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ARM data

As part of DOE's Atmospheric Radiation Measurement program, surface
meteorology has been measured every minute at Lamont, OK since 1993.

» Surface wind speed, wind direction, air temperature, relative humidity,
barometric pressure, and precipitation

» Consistent instrumentation

> Low fraction missing

For several years, this information was collected at a network of sites in
Southern Great Plains, but now only at this central facility

In 2001, | became head of the EPA-funded Center for Integrating Statistical
and Environmental Science

> Initially had the ambition to analyze all the sites and all of the surface
meteorology other than precipitation

» My main tool back then was Gaussian processes

> After looking at space-time patterns of winds, decided this was hopeless



Fast forward to 2021

In recent years, my research has largely been on extremes
Main focus on extremes of a single quantity, but | wanted to move to
multivariate extremes
» | was dissatisfied with existing approaches for extremes dependence
> | thought focusing on a case where the vector was a physical vector (has a
magnitude and a direction) could help in generating new ideas
» So | thought | would look at the ARM horizontal wind vector data

Maybe 20 years later and looking at only one rather than multiple sites, | could
make some sense of it?

> Use vector means within each minute for wind speed and direction then
convert to northerly and easterly components

> The data show tricky patterns depending strongly on whether it is night or
day, so there is strong seasonal xdiurnal interaction

> To simplify, look at midnight June 1 through 4 am June 21 from
2016-2020 (times are UTC)

> No missing observations helps
» 145,200 observations, so need to use methods that can handle this much
data
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Day in June 2019

Wind vectors, 2019. Gray = nighttime.
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Day in June 2020

Wind vectors, 2020. Gray = nighttime.
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Wind vector (m/s) by hour (UTC). N indicates nighttime.
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Top: Medians of one-minute northerly wind for every 10-minute period.
Plotting symbol = last digit of the year. Bottom: Same for easterly component.
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Interquartile range of first differences. Gray lines delineate nighttime.
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Correlations in first differences of wind vector (black) and absolute values of
first differences (red). n = northerly component and e = easterly.

» Strong correlation in absolute differences sign of stochastic volatility:
magnitude of changes in wind vector related to magnitude of past changes



Extremes

Some records in these data:
> Highest recorded wind speed: 19.75 m/s (44.2 mph)
» Highest recorded change in wind speed in one minute: 7.47 m/s
» Highest recorded change in wind vector in one minute: 13.22 m/s

> Lowest recorded wind speed: 0 m/s (640 times in 81 streaks from 1 to 89
minutes)

» Of 73 wind speeds > 17 m/s, number occurring during June 2-3, 2020: 66
These data cover too narrow a range of time to be of much use for inference
on extremes

> At a site in Wichita, KS (about 70 miles away), record June wind from

1970-2018 is 83 mph (37 m/s)

» Of course, a tornado (and Lamont is right in the middle of Tornado Alley)

can have much higher winds

Thus, while this dataset has lots of information for some aspects of process, it
has limited information for others
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Goal

Find a statistical model for the time series that yields realistic simulations

» Stochastic weather generators are popular as inputs into engineering
models for weather impacts

When is wind vector, and not just wind speed, of interest?
» Wind energy? Maybe a bit
» Aviation. Wind direction relevant for takeoff and landing of planes
> Air pollution dispersal
» Perhaps would provide some useful insights for meteorologists?
Can any existing time series models capture all of the features previously noted?

Model the conditional distribution for the bivariate time series given the past of
the series

» Turns out to be very challenging
> Modestly misspecifying conditional behavior can yield terrible simulations
» Simultaneously fitting all parts of model a difficult optimization problem

To allow broad exploration, use models that can be fairly easily fit



Model outline

| will use a three-stage modeling procedure:

1. Conditional median of each wind component

2. Conditional spread of each wind component
Use quantile regressions for first two stages to get normalized residuals with
median 0 and constant spread
Many time series models assume these normalized innovations are independent
and identically distributed. Badly untrue here.
Some possibilities for stage 3:

> Initial idea: Bivariate t with degrees of freedom and dependence
parameter each have diurnal cycles. Doesn’t suffice

» Empirical using estimated innovations depending on time of day and
recent state of system

