
The Internet of Federated Things (IoFT)

Raed Al Kontar
Assistant Professor, University of Michigan

Website: umich.edu/∼alkontar, Email: alkontar@umich.edu

The Internet of Federated Things (IoFT) University of Michigan 1 / 79

https://alkontar.engin.umich.edu/


Recent vision paper

Talk is partially based on the paper titled “The Internet of Federated Things
(IoFT)” [9], led by the University of Michigan and written in collaboration

with multiple universities and faculty with a wide variety of expertise.
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The Internet of Things (IoT)

Smart and connected systems are transforming the competition and
redefining the industry [17]

Physical System 
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Traditional 
Systems

Porter, M. and Heppelmann, J. Harvard Business Review. 2014.

Smart and connected systems are transforming the competition 
and redefining the industry
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Basic feature

Connected: Data from multiple similar units and from multiple
components within the system are collected, often in real-time.

Smart: Compare operations, share the information, and extract
common knowledge to enable accurate prediction and control.

Old Notion: Dates back to the time when artisans used to gather to
share knowledge and perfect/standardize the quality of their crafted
product.
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Current IoT system

7

IoT: The Present

(i) gigantic amounts of data are uploaded and stored in the cloud 
(ii) models (such as predictive maintenance, diagnostics, text prediction) 

are trained in these data centers 
(iii) the models are then deployed to the edge devices.

Cloud/Back-office 
processing center

  

 
 

 
 

  

 
 

 
 

  

 
 

 
 

  

 
 

 
 

Cars on the road

Communication network

Raw Data Service Alert

Google, Amazon, Facebook and many others

Figure 1: Example: Ford Sync or GM Onstar tele-service system

Gigantic amounts of data are uploaded and stored in the cloud.

Models (such as predictive maintenance, diagnostics, text prediction)
are trained in these data centers.

Models are then deployed to the edge devices.
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Obvious drawbacks

Is all the data utilized ?

Communication burden

Storage burden

Deployment latency

Energy cost of training large models

Privacy * benefits large enterprises capable of building their own private
cloud infrastructures at the expense of smaller entities.
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What is changing in IoT?

Computational power of edge devices is steadily increasing (as well as
communication capabilities).

Figure 2: AI chips [4]

Methodology: Main Framework
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Figure 3: Smart 3D printers with
Raspberry Pi’s

Tesla autopilot system has 150 million times more compute power than
Apollo 11.

Smart phones now have computational capabilities comparable to every
day use laptops
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The Internet of Federated Things (IoFT)

Federated Data Analytics (FDA): New data analytics paradigm
within IoT

Exploits edge compute resources to process more of users’ data where it’s
created.

Simple but powerful idea

With the availability of computing resources at the edge, IoT clients execute
small computations locally and share the minimum information needed to
learn a model

IoT moves from the “Cloud” to the “Crowd”
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Our body filters external stimuli

Figure 4: Information Flow via dendrites [1]

Dendrites collect electric signals from different external stimuli

Cell body integrates and condenses the signals

Axons pass signals along

Our brain needs a healthy attention filter
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Simple example: exploiting edge compute resources

3

Final Model +
Testing/ staged rollout

Deployment

Integration/ Aggregation Point

…

Focused Update 
(ex: Gradient)

Local Model

Updated Model

Global Model

Central Orchestrator

IoT Future

How to learn the mean (ȳ) of a single feature (y) over all clients ?

Exploiting compute capabilities, client i calculates ȳi

Client i shares ȳi instead of their entire feature vector (yi )

ȳi is a sufficient statistic to learn ȳ
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An example of federated data analytics (FDA)

3

Final Model +
Testing/ staged rollout

Deployment

Integration/ Aggregation Point
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Focused Update 
(ex: Gradient)

Local Model

Updated Model

Global Model

Central Orchestrator

IoT Future

IoFT devices perform local computations and report focused update to the
orchestrator

The orchestrator aggregates focused updates to update the global model

This procedure is then iterated until a stopping criterion is met

Global model goes through a quality testing on held-out devices
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Why is IoFT Revolutionary ?

Privacy: Users no longer have to share their valuable information,
instead, it is kept local.

Computation and Energy: No more fitting large models on the cloud.
By exploiting edge compoute power, massive parallelization becomes a
reality

Cost:
Less information is transmitted to the cloud → less communication costs
and efficient bandwidth ultilization.
Storage costs on cloud are minimal

Fast Alerts and Decisions: Real-time decisions or service alerts can
be achieved locally at the edge → no latency.
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Why is IoFT revolutionary ?

