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Deep Learning:
accepts inputs (design choices),
produces output (model)

Motivation

“ How does what we do
affect what we get? ”

• Advances in DL are unpredictable.

• Every advance = new choice of inputs

• Surprised by which choices work!
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~1998-2020: ConvNets dominate vision

2020: Transformers (from NLP) dominate vision
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[LeCun et al 1998]

[Dosovitskiy et al 2020]

Motivation



Deep Learning
= Map from {design choices} → model

“Understanding Deep Learning”
= Identifying structure of mapDesign 

Choices

Model

Ex of structure: monotonicity
Q: “does training on more data always improve test perf?”



Setup:
Distribution 𝑥, 𝑦 ∼ 𝐷
Given: iid samples from 𝐷

Do: SGD* on Neural Net to minimize train error

Measure: test error Pr
!,#∼%

[𝑓 𝑥 ≠ 𝑦]

Design 
Choices

Model

Supervised classification



Setup:
Distribution 𝑥, 𝑦 ∼ 𝐷
Given: iid samples from 𝐷

Do: SGD* on Neural Net to minimize train error

Measure: test error Pr
!,#∼%

[𝑓 𝑥 ≠ 𝑦]

Design 
Choices

Test 
Error

Supervised classification



Generalization Frameworks

Design 
Choices

Test 
Error

= Factorization of map



Generalization Frameworks

Design 
Choices

Test 
Error

Train 
Error

+

“Uniform 
Convergence
Framework”

Any “big enough” 
network can have
Train Error ≈ 0
[Zhang et al. 2016]



Main Idea: compare Real World vs. Ideal World

Real World(n, t)
- Sample train set 𝑆 ∼ 𝐷&
- Initialize architecture 𝑓' from ℱ
- For 𝑡 steps:

- Sample minibatch from 𝑆
- Gradient step on minibatch

- Output 𝑓(

Fix distribution 𝐷, architecture ℱ, num samples 𝑛.
Then, for all steps 𝑡 ∈ ℕ define:

SGD
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SGD on empirical loss
(Train Error ≤ Test Error)

SGD on population loss
(Test Error)

≈
Test Error



Real World: 50K samples, 100 epochs. Ideal World: 5M samples, 1 epoch.
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𝑇 𝑛 : “Stopping time”. Real World time to converge on n samples (< 1% train error)

“SGD on deep nets behaves similarly
whether trained on re-used samples or fresh samples

...up until the Real World has converged”

Deep Bootstrap:

∀𝑡 ≤ 𝑇 𝑛 : RealWorld 𝑛, 𝑡 ≈+ IdealWorld 𝑡





𝑇 𝑛 : Time to converge on n samples

Deep Bootstrap:

FinalError 𝑛 ≈+ IdealWorld 𝑇 𝑛

LHS: Generalization RHS: Optimization
(Online optimization & Empirical Optimization)



Deep Bootstrap:

FinalError 𝑛 ≈+ IdealWorld 𝑇 𝑛

Design 
Choices

Test 
Error

Online Opt.
×

Offline Opt.

Empirically verified for varying:
- Architectures
- Model size
- Data size
- Optimizers (SGD/Adam/etc)
- Pretraining
- Data-augmentation
- Learning rate
- …



Deep Bootstrap:

FinalError 𝑛 ≈+ IdealWorld 𝑇 𝑛

Design 
Choices

Test 
Error

Online Opt.
×

Offline Opt.

Good design choices:

1. Optimize quickly in online setting
(large models, skip-connections, pretraining,…)

2. Don’t optimize too quickly on finite samples
(regularization, data-aug,…)



Recent proof in Kernel setting:



Main Claim: Bootstrap error 𝜖 𝑛, 𝒟, ℱ, 𝑡 is small for realistic (𝑛,𝒟, ℱ), and all 𝑡 ≤ 𝑇(𝑛)

Where “stopping time” 𝑇(𝑛) := time when Real World reaches TrainError ≤ 1%.

Our decomposition:

ERM decomposition:



𝐿(𝑛): Test error on n samples (Real World, trained to convergence)
𝑇 𝑛 : Time to converge on n samples (Real World SGD steps)
&𝐿 𝑡 : Test error after t online SGD steps (Ideal World)

Deep Bootstrap: 𝐿 𝑛 ≈ &𝐿(𝑇 𝑛 ) NB: Scaling exponents multiply

Assuming 𝑇 𝑛 ∼ Θ(𝑛),
(Learning curve exponent) ≈ (Online optimization exponent)



Validation: Summary of Experiments

• CIFAR-5m: 5-million synthetic samples from a 
generative model trained on CIFAR-10

• ImageNet-DogBird: 155K images by collapsing 
ImageNet catagories. Binary task.

• Varying settings: {archs, opt, LR,…}
convnets, ResNets, MLPs, Image-GPT, Vision-
Transformer



IMPLICATIONS

Deep Learning through the Bootstrap Lens



Alternate Perspectives

Generalization Perspective:

“ConvNets generalize better than MLPs”

“Pretraining helps generalization”

Optimization Perspective:

“ConvNets optimize faster than MLPs”

“Pretraining helps optimization”
(a la preconditioning)



Effect of Pretraining

Pretrained models generalize better (Real) 
and optimize correspondingly faster (Ideal)



Effect of Data Augmentation

Data-aug in the Ideal World = 
Augment each sample once

Two potential effects:
1. Ideal World Optimization Speed
2. Real World Convergence Speed

Good data-augs:
1. Don't hurt learning in Ideal World
2. Decelerate optimization in Real World (train for longer) see “Affinity and Diversity” 

of [Gontijo-Lopes et al.]



