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Success of Deep Learning AIM | Engineering

Deep learning shines on many tasks

Speech waveform

Transcription
Mmm. ‘Hello world’
f Recognizer

Image Classification Machine Translation Speech recognition
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Engineering

Objects + Relationships = Graph
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Tasks over Graphs Engineering

e Node-level classification/regression
e Graph-level classification/regression
e Link prediction

e (Generation
e Explainability
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Tasks on Graph Data

A
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Engineering

* e.g., Node classification

— Document classification in a citation network
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Tasks on Graph Data AIM | Engineering

 e.g., Graph classification

— Molecular property prediction

Cl

Cl
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Toxic Non-toxic ?
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Tasks on Graph Data AIM | Engineering

* e.g., Link prediction

— Friend suggestion in a social network

/
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Graph Neural Networks:
Basic Concepts

https://github.com/divelab/DIG/




Notations AFVI Engineering

e G =(XA)
* Adjacency matrix

* \We will consider edge features later
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Permutation Engineering

€ RNxd A: € RNXN

= U1 O
O AWN
= O
cCoOo R
_ oo R
ORO R

X' € RVxa A" € RV

o RO O
__-0 O

DO R Ul
B NN W
_ O =
O RrRR O

Department of Computer Science & Engineering



Permutation
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Permutation Invariance AIM | Engineering

« For graph-level representations

— We learn a function f that maps a graph G = (X, A) to a representation vector € R4
fX,A) = f(PX,PAP")

— P is any permutation matrix

Department of Computer Science & Engineering



Permutation Equivariance AIM | Engineering

* For node-level representations

— We learn a function f that maps a graph G = (X, A) to a node representation maftrix €
RNXd'

Pf(X,A) = f(PX,PAPT)

—
£( ) = g £(
—
& Y,
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Graph Neural Networks

Partially based on materials at:
https://geometricdeeplearning.com/lectures/




Overview AFVI Engineering

 GNNs are composed of multiple permutation
equivariant/invariant layers/functions

Michael M. Bronstein, Joan Bruna, Taco Cohen, Petar Velickovi¢, Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges.
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* Neighborhood aggregation!

— Neighborhood features X, = {{x;:j € N;}} ¢ (x1, Xn,)

— Define a local function ¢(x;, X)) H=f(XA)=
¢(er XNN)

Xa

Xd

S\

Michael M. Bronstein, Joan Bruna, Taco Cohen, Petar Velickovi¢, Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges.
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Blueprint for Learning on Graphs AIM | Engineering

Inputs

(X, A)

Michael M. Bronstein, Joan Bruna, Taco Cohen, Petar Velickovi¢, Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges.
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Blueprint for Learning on Graphs AIM | Engineering

Inputs Latents

(X, A) (H,A)

Michael M. Bronstein, Joan Bruna, Taco Cohen, Petar Velickovi¢, Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges.
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Blueprint for Learning on Graphs AIM | Engineering

Node classification

z; = f(h;)

VIuput.s N Latents

(X,A) (H, A)

Michael M. Bronstein, Joan Bruna, Taco Cohen, Petar Velickovi¢, Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges.
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Blueprint for Learning on Graphs AIM | Engineering

Node classification
z; = f(h;)

Graph classification

' 2 = f (691(1/‘ h,)

Inputs Latents

(X,A) (H,A)

Michael M. Bronstein, Joan Bruna, Taco Cohen, Petar Velickovi¢, Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges.
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Blueprint for Learning on Graphs AIM | Engineering

Node classification

z; = f(h;)

Graph classification

26 = [ (Bicv bi)

Inputs Latents

(X,A) (H,A)

Link prediction
25 = f(hi, by, e;y)

Michael M. Bronstein, Joan Bruna, Taco Cohen, Petar Velickovi¢, Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges.
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What’s in a GNN layer AIM | Engineering

* Neighborhood aggregation!
— We build permutation equivariant functions f (X, A) H=f(XA) =
on graphs by sharing the local permutation invariant
function ¢ (x;, Xy,)

¢(x1: XNl)

dCen, Xovy)

— How to implement ¢?