Fast encryption :Encryption of focused updates can be done readily
and with better guarantees compared to encrypting entire datasets.

Resilience: Edge devices are resilient to failures at the orchestrator
level due to the existence of a local model.

Diversity and Fairness: IoFT allows integrating information across
uniquely diverse datasets, some of which have been restricted to be
shared previously (ex: Medical institutes)

Minimal Infrastructure: due to the increase compute power at the
edge and AI chip penetration

Autonomy: IoFT devices can be under independent control and
opt-out of the collaborative training process at any time.
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Difference from distributed learning

Distributed learning is often implemended to alleviate the huge
computational burden via parallelization.

Centralized systems where clients are compute nodes connected by
large bandwidth.

Follows a divide & conquer philosophy.

In IoFT, the data lives at the edge

Data partitions are fixed and cannot be changed, shuffled, nor
randomized.

Devices have limited communication bandwidth with unstable or slow
connection

Price to pay for privacy
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Applications

Industry Interest

Industries have realized the disruptive potential of IoFT.
Google (Gboard, Android 13), Apple (QuickType keyboard), Microsoft
(telemetry data), Facebook, some health care institutes, amongst many
others.

Efforts are in their infancy phase

Mostly tailored for mobile applications

Methods focus on first order methods for deep learning

A lot of development is needed for IoFT to become a norm in different
industries
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General purpose challenges

Now let us discuss some challenges, opportunities & potential solutions

* Applications will dictate many challenges
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FDA part I: Personalization via domain adaptation

Personalized Federated Learning via Domain Adaptation with Application to
Distributed Manufacturing, Technometrics.
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Global modeling

3
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Global Modeling: One model to fit them all
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Global modeling

Assume N clients, the goal of FDA in IoFT is to collaboratively learn a
global model fw parametrized by w

min
w

F (w) :=
N∑
i=1

piFi (w) , (1)

where pi is a weight (ex: 1/N or ni/
∑N

i=1 ni ) and Fi (w) is a risk
function

Fi (w) = E(xi ,yi )∼Di
[ℓ(fw (xi ), yi )] ≈

1

ni

ni∑
j=1

[ℓ(fw (xj), yj)]

In IoFT, client i can only evaluate its own risk function Fi (w) and
orchestrator has no access to client datasets Di ∼ Di
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Sample FDA framework

Sample FDA framework with weight sharing

1: Input: Client datasets {Di}Ni=1, T , number of local steps E , initialization
for w

2: for t = 1, 2, · · ·T do
3: Orchestrator selects a subset of clients S ⊆ [N] and broadcasts global

model w t

4: for each i ∈ S do
5: Client update: w t+1

i = client update (w t ,Di ,E )
6: Clients send updated parameters w t+1

i to server.
7: end for
8: Orchestator update: w t+1 = server update

({
w t+1

i

}
i∈S

)
9: end for
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Popular approach: FedAvg [16]

Client update: running several E steps of stochastic gradient descents
(SGD). More specifically, for e = 0, . . . ,E − 1,

w t+1,e+1
i ← w t+1,e

i − η∇Fi (w t+1,e
i ).

Orchestator update: taking average of clients’ model parameters:

w t+1 =
1

|S|
∑
i∈S

w t+1,E
i

where |S| denotes the cardinality of the set S.
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Heterogeneity: client drift

Global and empirical risk different when data are non-i.i.d

F (w∗) ̸=
N∑
i=1

piFi (w∗
i ) ,

where superscript ∗ indicates some critical point. This phenomenon is
known as “client-drift”.

Wide gap in a global model’s performance across different devices
when heterogeneity exists [6, 5, 20, 19, 7]

Global model will be biased to devices with more data [13].
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DistributedSGD vs Fedavg

If one (i.e., E = 1) step ([15]), averaging weights and gradients is
equivalent

Ei

[
w t − η∇Fi (w t)

]
= w t − ηEi

[
∇Fi (w t)

]
.