» Some smoothed version of this empirical distribution. | couldn’t find any
clear advantage over not smoothing

| will first describe the model, then try to explain where it came from



Conditional median

Notation:
» V(t) = (N(t), E(t)) for northerly and easterly components of wind at
time t
> F(s) for wind data through time s
> m; is the minute of day associated with time ¢, takes values 1,2,...,1440
> To capture (all) diurnal cycles, use basis functions a1, constant, and
az,...,ar plotted here:
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The conditional median for N(t), denoted by qo.s(N(t) | F(t — 1)), has the
form

qo.s(N(t) | F(t 1))

7 7
= Z Orak(m:) + Z Orrrak(me)N(t — 1) + Z Oky1aax(m:)N(t — 2)
k=1 k=1 k=1
120

7
+ Zek+2lak(mt) Zﬁj%N(t —J)
k=1 j=3
+ 09E(t — 1) 4 O37 tan (M) 4+ @y7tant (M)

.
120 .
S 6 —1 (N(t—))
-j—3 1
+ 03> & “rtan ( - )

Jj=3

This model has a total of 34 parameters, the linear parameters 64, ..., 03 and
the two nonlinear parameters § € (0,1) and 7 > 0

Similar model for qo.s(E(t) | F(t — 1))



Interpretation of terms

qos(N(t) [ F(t —1))

7 7 7
= Okac(m) + Y Okrza(m)N(t — 1) + > Oiyraan(me)N(t — 2)
k=1 k=1 k=1

120

7
+ Z Ok+212k(me) Z FN(t — )
k=1 =3

+ 020 E(t — 1) + 0307 tan~! (M) + O37tan"? (M)

120 .
+ 03 Z & 3rtan"t (L(t _J))
p
j=3

Controls unconditional median but is not even approximately the median



qos(N( )| F(t - 1))

= Zekak(mt + Z Orsra(me)N(t — 1) + Z Ors1aar(me)N(t — 2)

k=1

120

+Zek+213k mt)zy N(t —j)

Jj=3
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T
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+ 03 Z & 3rtan! (M)

Jj=3

AR(1) and AR(2) terms with diurnal cycles



qos(N(t) | F(t —1))

7 7 ;
- Z Orar(me) + Z Oxrra(me) N(t — 1) 4 Z Orrraar(me)N(t — 2)
= k=1 k=1

7 120
O ST S
k=1 =

+ 020 E(t — 1) + 0307 tan~! (M) + Og7tan"? (M)

p
120 _
S5 tan-t (ME=D)
j—3 1 Nt —J)
+ 032 & ’Ttan ( - )

Jj=3

Cheap (computationally) approximation to MA term with diurnal cycle



qo.s(N(t) | F(t —1))

7 7
= Z Orar(m:) + Z Orsran(me)N(t — 1) + Z Orr1aak(me)N(t — 2)
k=1 k=1 k=1
120

7
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k=1 =3
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=
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-j—3 1
+ 03 & “rtan ( - )

j=3

Impact of most recent value of other wind component



qos(N(t) | F(t—1))

= Z Orar(m:) + Z Orsran(me)N(t — 1) + Z Or+1aak(me)N(t — 2)

k=1 k=1 k=1
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Nonlinear AR(1) and AR(2) terms with no diurnal cycle

» Nonlinear function is odd in N(:)



qos(N(t) | F(t — 1))

7 7 7
= " Oka(me) + > Ocrac(m)N(t — 1) + > Oraan(me)N(t — 2)
k=1 k=1 k=1

120

7
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k=1 j=3
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T

T
120

+ 032 Z5j737tan71 <M)

Jj=3

Nonlinear “MA” term with no diurnal cycle. Note same ¢ as for linear MA
term.



Conditional spread

Define N(t) = N(t) — qo.s(N(t) | F(t — 1)) and W(t) = |V(t)| is wind speed
(m/s) at time t.
Model conditional spread through quantile of |N(t)]:

Q.o(IN(1)] | F(t — 1))

dran(me) | drrran(me)|N(t — 1)] + dus| N(t — 2)| + 6| N(t — 3)|

k=1 k=1

120

u > AR~ ) + dusl E(t — 1)
j=4

120

+¢1QZ% E(t—J)l +Z¢19+k""k(’"f)

k=1

W(t—-1)
o+ W(t—1)

This model has a total of 29 parameters, ¢1, ..., ¢ and the 3 nonlinear
parameters v1 € (0,1), 72 € (0,1) and ¢ > 0.