\ B0 X))
e BN

Michael M. Bronstein, Joan Bruna, Taco Cohen, Petar Velickovi¢, Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges.
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Three “flavours” of GNN layers

TEXAS A&M UNIVERSITY

Engineering

Xa Xa ---------
Cha Cbl) o[bF C[(:b
\Xb ) . T, Xb , ......... - _,
N SN
Cbd Che e > Qlpd < Qlbe
Xd Xe Xd <
Convolutional Attentional
hu = ¢ (xu, @ Cmﬂ/}(xv)> h, = ¢ (Xw @ a(xuaxv)"»b(xfu)>
vENY, vENY

Xq

Message-passing

h, = ¢ (X'm @ 1/)(Xuaxv)>

vENy

Michael M. Bronstein, Joan Bruna, Taco Cohen, Petar Velickovi¢, Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges.
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Frontier Topics of GNN AIM | Engineering

e Self-supervised learning of GNNs

o Studies how to train GNNs with unlabeled graph data
o Applications: pre-training in drug discovery, node representation learning for
industrial large-scale graphs.

e GNN explainability

o Studies the cause of GNN predictions
o Applications: building trustworthy and transparent GNN models

e Graph generation, 3D geometric GNNs, efc.
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Self-Supervised Learning on Graphs

https://github.com/divelab/DIG/
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Self-supervised Learning AM | Engineering

e Training models with self-supervision, ~ Preeevserseesntoneamee

e Success in text and image data. We %@ 7777777777777777777777777777777777 > sfff‘fff
see an explosion of graph SSL papers. p—

e Three paradigms of using %@ pro-vain | a7 T |

self-supervised learning ol
O Unsupervised representation learning &_i_ rrewne | DR T Dth;em
O Unsupervised pre-training e \
o Auxiliary learning A'@:{';" —

sSttam |

Xie et al. Self-Supervised Learning of Graph Neural Networks: A Unified Review. TPAMI, 2022.
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Taxonomy of SSL Methods AIM | Engineering

Contrastive vs Predictive: are negative pairs required?

e Contrastive

.. Contrastive model
o Maximizes mutual

information Input data View 1 Representation 1

o Focuses on designing MI maximization
view generation Input data View 2 Representation 2

o Pred iCtive Predictive model

o Ad-hoc pretext-tasks / Generates Self-generated label
information bottleneck Loss

o Focuseg on designing i e Prediction
task/objective

Xie et al. Self-Supervised Learning of Graph Neural Networks: A Unified Review. TPAMI, 2022.
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Taxonomy of SSL Methods

Contrastive Predictive
Objective Views
Graph Property Self- Invariance
Identical Fécons-  prediction training regulari-
InfoGraph, DGI, GMI - truction zation
Subgraphs 8_
Jensen-Shannon MVGRL, Hu et at., Jiao et al., GCA, (P;
estimator HeCo )
InfoGraph, DG, o Non-probabilistic
Hu et al., PHD Structure TF 3 graph auto encoder Statistical M3S,
MVGRL, GMI MVGRL, GRACE, BGRL, GCA, PT- & GAE, MGAE, GALA S?GRL (k-hop IFC—GCN
HGNN § connectivity)
InfoNCE/NT-Xent Feature TF Variational graph GROVER
GCC, GraphCL, GRACE autoencoder (contextual
Grace, GCA, VGAE, ARGA/ARVGA, property, motif)
PT-HGNN, HeCo, Subgraphs Structure TF SIG-VAE .
InfoGCL, AD-GCL GCC, PHD AD-GCL Domain-knowledge BGRL,
< CCA-SSG,
Structure TF, feature TF, Autoregressive LaGraph

Topological
Hwang et al. (meta-path)

reconstruction
GPT-GNN

Other Ml estimators

subgraph
Jiao et al.

GraphCL, InfoCGL

Xie et al. Self-Supervised Learning of Graph Neural Networks: A Unified Review. TPAMI, 2022.
Department of Computer Science & Engineering




Contrastive Methods AIM | Engineering

e Representations of “similar” graph data to be closer, and that of
“dissimilar” graph data to be further from each other.

e In practice, we do not have ground-truth or defined measurement
for similarity. We construct augmented graphs (or subgraphs) from
the same graph to be “similar’, and different graph samples are
“dissimilar”.

Department of Computer Science & Engineering



Contrastive Methods AIM | Engineering

e Representations of “similar” graph data to be closer, and that of
“dissimilar” graph data to be further from each other.

e Theoretical grounding: mutual information maximization. Jointly
sampled graphs are “similar”, while independently sampled graphs
are “dissimilar”

I(x,y) = Drr(p(z,y)||p(z)p(y))

o We consider a graph as a random variable and obtain two views of the graph.
o Representations of the two views are x and y. A good GNN should encode two
views into representation that share as much mutual information as possible.