Server update
Client update

Update of FedSGD Update of FedAvg

Figure 5: FedAvg vs DistrSGD

.
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Personalized modeling

5
…

Personalized State

Global State

IoT Personalized

Integration/ Aggregation Point

Central Orchestrator

IoFT devices often exhibit highly heterogeneous trends due to
differences in operational, environmental, cultural, socio-economic and
specification conditions [10, 11, 22]
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Current approach

Learn yi = fθi (x). A general objective for personalized FDA:

min
w ,θ

F (w ,θ) :=
1

N

N∑
i=1

Fi (w ,θi ) , (2)

where w are shared global parameters while θ = {θi}Ni=1 is a set of unique
parameters for each client.

Approaches

Weight sharing

Regularization
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Weight sharing

The first set of literature solve (2) by using different layers of a neural
network to represent w and θi [21, 14].

The underlying idea is that base layers process the input to learn a
shared feature representation across clients, and top layers learn
task-dependent weights based on the feature.

18

𝒘𝒘:𝑮𝑮𝒍𝒍𝑷𝑷𝒈𝒈𝒍𝒍𝒍𝒍 𝜷𝜷𝒊𝒊:𝑳𝑳𝑷𝑷𝑷𝑷𝒍𝒍𝒍𝒍
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Regularization: train-then-personalize

Learn global parameters w∗ then regularize

Proximal term
min
θi

(
Fi (θi ) +

µ

2
∥θi −w∗∥2

)
Similar to popular elastic weight consolidation model (EWC) [8]

min
θi

Fi (θi ) +
µ

2

∑
j

FI j
∥∥θj − w∗

j

∥∥2 ,

where Fj are diagonal elements of the Fisher information

Learning w∗ and βi ’s also done iteratively [12, 2]
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Counter example

fui (x) = sin(2π(x + ui )) ui ∼ U [0, 1]

If we train a global model to minimize the population risk:

min
w

Ei [||fw − fui ||
2
2]; ||f ||22 =

∫ 1

0
f (x)2dx

Then fw should minimize: argminfw Eui

[∫ 1
0 fw (x)

2dx
]

The unique minimizer is fwzero (x) = 0 for every x in [0, 1]

Regularization augments problem∫ 1

0
(fβi

(x)− sin (2πx + 2πui ))
2 dx + λ||βi −wzero ||2.
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Structure of heterogeneity

Heterogeneity

Pi
x ,y = Pi

x × Pi
y |x

Concept Shift - current literature

yi = fθi (xi ) x ∼ Px

Clients share the same f (a linear model, neural network) yet with
different parameters wi

Covariate Shift: xi ∼ Pi
x
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Domain Adaptation

Domain adaptation is a natural approach to handle the covariate shift.

fθi (x) = gγi ◦ Φβi
(x) (3)

Encoder: Φβi
: Xi → H, output features in similar distributions →

Handle covariate shift

Decoder gγi : H → Y, classify features in similar distributions →
Handle concept shift
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Domain Adaptation: Bi-level Optimization

How do we achieve (almost) domain-invariant features?

Bi-level optimization:

min
γi

F̃i (γi ,βi ,w)

s.t. {w , {βi}} ∈ arg min
w̃ ,{β̃i}

N∑
i=1

piFi (β̃i , w̃)

where Fi is the empirical loss on client i , and F̃i is the regularized loss:

F̃i =
1

ni

∑
(x ,y)∈Di

ℓ [y , gγi (Φβi
(x))] + λ1 ∥γi −w∥2 .

Inner level: train encoders with the help of a single decoder.

Outer level: personalize decoders
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Domain Adaptation: Train Encoders

Use a single decoder function gw to minimize:

min
w ,{βi}

N∑
i=1

piFi (βi ,w)

where

Fi (βi ,w) =
1

ni

∑
(x ,y)∈Di

ℓ [y , gw (Φβi
(x))]

is the empirical risk.

Φβi
(xj)’s learn common features from heterogeneous domains.

gw promotes learning of domain invariant features.
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Domain Adaptation: Personalize Decoders

Personalize decoders based on learned encoders.

min
γi

F̃i (γi ,βi ,w) =
1

ni

∑
(x ,y)∈Di

ℓ [y , gγi (Φβi
(x))] + λ1 ∥γi −w∥2 .

Use regularization since features admit similar distributions.

w is a reference point to γi .

γi learns the concept shifts.
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Training

In each communication round:

Client i :
1 βt+1

i , w t+1
i updated using ∇w ,βiFi (w t,q

i ,βt,q
i )

2 γt+1
i updated from ∇γi F̃i (w t,q

i ,βt,q
i )

Server update:
1 w t+1 =

∑N
i=1 piw

t+1
i
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Convergence

If we E steps of local gradient descent for local updates, the algorithm
converges under mild conditions.