» First estimate ¢1,...,¢7. Then estimate all the others so never fit more
than 3 nonlinear parameters.

Similar model for go.o(|E(t)| | F(t — 1))



Interpretation of terms

Q.o(IN(8)| | F(t ~ 1))

7
Z@ak me) Z¢>k+7ak me)|N(t = 1)] + ¢1s|N(t = 2)| + 6| N(t — 3)]

k=1
120 ) _ _
+drr Y A IN(E = )| + sl E(t — 1)
j=4
120 w(t—1)
+é10 > % E(t— )| + Z¢19+kak(mr)m
j=2

Non-random diurnal volatility. Define as DV (m;).

Everything not underlined is stochastic volatility, SVn(t).
» Define total volatility TVn(t) = DVn(m:) x SVa(t)
» Essential that DV multiplies SV

Similarly define DVEe(m:), SVE(t), TVe(t).



Qo(IN(t)| | F(t—1))

= Z¢kak(mt) Z¢k+73k(mr)|/\_/(t — 1) + ¢1s|N(t — 2)| + 16| N(t — 3)|

k=1 k=1
120 . _ _
6 > AR — )] + dual E(t — 1)
=4
120 7
+1o Z'}é*ﬂf(t -+ Z ¢19+k8k(mt)%
j=2 k=1

AR(1) term with diurnal cycle



Qo(IN(t)| | F(t—1))

=D dkac(me) | Y dsran(me)|N(e = 1)] + dus | N(t — 2)| + ds|N(t — 3)|

k=1 k=1
120
+ ¢17 Z’Y{_4|/\_/(t —J)| + ¢8| E(t — 1)
j=4
120 7
P Wi(t —
T ST THD Sy LS L =0
j=2 k=1

AR(2) and AR(3) terms without diurnal cycles



qo.o(IN(t)| | F(t —1))

|
7 7
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MA-like term without diurnal cycle



Q.o(IN(8)] | F(t ~ 1))

7
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k=
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Effect of most recent absolute value of other centered wind component



Qo.o(IN(8)] | F(t - 1))

drac(me) | D drrran(me)|N(t — 1)] + dus| N(t — 2)| + 6| N(t — 3)|

k=1 k=1
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MA-like effect of absolute value of other centered wind component



q.o(IN(t)| | F(t —1))

=D dkax(me) | Y dsran(me)|N(t = 1)| + ¢is|N(t — 2)| + pas|N( — 3)]

k=1 k=1
120
+nr Yy AT N(E = )| + sl E(t - 1)
j=4
120 7
o ] Wt —
t D B+ dsan(m) e
j=2 k=1

Nonlinear effect of most recent wind speed with diurnal cycle

> In part to approximate behavior when W(t — 1) = 0, but also lower
volatility when W(t — 1) is low



Innovation distribution

Because of dependence in the two components of innovations at night, must
handle them simultaneously

Define the empirical innovation

lo(t) = (N(t), E(t))

where, e.g., . ~ ~
N(t) = N(t)/qo.o(IN(t)| | F(t —1))

> Use subscript o to emphasize quantities defined in terms of observations
» Quantities without subscript o might be observations or simulations

Also need residuals only normalized for unconditional spread,
Jo(t) = (N(t)/DV(m), E(t)/ DVe(m))

Had hoped could approximate sampling distribution of innovations at time t by
the empirical distribution of /,(s) for |s — t| < 30 (mod 1440), say

However, even these normalized innovations have a distribution depending on
more than just the time of day
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Innovations v SV/(t) = /SVi(t)? + SVE(t)? for 6-7 UTC



Procedure for sampling innovations

Define
» DV(m;) = \/DVN(mt)2 + DVe(m;)?
> TV(t) = /TVa(t)? + TVe(t)?

First separate out cases with high potential for extreme windspeed:

> Select cutoffs k1 > K2 > K3
Compute P(t) = qos(N(t) | F(t —1))> 4+ qos(E(t) | F(t —1))> + TV(t)?
If P(t) > k1, sample from Jo(s) for which P,(s) > ki1

v

v

v

Else if P(t) > k2, sample from J,(s) for which k1 > Po(s) > k2

v

Else if P(t) > k3, sample from J,(s) for which k2 > Po(s) > k3
Next, do separate sampling from /Io(s) for times of especially low (< A1) or high
(> X2) stochastic volatility
» Else If SV/(t) < A1, sample from ,(s) for which SV,(s) < A1 and
PO(S) S KR3.
> Else If SV/(t) > A2, sample from Io(s) for which SV,(s) > X, and
Po(s) < ks.



