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What is nonnegative matrix factorization?

Non-negative matrix factorization

Variables

Variables Topics
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Data matrix
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Static NMF algorithms

Original
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=T » In NMF, each column of the data matrix has to
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Static NMF algorithms

Original

=T » In NMF, each column of the data matrix has to
Tt be represented as a non-negative linear
combination of dictionaries

» Hence the dictionaries must be “positive parts”
of the columns of the data matrix
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Static NMF algorithms

Original
IMF .
=T » In NMF, each column of the data matrix has to
(IEH ER ; be represented as a non-negative linear
1 combination of dictionaries

» Hence the dictionaries must be “positive parts”
of the columns of the data matrix

» When each column consists of a human face
image, NMF learns the parts of human face
(e.g., eyes, nodes, mouth)
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Static NMF algorithms

Original
b » In NMF, each column of the data matrix has to
) = s be represented as a non-negative linear
B combination of dictionaries
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"j"- ‘:L-- 1 Er;% - E » Hence the dictionaries must be “positive parts”
= = - of the columns of the data matrix

» When each column consists of a human face
image, NMF learns the parts of human face
_ (e.g., eyes, nodes, mouth)
B ; = u > This is in contrast to principal component
- i analysis and vector quantization: Due to
cancellation between eigenvectors, each
‘eigenface’ does not have to be parts of face
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Static NMF algorithms

Original

5

Deanna Needell (UCLA)

» In NMF, each column of the data matrix has to
be represented as a non-negative linear
combination of dictionaries

> Hence the dictionaries must be “positive parts”
of the columns of the data matrix

» When each column consists of a human face
image, NMF learns the parts of human face
(e.g., eyes, nodes, mouth)

» This is in contrast to principal component
analysis and vector quantization: Due to
cancellation between eigenvectors, each
‘eigenface’ does not have to be parts of face

» NMF was popularized by Lee and Seung in their
Nature paper in 1999
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What is nonnegative matrix factorization?

Non-negative matrix factorization

Variables Topics Variables

soido].

siosn
siosM

Data matrix

This variable has a
high association
with this topic

This user has a
high association
with this topic
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What is nonnegative matrix factorization?

Movie Ratings Genres (?) Movie Ratings

slesn)
siesn

(¢) seuuan

Data matrix

“Titanic”

“Love Actually”

“Sleepless in Seattle
This user might

like romantic
comedies
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What is nonnegative matrix factorization?

> The goal of nonnegative matrix factorization (NMF) is to factorize a data matrix
X € RZ{" into a pair of low-rank nonnegative matrices W € R and H € R™" by
solving the following optimization problem

inf | X~ WHIE,

dxr rxn
WERZO s HER20

where ||A||z = Z,.J.Aﬁ- denotes the matrix Frobenius norm.
> Data ~ Dictionary X Coding

n r n

R
<
X
=
<«
=

Data Dictionary Coding
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Online NMF

 Considers data that is streaming in over time
» Learns a factorization that is best (in expectation)
« (Can be used for prediction in time series data

« Uses “windows” across time to update factors and then
predicts into a future window using one of the factors

X1 X3 X3 X4 Xs
W0~“—> W1~H—> W2~U—> W3<H—> W4—U—> Ws -
Hy H, Hs Hy Hs
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Non-negative Tensor Factorization (NTF)

oCan be extended to tensors in a (nontrivial but) analogous
way

> C:

On the Topic of Topic Modeling 27



Static NMF algorithms

> In order to minimize || X — WH)||r, one can use block coordinate descent, by
iteratively fixing W or H and minimizing the error w.r.t. the other factor

X X X X X
Hy H H, Hs H,
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Static NMF algorithms

> In order to minimize || X — WH)||f, one can use block coordinate descent, by
iteratively fixing W or H and minimizing the error w.r.t. the other factor

X X X X X
Hy Hy H, Hs Hy

» One of the most popular static NMF algorithm is the Multiplicative Update by Lee
and Seung: Update all entries of H and W alternatively using the following update

W'X; [XH'];
Hy < Hy L Wy Wy
’ T IWTWX]; Y IXHHT];
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Static NMF algorithms

> In order to minimize || X — WH)||f, one can use block coordinate descent, by
iteratively fixing W or H and minimizing the error w.r.t. the other factor

X X X X X
Hy Hy H, Hs Hy

» One of the most popular static NMF algorithm is the Multiplicative Update by Lee
and Seung: Update all entries of H and W alternatively using the following update

W'X; [XH'];
Hy < Hy L Wy Wy
’ T IWTWX]; Y IXHHT];

» It is known that the error | X — WH]|% is non-increasing under the above update,
but there is no guarantee to converge to a stationary point.
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> If the data matrix X is randomly drawn from a sample space Q C ]R‘;XO" according
to a distribution 7, can we still learn the ‘best dictionaries’ that describe X in law?
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> If the data matrix X is randomly drawn from a sample space Q C ]R‘;XO" according
to a distribution 7, can we still learn the ‘best dictionaries’ that describe X in law?