Theorem (informal)

If all local objectives Fi are gradient Lipschitz continuous and the norm of
the gradient of Fi and F̃i over w , βi ’s and γi ’s are all bounded:

min
t∈{1,···T},q∈{0,··· ,E−1}

[ ∥∥∥∥∥
N∑

k=1

pi∇wFi (ŵ t,q,βt,q
i )

∥∥∥∥∥
2

+
N∑
i=1

pi
∥∥∇βiFi (ŵ

t,q,βt,q
i ))

∥∥2 ] ≤ O

(
logT√

T

)
and

min
t∈{1,···T},q∈{0,··· ,E−1}

[
N∑
i=1

pi

∥∥∥∇γi F̃i (ŵ
t,q,βt,q

i ,γt,q
i ))

∥∥∥2] ≤ O

(√
logT

T
1
4

)
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Testing: The Sine Counterexample

Ditto Indiv PFL-DA

Figure 6: Regression of sine functions by three algorithms.

Figure 7: Learned decoder functions.
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Insight

fi (x) = αi sin(2π(x + θi )), θi ∼ U [0, 1] and αi ∼ N (µα, σ
∈
α)

Then with correct parametrizations, the optimal solution

gw (ϕ) = µa sin(2πϕ). “center” of all decoder functions
gγi (ϕ) = γi sin(2πϕ)

γ⋆
i =

αi + 2λ1µα

1 + 2λ1

weighted average of: αi , the amplitude of the sine function on client i ,
and µα which is the average of all amplitudes.

The Internet of Federated Things (IoFT) University of Michigan 38 / 79



Testing

Dataset Fedavg Indiv TP Ditto Simple-DA PFL-DA

CMNIST 68.8±0.2 75.6±0.2 54.5±0.1 71.8±0.2 75.6±0.2 75.8±0.1
RMNIST 93.8±0.4 98.4±0.1 93.9±0.2 93.9±0.2 98.4±0.1 98.4±0.1
FEMNIST 77.9±0.3 61.7 ±0.3 77.7±0.3 80.2±0.3 46.0±3 80.8±0.2
VLCS 82.8±0.3 82.5±0.3 82.7±0.3 82.4±0.3 82.6±0.1 83.7±0.1
PACS 84.4±0.8 93.9±0.4 85.0±1.9 92.7±0.2 94.4±0.5 95.6±0.1

Table 1: Average Test Accuracies

The Internet of Federated Things (IoFT) University of Michigan 39 / 79



Testing: Distributed 3D Printers

Data from 3D printers are collected by Raspberry Pis.
Task: predict printhead vibrations at given printing speed.

Figure 8: Left: an illustration of FL system consisting of 3D printers and
Raspberry Pis. Right: the data collected.

The proposed method PFL-DA has better predictive performance.

Table 2: Test loss with standard deviations.

Model Ditto indiv PFL-DA

Neural Network 0.48± 0.04 0.25 ±0.02 0.23±0.02
sigmoid GLM 0.28± 0.02 0.268± 0.01 0.23±0.01
Gaussian GLM 0.26± 0.04 0.25± 0.01 0.25 ±0.01

The Internet of Federated Things (IoFT) University of Michigan 40 / 79



Alternative: Multitask learning

MTL has rich literature in centralized regimes [3, 25].

min
θ,Ω

{
N∑
i=1

piFi (θi ) +R(θ,Ω)

}
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FDA part II: Personalized & Federated PCA

Personalized PCA: Decoupling Unique and Shared Features [18]
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FDA part II: Personalized PCA

An example of the application of Personalized PCA on video
segmentation.

Image 1 2 3

Original

Global PC

Local PC

Table 3: Video segmentation.
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FDA part II: Personalized PCA

Analyze data variance through principal component analysis.

Global components uq’s: shared information

Llobal components v(i),q’s: unique pattern

Dataset i is modeled as:

y(i) ∼
r1∑

q=1

ϕ(i),quq︸ ︷︷ ︸
r1 global components

+

r2∑
q=1

φ(i),qv(i),q︸ ︷︷ ︸
r2 local components

+ ϵ(i)︸︷︷︸
noise

ϕ(i),q and φ(i),q are data-dependent coefficients.