For remaining cases, sample from /,(s) for which
> P,(s) and SV,(s) not in previous categories
> |s—t| <20 (mod 1440)
> SV,(s) is in same quintile of stochastic volatilities for that time window as
SV(t)
Then rotate I,(s) or Jo(s):

Predicted wind at s in observations

lo(s)

Rotated I,(s)

Predicted wind at t



Simulation procedure

Suppose have Vi_240,..., Vi—1 and want to simulate V;
» From Vi_240,..., Vi—1, compute conditional medians for each wind
component for times t — 120,...,t

» Compute SVy(t — 120),...,SVn(t) and SVE(t — 120),...,SVE(t)
» Sample a normalized innovation and rotate it

» Put back in volatility (either DV or TV)

» Add back in conditional medians

To approximate conditional distribution of V/(t) given the past, just sample
many normalized innovations



Where did | get this?

| tried many models for conditional mean, conditional spread and conditional
innovations

Criteria

> As much as possible, use linear quantile regression

> Quantile regression rather than least squares because of fat tails, especially
at night

> method = ’fn’ in rq command in quantreg package in R is very fast

> Fit nonlinear parameters in outer loop of nested optimization

» Thus, limit number of nonlinear parameters
> Mimic MA behavior by including exponential decay of AR parameters
> Do not model unconditional median by subtracting from N(t) (or E(t))
> Fit conditional spread model by first fitting DV terms, then fit SV terms
» In quantile regressions, favor including terms leading to larger reductions
in criterion function
> (Unweighted) Continuous ranked probability scores on one-minute ahead
predictions
» Simulations look “realistic”

> Biggest challenge. First simulations produced wind speeds > speed of light
> Scheme for sampling and rotating innovations largely devised to avoid
unreasonable wind speeds



Complexity and simplicity

Seek a model that is simple as possible, but complex where needed

>

>

Complex: Basis functions for diurnal effects flexible and cognizant of
nighttime v. daytime

Simple: Same basis functions for all diurnal effects

Complex: Nonlinear AR terms in conditional mean

Simple: Same nonlinear function with one parameter, 7, for all lags

Complex: Nonlinear function of W(t — 1) in conditional spread

Simple: Nonlinear function with one parameter, o

Complex: Fairly elaborate forms for conditional median and spread

Simple: Same form for northerly and easterly components

Complex: Stratified scheme for sampling innovations

Simple: Cutoffs chosen informally based on plots and quality of
simulations

Complex and simple: Rotating innovations

But the simplicity is not due to sparseness, at least not in ordinary sense.
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Estimated AR(1) effects as function of time of day for northerly (solid) and
easterly (dashed) winds
» Each curve shows the contribution to the one-minute ahead predicted
median for three values of the wind vector:
1 m/s (black), 3 m/s (red) and 10 m/s (green) scaled so that the curves
would coincide if the effect were linear

Nonlinearity weaker for easterly
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Estimated AR(2) effects as function of time of day for northerly (solid) and
easterly (dashed) winds

» Each curve shows the contribution to the one-minute ahead predicted
median for three values of the wind vector:
1 m/s (black), 3 m/s (red) and 10 m/s (green) scaled so that the curves
would coincide if the effect were linear



Some aspects of fitted conditional median
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Estimated higher order effects as function of time of day for northerly (solid)
and easterly (dashed) winds
» Each curve shows the contribution to the one-minute ahead predicted
median for three values of the wind vector:
1 m/s (black), 3 m/s (red) and 10 m/s (green) for lags 3-120 scaled so
that the curves would coincide if the effect were linear

Effect much smaller for easterly



Spectra of innovations
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Spectra of innovations (upper = northerly, lower = easterly) averaged over the
5 years



Spectra of absolute innovations
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Spectra of absolute innovations (upper = northerly, lower = easterly) averaged
over the 5 years



Spectra of absolute residuals correcting for diurnal but not stochastic
variation
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Spectra of absolute diurnally normalized residuals (upper = northerly, lower =
easterly) averaged over the 5 years



Unconditional diurnal volatility
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Empirical 0.9 quantiles of |N(t)| (upper) and |E(t)| (lower) for 10-minute
periods by year

» Black curves are fitted DViy(m) and DVEg(t)



Calibration of one-minute ahead predictions

For each minute, simulated 49 one-minute ahead predictions

» Among simulations, actual wind vectors should have equal probability for
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Compare observed and simulated winds

Simulations are fairly fast. | have simulated 25 years, but could easily do more.