> The online Non-negative Matrix Factorization (ONMF) problem concerns a
similar matrix factorization problem for a sequence of input matrices (x1)e>0.

X X X3 Xy Xs
" %P " %F " %F, " %F " %}_, "
H, H, Hs H, Hs
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> If the data matrix X is randomly drawn from a sample space Q C ]R‘;XO" according

to a distribution 7, can we still learn the ‘best dictionaries’ that describe X in law?

> The online Non-negative Matrix Factorization (ONMF) problem concerns a
similar matrix factorization problem for a sequence of input matrices (x1)e>0.

X1 Xz X3 Xy X5
" %P " {F " %F, " %F " %}_, "
Hy H, Hsy H, Hy
> Suppose (Xt)e>1 is an irreducible Markov chain on a sample space Q with unique
stationary measure 7. The goal of ONMF problem is to construct a sequence

(Wh, He)e>1 of dictionary W: € R™9 and a coding H; € RZy" such that (almost
surely)

IXe — WerrHel2 —  inf Exer [Hx— WH||,2E}

WERIX ", HERrXn
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Asymptotic solution minimizing surrogate loss function

> Mairal, Bach, Ponce, and Sapiro gave an influential solution to the ONMF problem
with a rigorous derivation of almost sure convergence of the empirical loss over
time for i.i.d. data matrices.
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Asymptotic solution minimizing surrogate loss function

» Mairal, Bach, Ponce, and Sapiro gave an influential solution to the ONMF problem
with a rigorous derivation of almost sure convergence of the empirical loss over
time for i.i.d. data matrices.

> The idea is to solve the following approximate problem

H, = argminHER;xoont — Wit H|2 4 M| H|1

Upon arrival of X;: 0
Wi = argmin . f(W),

where %(W) is a convex upper bounding surrogate for (W) defined by

N 1<
r(W) =1 D (I1Xs — WH;|[Z+ Al Hsll1)-
s=1
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Asymptotic solution minimizing surrogate loss function

» Mairal, Bach, Ponce, and Sapiro gave an influential solution to the ONMF problem
with a rigorous derivation of almost sure convergence of the empirical loss over
time for i.i.d. data matrices.

> The idea is to solve the following approximate problem

H, = argminHeR;XOnHXt — Wit H|2 4 M| H|1

Upon arrival of X;: 0
Wi = argmin . f(W),

where %(W) is a convex upper bounding surrogate for (W) defined by

N 1<
r(W) =1 D (I1Xs — WH;|[Z+ Al Hsll1)-
s=1

> Namely, we recycle the previously found coding Hi,--- , Hy and use them as
approximate solutions of the sub-problems. Hence, there is only a single
optimization for W, in the above relaxed problem
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Asymptotic solution minimizing surrogate loss function

» Mairal, Bach, Ponce, and Sapiro gave an influential solution to the ONMF problem
with a rigorous derivation of almost sure convergence of the empirical loss over
time for i.i.d. data matrices.

> The idea is to solve the following approximate problem

Hy = argmin,,_ran || Xe — Weet H||2 + || H])1
Upon arrival of X;: HGRZE
W, = argminy, . fi(W),

where %(W) is a convex upper bounding surrogate for (W) defined by

N 1<
r(W) =1 D (I1Xs — WH;|[Z+ Al Hsll1)-
s=1

> Namely, we recycle the previously found coding Hi,--- , Hy and use them as
approximate solutions of the sub-problems. Hence, there is only a single
optimization for W, in the above relaxed problem

> But we still need to store the entire history Xi, -+, X and Hi,--- |, H. Do we?
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Asymptotic solution minimizing surrogate loss function

> In fact, the approximate ONMF problem is equivalent to
H, = argminHER;xonHXt — Wit H||2 4+ M| H||1
Ar = t7H((t — 1) A1 + H:H])
B: =t }((t— 1)Bi_1 + H:X{)
: T
W = Argmin e e cpoxs (tr(WA:WT) — 2tr(WBy)) ,

Upon arrival of X;:

where Ao and By are zero matrices of size r X r and r X d, respectively.
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Asymptotic solution minimizing surrogate loss function

> In fact, the approximate ONMF problem is equivalent to
H, = argminHER;xonHXt — Wit H||2 4+ M| H||1
Ar = t7H((t — 1) A1 + H:H])
B: =t }((t— 1)Bi_1 + H:X{)
: T
W = Argmin e e cpoxs (tr(WA:WT) — 2tr(WBy)) ,

Upon arrival of X;:

where Ao and By are zero matrices of size r X r and r X d, respectively.