Decoupled features: global and local components are orthogonal.〈
uq, v(i),q

〉
= 0
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Personalized PCA

An example on personalized federated PCA.

Homogeneous PCA Personalized PCA

Figure 9: Comparison between Homogeneous PCA and personalized PCA.

Personalized PCA learns better features.
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Personalized PCA

Task: recover features uq’s and v(i),q’s from (noisy) observations.

In matrix form: 
U = [u1, · · · ,ur1 ]

V(i) = [v(i),1, · · · , v(i),r2 ]
Y(i) = [y(i),1, · · · , y(i),ni ]

Given N datasets, the objective is:

max
U,{V(i)}i=1,··· ,N

1

2
Tr
(
UTS(i)U

)
+

1

2
Tr
(
V T

(i)S(i)V(i)

)
subject to UTU = I , V T

(i)V(i) = I , V T
(i)U = 0, ∀i

(4)

S(i) = Y(i)Y T
(i) is the data covariance matrix on client i .

Nonconvex constraints.

Identifiable? Learnable?
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Personalized PCA: Identifiability

Given observed data, is it possible to recover the global end local
subspaces?

Eckart–Young theorem (PCA) - the solution to:

argmax
U

1

2
Tr
(
UTSU

)
subject to UTU = I rank(U) = r

for PSD S is U∗, then the column space of U∗ spans the top-r
eigenspace of S .

Does not apply to personalized PCA.

Simple reasoning: if all clients have the same global and local principal
components, we cannot tell which are global and which are local.

New conditions are required.
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Personalized PCA: Identifiability

Π(i) the projections onto the subspace spanned by true local PCs:

Π(i) = V(i),trueV T
(i),true.

Πg : true global projection

Identifiability assumption: We assume there exists a positive
constant θ ∈ (0, 1) such that:

λmax

(
1

N

N∑
i=1

Π(i)

)
≤ 1− θ (5)

0 ≤ λmax

(
1
N

∑N
i=1Π(i)

)
≤ 1

N

∑N
i=1 λmax

(
Π(i)

)
= 1

θ as a heterogeneity metric

θ measures subspace differences.
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Personalized PCA: Identifiability

PU = UUT is the projection to the column space of U

Theorem (informal)

If the population covariance matrices satisfy the identifiability assumption,
and have eigengaps larger than δ, and the noise is sub-Gaussian, then with
probability at least 1-δ̃, we have:

∥∥PÛ −Πg

∥∥2
2
+

1

N

N∑
i=1

∥∥∥PV̂(i)
−Π(i)

∥∥∥2
2
≤ O

(
d + log 2N

δ̃

nθδ2

)

where Û , and V̂(i)’s are the optimal solution to the problem (4), d is data
dimension, n is the number of samples per client, and N is the number of
client.

The global and local subspace can be recovered by solving a
constrained optimization problem!
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Personalized PCA: Stiefel Manifold

Stiefel manifold: the manifold formed by all orthonormal matrices.

St(d , r) = {U ∈ Rd×r |UTU = I}

Clients: Use Stiefel gradient descent to update U(i) and V(i). First
projects the gradient to the tangent space

g(i),τ = PT[Uτ ,V(i),τ ]

(
S(i)

[
Uτ ,V(i),τ

])
(6)

Server: Aggregates U(i)’s. Ex: calculates the average

U ← 1

N

N∑
i=1

U(i))

.
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Challenge

After server calculates the average, UTV(i) ≠ 0, the variables become
infeasible.

Inspired by Gram-Schmit orthonormalization, we introduce a correction
step for V(i) at the local client:

V(i) ← V(i) −UUTV(i)

BY projecting to column space of U and deflating V(i), the resulting
(deflated) matrix is orthogonal U
Still it does not lie on the Steifel Manifold (yet close, by theory!)
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Generalized Retraction

Generalized retraction:

GRU (·) : Rd×r → St(d , r)

1 preserves column space:
col(GRU (ξ)) = col(U + ξ), ∀U ∈ St(d , r), ∀ξ ∈ Rd×r

2 is close to the projection to tangent space:
∥GRU (ξ)− (U + PTU (ξ))∥F ≤
M1 ∥PTU (ξ)∥

2
F +M2 ∥ξ − PTU (ξ)∥F , ∀U ∈ St(d , r), ∀ξ ∈ Rd×r , for 2

constants M1,M2 ≥ 0

Polar projection is a generalized retraction:

GRpolar ,U(ξ) = (U + ξ)
(
I + ξTU + UTξ + ξTξ

)− 1
2
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Generalized Retraction

One key property of a generalized retraction is that it preserves the
column space;

V(i) ← GRV(i)
(V(i) −UUTV(i))

the retracted matrix is still orthogonal to U .