> Use 4 hours of real data to get started, but could use random starting
points and burn-in period

» Following plots reshow initial ones for data and compare to simulations

Overall, agreement is pretty good, but
> | doubt my model would produce a simulation like 2020
> Need (non-Markov) regime switching model?
» Produces winds higher than observed somewhat too often?

» First difference at night look off

> Problem with rotation?
> If don't rotate, simulations produce unrealistic wind speeds
> Maybe only sometimes rotate, but haven't yet found a good way to do this

Other models do better in some regards, but worse in others
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Simulated
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Uncertainty quantification

No formal hypothesis tests
No confidence intervals or even standard errors
Why not? Suppose condition on chosen model

> Still not clear how you would obtain appropriate standard errors since
innovations not iid

> If had used more years, maybe resampling years would be reasonable for
inferences on conditional median and spread?

» UQ for sampling approach to innovation distribution?
But surely the extensive fishing for a model affects uncertainties

Best bet would be to look at other years of data, but | am not yet ready to
cross that barrier



Comparisons to machine learning approach

This work has required lots of my time

> | have fit many separate models for conditional medians and spreads
Includes several changes of basic form

» How to capture unconditional diurnal cycle in median

» How to ensure conditional spread is positive

> Inclusion of nonlinear effects
| have fussed the most with modeling innovations

» Started with bivariate t with diurnally varying degrees of freedom and
correlation

» Moved to simple sampling scheme of just resampling empirical innovations
from same time of day

Could a machine learning approach (e.g., recurrent neural net) do
> almost/equally as well
> even better

with much less human effort?



Possibly, but

> | am skeptical it would produce a good simulator if trained solely on
one-minute ahead predictions

Could consider forecasting at multiple time lags (I did some of this)

» Recursive nonlinear prediction based on one-step ahead predictions
requires model for bivariate conditional density

What existing software would be adequate?
» Many programs focus on point prediction
» Would any of them get diurnal patterns accurately without help?
If only goal were to produce a stochastic weather generator for horizontal wind

vector in Lamont, OK, then | have wasted my time

Hope is to gain understanding about

» Meteorologically interesting patterns in high-frequency horizontal wind
vectors that apply more generally, e.g.,

> diurnal cycles, stochastic volatility, nonlinearities

» Structures that one may want to include in statistical models for other
high-frequency environmental time series

Understanding needs interpretable models



| suspect that a special purpose machine learning approach could work quite
well

» Especially if some of the insights | have gained were incorporated

» What level of coding effort would this require?

» Would resulting model be interpretable?
There is a lot more data

» What if gave algorithm the full 29 years of wind vectors (about 15 million

time points)?
» What if gave algorithm other surface meteorology?
> Should help for prediction, but would it help for simulation?

| am unqualified to take this on

> Anyone else?



Things left out

Need for dependence on longer time scales?

> Recurring patterns across several days (2020)
» Differing patterns across years
> Allowing some parameters to vary across years didn't obviously help

> Regime-switching model?
Seasonality
> Interaction with diurnality must be substantial

» Basis functions used should depend on time of sunrise/sunset so need to
vary with season

Extremes
» Wrong data for this purpose

» No tornadoes in these data. What are chances one hit this station over
last 29 years?

Not to mention spatial variation in horizontal/vertical



Take-home messages

Whenever | look carefully at real environmental data, | essentially always find
existing models are inadequate

> Surely the same holds for data from most (all?) areas
» Therefore, the need for good diagnostics is paramount

» For processes with complex dependencies, simulating from fitted model
provides a particularly challenging test

Labor intensive model development will remain a valuable part of the applied
statistician’s toolkit

But maybe newer methods can improve or at least speed up the process?