Department of Computer Science & Engineering



Contrastive Methods AIM | Engineering

View generation Encoding views Objectives

__________________________________________________________________

Input data View 1 Representation 1

Input data View 2

MI maximization !
Representation 2

__________________________________________________________________

Xie et al. Self-Supervised Learning of Graph Neural Networks: A Unified Review. TPAMI, 2022.
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Contrastive Objectives AIM | Engineering

e Derived as lower bounds of mutual information
o Jensen-Shannon Estimator (DGlI, InfoGraph, MVGRL, etc.)

U9 (hi,hj) = Eea x)op [log(D(hi, hj))] +
Ea,x),a",x)~PxP [log(1 — D(h;, h}))]

o InfoNCE (GraphCL, GRACE, etc.)

f<NCE>(hi,hj):]E(A,X)Np[p(hi,hj)—EKmllog b eD(’“”’”/N‘(A,X)”
(A, X")eEK

eD(h'iah'j)
D(hiny) | T108 NV

= Eja,x),K]~PxPN llog
(A, X")eK €

Xie et al. Self-Supervised Learning of Graph Neural Networks: A Unified Review. TPAMI, 2022.
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View generation AIM | Engineering

e Three types of graph transformations for view generation

Feature-space transformations  Structure-space transformations Sampling-based transformations

Node attribute maSkingD:U Edge perturbation Uniform sampling
I

""" Q—x ... mmm: @
JEEm Q

Diffusion Ego-nets sampling

=%

Xie et al. Self-Supervised Learning of Graph Neural Networks: A Unified Review. TPAMI, 2022.

Department of Computer Science & Engineering

P°

Random walk sampling




What are good views for graphs? AIM | Engineering

e |deally, good views (v1, v2) generated for contrastive learning should
o Have their mutual information I(v1,vy) minimized
o Subjectto I(vy,y) = I(va,y) = I(x,y)

transfer

i DS I(vy;ve) performance

Transfer 4 g
task-relevant info

erformance
nuisance info
St opot S GESE not enough too much
; . signal noise. | e )
info 7 hypothesis
o > (Xa y) é \ »(vy;v2)
missing
info QDO @ O© O
captured info Vi V2
I(vi;va) = I(x;y) I(Vl; V2> I(vy;ve) = I(x5y) I(Vlr; V2)

e The principle is even more important for graphs.

Tian et al. What Makes for Good Views for Contrastive Learning? NeurlPS 2020
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Predictive - Invariance Regularization AIM | Engineering

e BGRL

______ HyAy) 0 ZuA)
‘ i H oo H o
| 8 | - ! | |
‘L\A/\/\/e\/\»: = /D kaﬁ_): :?1 /D I
SN DR SR SR = a
‘ E“fA N —— o l
‘ : = /D: N-1 z“ﬁ;l
e ha \D: | N P o Mo

0 < optimize(, n, 9p4(0,$))  EMAupdate: ¢ < T+ (1 — 7)6

Thakoor et al., Large-Scale Representation Learning on Graphs via Bootstrapping. ICLR 2022.
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Predictive - Invariance Regularization AIM | Engineering

o CCA-SSG

(1) random augmentation View A DeCO (2) graph neural network (3) CCA-based objective
: A
................ 000
000
GNN9 L2 \
L 000 N\........
»000 -
: 000 | :
share . CCA
weights | Zp : 5
& S
5 000
> 000
GNN, ole
000
000

- ~ 2 ST 2 -~ 2
0= [~ 2], 42 (321 + 2520 1] )
F F F

~—_——

N J

-~

Invariance term decorrelation term

Zhang et al., From Canonical Correlation Analysis to Self-supervised Graph Neural Networks. NeurlPS 2021.
Department of Computer Science & Engineering




Predictive - Invariance Regularization

TEXAS A&M UNIVERSITY

Engineering

e LaGraph

| (A, X) : : Node-level i : H=£AX)!
| | | [
| & | I Loy
i - | =p| Docoder | D(H) |
| | Ly
' | Graph | [
: lMaSk Vi : Encoder : i :
: | () : I :
| |
l "‘ | I [ =
155;% = i B
2 Q/ [ | L
L AXs)] | -
Input graphs Representatlons | Representations
1
1/2
(€,D) ZHD(A Hy) — Xi|+a | 2ils © Hi— 15, © H{J co +of
d , —
TLO € N = 1 (2 Zz |JZ| :
1

Xie et al., Self-Supervised Representation Learning via Latent Graph Prediction. ICML 2022.