Also we do

GRUτ

(
1

N

N∑
i=1

U(i),τ+1

)
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Personalized PCA: Algorithm

In communication round τ :
1 Client i receives Uτ from server, then use it to correct V(i),τ .
2 Client i performs Stiefel gradient descent to obtain updates U(i),τ+1 and

V(i),τ+1, then sends U(i),τ+1 to server.
3 Server averages received U(i),τ+1’s, then retracts it to feasible set to

obtain Uτ+1.

Only global principal components are sent to the server!
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Personalized PCA: Convergence

The algorithm has convergence guarantee

Theorem (informal)

If the stepsize η of Stiefel gradient descent is not too large, starting from
general initializations, the updates {Uτ , {V(i),τ}} converge into (feasible)
stationary points. Moreover, if the algorithm is initialized near the global
optimum and the eigenvalues of sample covariance matrix are upper
bounded by Gmax and lower bounded by µ, the updates {Uτ , {V(i),τ}}
converge into the true global and local subspace exponentially:

∥PUτ −Πg∥22 +
N∑
i=1

∥∥∥PV(i),τ
−Π(i)

∥∥∥2
2
≤ O

((
1− ηµ2ω(θ)

4NGmax

)τ)
where θ is the parameter in identifiability assumption and
ω(θ) = θ2N

(1+N)(1− θ
2 )+

√
(1+N)2(1− θ

2 )
2−θ2N
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Personalized PCA: Convergence

We can recover the global and local subspaces.

The algorithm converges faster when θ is larger!

Comparison: In FDA, convergence is usually is slower for higher level of
heterogeneity. Not the case here.
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Comparison with Robust PCA

Image 1 2 3 4

Original

Sparse
parts by
RPCA

Local PCs
by

PerPCA
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Personalized PCA: Video Segmentation

Personalized PCA can also solve the video segmentation task.
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Personalized PCA: Video Segmentation

Video segmentation. Global principal components capture stationary
background. Local principal components capture moving parts.

Image 1 2 3

Original

Global PC

Local PC

Table 4: Video segmentation.
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Personalized PCA: Topic Modeling

Topic modeling in presidential debate transcripts, local components
represent the most debated topics at the specific year.

Table 5: U.S. presidential debate key words.

Year Top local principal components words

1960 peace, Castro, Africa, Kennedy, now, world, ...
1976 billion, Carter, Governor, Africa, Ford, people, world, ...
1980 coal, oil, money, energy, Social, Security, Reagan, ...
1984 Union, tax, Soviet, arms, leadership, proposal, ...
1988 drug, young, strong, build, future, enforcement, good, ...
1992 Bill, school, children, care, health, taxes, reform,plan, control, ...
1996 Clinton, Security, Medicare, budget, tax, Dole, Bob, ...
2000 school, public, plan, children, money, Social, Security, health, tax, ...
2004 wrong, plan, cost, free, Saddam, troops, Iraq, war, health, tax, ...
2008 nuclear, oil, troops, Iraq, Afghanistan, Pakistan, health, Iran, energy, ...
2012 million, small, business, China, Medicare, Romney, jobs, tax, ...
2016 Russia, Trump, Hillary, companies, taxes, Mosul, Iran, deal, ...
2020 Harris, Pence, Trump, down, Joe, Biden, jobs, Donald, health, ...

Common words Tax, country, States, make, world, money, people, cut, ...
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FDA part III: Other Efforts

GIFAIR-FL: An Approach for Group and Individual Fairness in
Federated, by Xubo Yue (PhD student), Maher Nouihed and Raed Al
Kontar

Federated Bayesian Linear Regression using Hierarchical Models by
Xubo Yue (PhD student), Ana Estrada Gomez and Raed Al Kontar.

