validation: Summary of Experiments

- **CIFAR-5m:** 5-million synthetic samples from a generative model trained on CIFAR-10
 - Realistic: Training WRN on n=50K from CIFAR-5m yields 91.2% test acc on CIFAR-10
- ImageNet-DogBird: 155K images by collapsing ImageNet catagories.
 - Real World: n=10K for 120 epochs
 - Ideal World: n=155K for < 8 epochs (approximation of $n = \infty$)
- Various archs: convnets, ResNets, MLPs, Image-GPT, Vision-Transformer

RealWorld($N, T = \infty$) \approx RealWorld(N, T_N) \approx_{ϵ} RealWorld(∞, T_N)

Practice: Real World

(trained as long as possible)

Real World

(stopped at T_N : when Train Error $\approx 1\%$)

"Deep Bootstrap"

Ideal World (stopped at T_N)

Classical Framework (ERM)

Classical Framework: Finite data, need to understand generalization gap

$$\underline{\text{TestError}(f_t)} = \underline{\text{TrainError}(f_t)} + \underbrace{[\text{TestError}(f_t) - \text{TrainError}(f_t)]}_{\text{Generalization gap}}$$

"Good models are those with small generalization gap"

Obstacles:

- 1. Hard: Decades of work, little progress.
- 2. Large models can fit train sets \rightarrow trivializes framework