> So we only need to store two summary matrices A; € RZ and B; € R™4
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Asymptotic solution minimizing surrogate loss function

> In fact, the approximate ONMF problem is equivalent to

H, = argminHER;xonHXt — Wit H||2 4+ M| H||1

Ar = t7H((t — 1) A1 + H:H])

B: =t }((t— 1)Bi_1 + H:X{)

W;: = argmin tr(WAWT) — 2tr( WBt)) ,

Upon arrival of X;:

dxr
weccrL; (

where Ao and By are zero matrices of size r X r and r X d, respectively.
> So we only need to store two summary matrices A; € RZ and B; € R™4

» Computing W; also requires solving only a single optimization instance
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Convergence under i.i.d. assumption

H, = argminHeR;xonHXt — Wit H||2 4+ M| H|1

Ar = t7H((t — 1) A1 + H:H])

B: =t }((t— 1)Bi_1 + H:X{)

(tr(WAWT) — 2tr(WBy)) ,

Upon arrival of X;:

W = argmanngRd;i)r

f; = empirical loss, f = surrogate loss, f= expected loss

Theorem (Mairal, Bach, Ponce, and Sapiro '10)

Suppose (Xi)e=o are i.i.d. with common distribution 7. Let (W;_1, H¢)¢>1 be the
optimal solution to the above ONMF algorithm.
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Convergence under i.i.d. assumption

H, = argminHeR;xonHXt — Wit H||2 4+ M| H|1
Ar = t7H((t — 1) A1 + H:H])
B: =t }((t— 1)Bi_1 + H:X{)

W;: = argmin (tr( WAWT) — 2tr( WBt)) ,

Upon arrival of X;:

dxr
WGCQ]RZO

f; = empirical loss, f = surrogate loss, f= expected loss

Theorem (Mairal, Bach, Ponce, and Sapiro '10)

Suppose (Xi)e=o are i.i.d. with common distribution 7. Let (W;_1, H¢)¢>1 be the
optimal solution to the above ONMF algorithm.

(i) (A(Wh))es1 and (F(W:))i>1 converge to the same constant almost surely.
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Convergence under i.i.d. assumption

Hy = argminy, o[ Xe — Wi—1H||% + M||H||1
Ar = t7H((t — 1) A1 + H:H])
B: =t }((t— 1)Bi_1 + H:X{)

W;: = argmin (tr( WAWT) — 2tr( WBt)) ,

rxn
HERZ

Upon arrival of X;:

dxr
WGCQ]RZO

f; = empirical loss, f = surrogate loss, f= expected loss

Theorem (Mairal, Bach, Ponce, and Sapiro '10)

Suppose (Xi)e=o are i.i.d. with common distribution 7. Let (W;_1, H¢)¢>1 be the
optimal solution to the above ONMF algorithm.

(i) (A(Wh))es1 and (F(W:))i>1 converge to the same constant almost surely.

(ii) limsup,_, . [[VAW:)|lop = 0 almost surely.
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Convergence under Markovian dependence

0
Ar = t7H((t — 1) A1 + H:H])
Bt = t_l((t_ 1)Bt—1 + HtX;r)
(tr(WAWT) — 2tr(WBy)) ,

He = argmin,,_qo| Xe — We—1 H||% + || H||1
Upon arrival of X;:

W = argmmwechd;Or

f; = empirical loss, f= surrogate loss, f= expected loss
Theorem (Balzano, Lyu, Needell '19+)
Suppose (Xi)e=o0 is an irreducible MC on a finite state space with unique stationary

distribution . Let (W;—1, Ht)¢>1 be a solution to the above ONMF algorithm. Then
the following hold.

(i) 1imesoo E[fi(W)] = limeosoo E[R(WA)] < o0
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Convergence under Markovian dependence

Hy = argmin,, o, | Xe — Weei H||% + M| H]J1
Ar = t7H((t — 1) A1 + H:H])
Bt = t_l((t_ 1)Bt—1 + HtX;r)

(tr(WAWT) — 2tr(WB,))

X
HERZY
Upon arrival of X;:

W = argmmwechd;Or

f; = empirical loss, f = surrogate loss, f= expected loss

Theorem (Balzano, Lyu, Needell '19+)

Suppose (Xi)e=o0 is an irreducible MC on a finite state space with unique stationary
distribution . Let (W;—1, Ht)¢>1 be a solution to the above ONMF algorithm. Then
the following hold.