Federated Gaussian Process: Convergence, Automatic Personalization
and Multi-fidelity Modeling by Xubo Yue (PhD student) and Raed Al
Kontar.
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FDA part III: Fairness modeling

GIFAIR-FL-Global [24] penalizes the spread of losses among all
groups, while minimizing the training error:

min
w

H(w) ≜
N∑
i=1

piFi (w)︸ ︷︷ ︸
average of training losses

+λ
∑

1≤a<b≤d

|La(w)− Lb(w)|

︸ ︷︷ ︸
spread of group losses

,

where λ is a positive scalar that balances fairness and goodness-of-fit,
and La(w) is the averaged loss for group a (i.e., group loss):

La(w) ≜
1

|Aa|
∑
i∈Aa

Fi (w).

Here, Aa is the set of indices of devices who belong to group a, and
|A| is the cardinality of the set A.
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More details

Ends up as a client reweighting scheme

H(w) =
N∑
i=1

pi

1 +
λ

pi |Asi |
ri (w)︸ ︷︷ ︸
ordering

Fi (w) :=
N∑
i=1

piHi (w)

ri (w) ≜
∑

1≤a ̸=si≤d

sign(Lsi (w)− La(w)).

One can view this approach as multiplying the original weight pi by a

factor 1 +
λ

pi |Asi |
ri (w). The magnitude of this factor is determined by

the ordering of losses.
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FDA part III: FDA via hierarchical Bayes

Can we learn a probabilistic model ?

yi ∼ Pi
y |x
(
fθi (xi )

)
Hierarchical Bayes is a natural way to borrow strength (and learn a
good initialization)
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More details

p(ϕ, {θi}|{yi}) ∝ p(ϕ)
N∏
i=1

p(yi |θi ,ϕ)p(θi |ϕ)

Challenge: Joint local distribution (red) not available to the cloud

p(ϕ|{yi}) ∝ p(ϕ)
N∏
i=1

∫
p(yi ,θi |ϕ)dθi .

The red part is not available in the central server. Therefore, one can
approximate the red part by an approximation function gi (ϕ). More
specifically,

p(ϕ|{Yi}Ni=1) ≈ p(ϕ)
N∏
i=1

gi (ϕ) := q(ϕ).
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FDA part III: beyond ERM

Functional Prior via Gaussain processes (GP)s

f ∼ GP(0,K(·, ·;θK)), ϵ
i.i.d.∼ N (0, σ2),

Features correlations → biased gradients

[23] proves that Fedavg works as well. Caveat, statistical error
depends on batch size

Automatic personalization as we jointly learn a functional prior

p(f ∗i |Xi , yi , x∗) =
∫

p(f ∗i |x∗, fi )
p(yi |Xi , fi )

prior︷︸︸︷
p(fi )

p(yi |Xi )
dfi

= N (µi ,pred(x
∗), σ2

i ,pred(x
∗)),
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Applications dictate challenges

I expect IoFT to infiltrate all industries that benefit from knowledge
sharing, data analytics, and decision-making.

Only with a deep engineering understanding of the underlying
system and domain, one formulates the right analytics

IoFT website

Website: https://ioft-data.engin.umich.edu/

Consider adding your data
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Applications

United States

Cyber physical operating system

Mexico

Canada

Smart logistics

CustomerMicro manufacturing unit

Job allocation
and resource
coordination

Crowd
sourcing

Machine
learning

and control

Security
and privacy Drone Ride share

Producer 3D printer End user

Manufacturing

Customer
Logistics

Distributed Manufacturing

Intersection Control Energy Control
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An application illustration

Figure 10: Cloud manufacturing powered by local computation

FE surrogate models also part of the nodes
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Federated DoE

Figure 11: Collaborative optimal design

Clients agree on next trial & error location via Blockchain consensus
mechanisms
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Papers & Youtube Channel

Youtube Channel: Link

The Internet of Federated Things (IoFT). Link, Youtube.

Federated Data Analytics: A Study on Linear Models. Link, Youtube.

GIFAIR-FL: An Approach for Group and Individual Fairness in
Federated Learning. Link, Youtube.

Personalized PCA: Decoupling Shared and Unique Features. Link.

Federated Gaussian Process: Convergence, Automatic Personalization
and Multi-fidelity Modeling. Link.

Personalized Federated Learning via Domain Adaptation with an
Application to Distributed 3D Printing (paper attached).

Fed-ensemble: Ensemble Models in Federated Learning for Improved
Generalization and Uncertainty Quantification. Link.

Federated Multi-output Gaussian Processes (coming soon).
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Thank you

Questions
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