Graph-level

Decoder = D
=p| DT | = D(H)

|MSE(D( )X)j:
| + :
z’—7z(H”: [MSE(z, 2')]# |

1/2
D> llz —z;u?/z_uiq

Department of Computer Science & Engineering



Predictive - Invariance Regularization AIM | Engineering

e Similarity
o Do not requires negative samples.
o Better scalability.
o Their objectives include a term to regularize the invariance of representations to
different views (minimize their distance)
o Effectiveness can be justified by the Information Bottleneck Principle

e Difference
o The formulation of entire objectives are different.
o Based on or derived from different theoretical grounding/insights
o Different technique to guarantee informative representations

Department of Computer Science & Engineering
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DIG.ssIgraph Engineering

Data interface

(Pre-implemented) Encoders

————————————————————————————————————————————————————————————————————————————————

View generation functions: ; 3 Objectives: : : Pre-implemented models: ;
feature, sample, ) InfoNCE, 1 GRACE, InfoGraph, :
structure, combination .| Jensen-Shannon estimator | | MVGRL, GraphCL |

auljedid uonenjeag piepuels

Unsupervised graph-level 1 Unsupervised node-level
representation learning ! graph classification 1 fgpregentatiqn Ierarrniingi B
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Next session:
Explainability of
GNNs
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Explainability of GNNs

https://github.com/divelab/DIG/




Why Explainability KM | Engineering

Good performance but

e People don’t understand deep model INPUT BLACK BOX
O taklng it as black box THE BLACK BOX IS AN ALGORITHIM

THAT TAKES DATA AND TURNS IT INTO
SOMETHING. THE ISSUE IS THAT
BLACK BOXES OFTEN FIND PATTERNS

WITHOUT BEING ABLE TO EXPAIN
y THEIR METHODOLOGY.
e People don't trust deep model ¢

</82%//>

o when the model fails el Pl ——» OUTPUT

[HEAD)]

Explainability:
e Provide human-intelligible explanations to build trustworthy Al

Reference: https://towardsdatascience.com/quide-to-interpretable-machine-learning-d40e8a64b6cf
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Challenges AIM | Engineering

e How to explain GNNs with edge information
o Instance-level: edge-based, subgraph-based
o Model-level: xgnn

e How to get human-understandable explanation results
o Graph Sentiment dataset

E— “birot is a competent enough filmmaker, but her story has nothing fresh or very exiting about it.”

i , - “this ecological minded. wildlife friendly film teaches good ethics while entertaining with its unconventionally wacky but loving family.”
] c/ \C C/ \C / o R SRR ___—________________—__________—__—____——_—__1\
i c/C\ c\c c/\c/é \c\c/\c‘ c\ . . | her | | but | | a H filmaker H enough ‘ ‘ friendly | | good | [ film l | wildlife | |cculogicull_\ I :‘
@ ‘.\/ o i
‘c_‘\cs ./ ‘c ": | story H has H nothing I ‘cnmpclenl | ‘ s | ‘ R H ethics H teaches H minded |—| this | :‘
c‘c No—® \l :

»—c I or H fresh ] | about ‘ ‘ birot H is | I while chmnainingH with l loving its
! )\ [ | |
| very H exciting [ | it ‘ ‘ . ‘ ‘ unconventionally H family | | but | | wacky | 3

e How to compare explainability methods systematically
o Quantitative metrics: Fidelity+, Fidelity-, Sparsity
Yuan et al. Explainability in Graph Neural Networks: A Taxonomic Survey. TPAMI 2022.
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Overview of methods M | Engineering

Graph Neural Netwok
Explanations

Instance-level Model-level
Explanations Explanations

Perturbations ) C Decomposition ) Generation )
v y v

GNNEXxplainer
PGZE())(EI:;\er LRP GraphLime
GranhMask Excitation BP RelEx XGNN
P GNN-LRP PGM-Explainer

Surrogate

(Gradients/Features)

Gmded BP
CAM
Grad-CAM

Yuan et al. Explainability in Graph Neural Networks: A Taxonomic Survey. TPAMI, 2022

Causal Screening
SubgraphX

Department of Computer Science & Engineering



Explanation on GNNs AM | Engineering

Assigning importance scores on edges

Assigning importance scores on connected subgraphs

G—2 € o g

Importance score

for each subgraph 0:3

Department of Computer Science & Engineering



GNNEXxplainer

TEXAS A&M UNIVERSITY

Engineering

A

A: Edge masks for class-distinguish important edges
B: Node masks for important node feature dimension.