Implicit Bias → Explicit Optimization

Two archs from [Neyshabur 2020]:
D-CONV (convnet) ⊂ D-FC (mlp)

Both train to 0 Train Error, but 
convnet generalizes better.

Traditionally: due to “implicit bias” 
of SGD on the convnet.

Our view: due to better 
optimization in the Ideal World



Effect of Learning Rate



Random Labels (Thought Experiment)

“Understanding deep learning requires rethinking generalization”
[Zhang et al. 2016]
- Train on randomly-labeled inputs.
- 0% train error, 90%/trivial test error.

Here, rethinking:
- Real World: Test Error >> Train Error
- Real World Test ≈ Ideal World Test



Two regimes in practice:

1. Effectively infinite data (e.g. train on internet, 1B+ samples)
want architectures which optimize quickly

2. Small finite data (e.g. 50K samples)
want architectures which generalize well

Mystery: Why do we use the same architectures in both regimes?

Deep Bootstrap: Not a coincidence…

Insights on a Practical Mystery



Choice of Metric Matters!



Conclusions
Assuming bootstrap claim: Reduces generalization to optimization.

Hope: Refocus attention on online optimization aspects of deep learning
(some modern models actually in “Ideal World”)

Connects overparametrized and underparameterized regimes:
Models which fit their train sets “behave like” models trained on infinite data

(Effective Model Complexity / N)

“overparameterized”“underparameterized”
Ideal World Real World



Many diverse choices in deep learning “work” (generalize)

Want theory of generalization that applies to all.

Deep Bootstrap:
“Any choice that works for online optimization will work for 

offline generalization.”
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Speculation: Holds much more 
generically than deep learning… Thanks!

preetum@nakkiran.org
preetum.nakkiran.org

http://preetum.nakkiran.org/


EXTRAS



Open Problems
Mysteries of Online Learning:
- (essentially all mysteries in ML remain)
- Why do certain architectures optimize faster on certain distributions?
- How to characterize interaction between: {architecture, optimizer, task}?
- Why does pretraining act as a preconditioner?
- Out-of-distribution robustness
- Why do we “learn representations”?
- …

Beyond Test Error: Similarities between Real & Ideal World
- Similar behavior under distribution shift?
- Similar representations?
- Similar transfer performance

Ideal World as a Testbed:
- To compare optimizers
- Calibration/uncertainty/ensembling



Digression
Setup: Take CIFAR-10 train set, apply label noise: cats → dog w.p. 30%.

Train a ResNet to 0 train error. What happens on test samples?

Result: Cats → dog w.p. ~30% on test set! (other classes unaffected)

Surprising because:
- Not close to Bayes-optimal classifier
- Ideal World won’t do this

- (unless we consider randomized softmax instead of argmax)

“Distributional Generalization” 
[Nakkiran, Bansal 2020]



When Bootstrap Fails

1. Near Double-Descent region (Real World has pathology)
- Or any setting with non-monotonic Soft-Error

2.    Potentially: weird distributions / architectures / optimizers?
(seems to work in any setting with “real data”, regardless of model)



Why Soft-Error?

Want:  F(RealWorld) – F(IdealWorld) → 0 as (model, data) → ∞.

This doesn’t happen for F = TestError, if:
(1) Bayes risk ≠ 0.
(2) Take overparameterized limit: (model, data) → ∞, model ≫ data

“Distributional Generalization” 
[Nakkiran, Bansal 2020]



Why Soft-Error?

Want:  F(RealWorld) – F(IdealWorld) → 0 as (model, data) → ∞.
This doesn’t happen for F = TestError, if Bayes risk ≠ 0.

Suppose Real World takes overparameterized limit: (model, data) → ∞

Ideal World converges to Bayes-optimal classifier:
lim

!→#, %→#
?𝑓%,!(𝑥) = argmax&𝑝 𝑦 𝑥)

Real World converges to optimal sampler:
lim

'→#, %→#
𝑓%,'(𝑥) ∼ 𝑝(𝑦|𝑥)

“Distributional Generalization” 
[Nakkiran, Bansal 2020]



What about Non-Deep Learning?

• Not true for well-
specified linear 
regression!

• Can be contrived to be 
true for misspecified
regression



[Kaplan et al 2020]
GPT-3 Learning Curves ResNet18 Curves



Scaling Laws in Ideal World

L(t) : Ideal-world learning curve

Empirically: power law
𝐿 𝑡 ∼ 𝑡)*



ImageNet Experiments



Effect of Pretraining



When Data-Aug Hurts









CIFAR-5m Experiments



Validation: Summary of Experiments

• CIFAR-5m: 5-million synthetic samples from a generative model 
trained on CIFAR-10

• Realistic: Training WRN on n=50K from CIFAR-5m yields 91.2% test acc on 
CIFAR-10

• ImageNet-DogBird: 155K images by collapsing ImageNet catagories.
• Real World: n=10K for 120 epochs
• Ideal World: n=155K for < 8 epochs (approximation of 𝑛 = ∞ )

• Various archs: convnets, ResNets, MLPs, Image-GPT, Vision-
Transformer



Practice: Real World 
(trained as long as 
possible)

Real World
(stopped at 𝑇! : when 
Train Error ≈ 1% )

Ideal World 
(stopped at 𝑇! )

“Deep Bootstrap”

RealWorld 𝑁, 𝑇 = ∞ ≈ RealWorld 𝑁, 𝑇' ≈, RealWorld ∞, 𝑇'



Classical Framework (ERM)

Classical Framework: Finite data, need to understand generalization gap

“Good models are those with small generalization gap”

Obstacles:
1. Hard: Decades of work, little progress.
2. Large models can fit train sets → trivializes framework

0 0