A B

g
= go
O
.g GNN’s ® message

/v Important for g

Unimportant for y

Ying et al. GNNEXxplainer: Generating Explanations for Graph Neural Networks. NeurlPS, 2019.

A(,;(;(.,.’Eyg_") E

E

Feature excluded
from explanation

Node feature
vector
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GNNEXxplainer AJM | Engineering

Explanation based on edges

miny — 25, 1y = ] log Ps(Y =y | G = A, © (M), X = X. © o(Mx))

e It learns soft masks on graph edges and node features.

e The masks are randomly initialized and updated to
maximum the mutual information between the original
predictions and the perturbed graphs.

Ying et al. GNNEXxplainer: Generating Explanations for Graph Neural Networks. NeurlPS, 2019.
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SubgraphX AFVI Engineering

Explanation based on subgraphs

G* = argmax Score(f(-),G,G;)
|gi|SNmin
e Explore the important subgraphs with Monte Carlo tree
search algorithm

a* = argmax Q(N;, a;) + U(N;, a; )
e Take Shapley value as the subgraph importance scores
'(n—|S|—1)!
o= 3 BEEE D0 ) - ofs)

SCN\{i}

Yuan et al. On Explainability of Graph Neural Networks via Subgraph Explorations. ICML 2021.
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SubgraphX AFVI Engineering

Yuan et al. On Explainability of Graph Neural Networks via Subgraph Explorations. ICML 2021.
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Sentiment Graph Dataset AIM | Engineering

e Better human evaluations for the explainabiltiy results
O  Graph-SST2, Graph-SST5, Graph-Twitter

“lathan and diggs have considerable personal charm, and their screen rapport makes the old story new.”

charm F diggs and

‘ |

i | [ [

3 their have lathan the 3 Lheir have lathan | the | | their l | have lathan | the l : I their | | have lathan the
| ! | I | I e 1

I

| | l : |

i B , | C r

| | screen | | makes I—( new ]—{ story I screen makes new |—| story I | screen | I makes H new H story l A I screenl | makes |—| new H story |

- I [ 1 I
! Irapport I seem ‘ . | l old I xappon seem . | old | rappon I seem | . | | old l " |rappon I seem | . | | old |

“maybe it is asking too much, but if a movie is nuly going to inspire me. I want a little more than this.”

| is | I but H asking H 5 | i

j I if }—' truly H going I [ much I ;

f [ ‘ [ ‘ [

i Imoviel I want H illspireH to | 1 ‘mo\lel l want }—l mspuel—' to | 1 |movie| | want H inspire}—{ to |
1 | ! [
|

I
|movie| I want }—l inspireH to |
! \ ‘ 1
f | little }—[ more H than | [ me | ‘ little H more H than | | me | 3 [ little |—| more |——1 than I I me | | little J—l more H than I | me I

SubgraphX MCTS GNN PGExplamner GNNExplainer

Yuan et al. Explainability in Graph Neural Networks: A Taxonomic Survey. TPAMI 2022.
Yuan et al. On Explainability of Graph Neural Networks via Subgraph Explorations. ICML 2021.
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Evaluation Metrics AIM | Engineering

e Compare different explainability methods systematically
o Fidelity+, Fidelity-, Sparisty
Benchmark of explainability methods using Fidelity and Sparsity

Graph-SST2 Graph-SST5 Graph-Twitter

0.2754 *
035 L
030

0.30 0:225 " ¥
Esonl 5 L0200 S $ozs ¥
3 e 3 ’ 3

i $0.175 \
) 2

&
z
h-) =
& 0.20 . *0.20 ®
\ 0.150 \
0.15 > : \
0.125 0.15 S
0.10
0.100
0.05 0.10
050 055 060 065 070 075  0.80 050 055 060 065 070 075  0.80 050 055 060 065 070 075  0.80

Sparsity Sparsity Sparsity

BBBP BA-2Motifs BA-shapes

0.1 e ——y
0.0
0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.50 0.55 0.60 0.65 0.70 0.75 0.80
Sparsity Sparsity Sparsity
—O— SubgraphX +- Grad-CAM —— GNN-GI —— GNNExplainer GNN-LRP —< DeeplLift —>— PGExplainer

Yuan et al. Explainability in Graph Neural Networks: A Taxonomic Survey. TPAMI 2022.
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Thank you!
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