(i) lime oo E[f(We)] = limes oo E[R(WL)] < co.
(ii) A(W:) — R(Ws) — 0 as t — oo almost surely.
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Convergence under Markovian dependence

0
Ar = t7((t — 1) A1 + H:H])
Bt = t_l((t_ 1)Bt—1 + HtX;r)
(tr(WAWT) — 2tr(WBy)) ,

He = argmin,,_qo| Xe We—1H||% + || H||1
Upon arrival of X;:

W = argmmwechd;Or

f; = empirical loss, f = surrogate loss, f= expected loss

Theorem (Balzano, Lyu, Needell '19+)

Suppose (Xi)e=o0 is an irreducible MC on a finite state space with unique stationary
distribution . Let (W;—1, Ht)¢>1 be a solution to the above ONMF algorithm. Then
the following hold.

(i) limes oo E[f(We)] = limes oo E[R(WL)] < oo.
(ii) f(W:) — R(Ws) — 0 as t — oo almost surely.

(iii) limsup,_, . [|[VAW:)|lop = O almost surely.
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o Ac RdXd,
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CUR Decomposition

e Ac Rdxd’
e C c R9*k: k columns of A B C 7
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CUR Decomposition

e Ac Rdxd’
e C c R9*k: k columns of A B C 7
e R cRS¥9: srows of A
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CUR Decomposition

Ac Rdxd,
C € R9*k: k columns of A
e R cRS¥9: srows of A

e U c RS*k: the intersection of
Cand R

1/24



CUR Decomposition

Ac Rdxd,
C € R9*k: k columns of A
e R cRS¥9: srows of A

e U c RS*k: the intersection of
Cand R

Ifrank(U) = rank(A), then

A= CU'R.

1/24



Can the matrix CUR decomposition be generalized to the
multidimensional data structure (i.e., tensor)?
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Tensor CUR Decompositions

Let A € R9*? with CUR decomposition of A= CUTR. Then
A= CU'R = CUTUU'R = U x4 (CU') x2 (RT(UT)1).

5/24



Characterizations of Tensor CUR Decompositions

(A taste...)

Theorem (Cai-Hamm-Huang—-N, 2021)

(Chidori CUR) Let A € R9**9 with rank(A) = (r,...,r). Let |; C [d].
SetR = A(/1, o00 /n), C,' = A(;)(:, Jf o= ®j¢,‘/j) and U,' = C,'(/,', ) Then

the following are equivalent:
Q rank(U)) =,
Q A=Rxq1(CiU]) xa-- xn(CaUY),
CUR
Q rank(R) = (r,---,r),
Q rank(A(1j,:)) = r foralli € [n].
Moreover, if the above statements hold, then A = A x7_, (C;C}).

7/24



Characterizations of Tensor CUR Decompositions

Theorem (Cai-Hamm—-Huang—N, 2021)

(Fiber CUR): Let A € RY**9 wjth rank(A) = (r,...,r). Let |; C [d]
and J; C [d""]. SetR = A(h, -+ , ), Ci = Ay(:, J;) and

U; = Ci(l;,:). Then the following statements are equivalent

@ rank(U;) =,

@ A=Rx (CrUD) xa--- xp (CaUY),

CUR
Q rank(C;j) =r foralli € [n] andrank(R) = (r,--- ,r),
Q rank(C;) = r andrank(A(/;,:)) = r forall i € [n].

8/24



/ (Thanks Dustin Mixon)

Figure 1: Illustration of Chidori CUR decomposition & la Theorem 3.1 of a 3-mode tensor in the
case when the indices I; are each an interval and J; = ®;x:I;. The matrix C; is obtained by
unfolding the red subtensor along mode 1, C; by unfolding the green subtensor along mode 2, and
C3 by unfolding the yellow subtensor along mode 3. The dotted line shows the boundaries of R.
In this case U; = R(;) for all .

]

|

|
]

Figure 2: Illustration of the Fiber CUR Decomposition of Theorem 3.3 in which J; is not necessarily
related to I;. The lines correspond to rows of Cs, and red indices within correspond to rows of Us.
Note that the lines may (but do not have to) pass through the core subtensor R outlined by dotted
lines. Fibers used to form C; and Cj are not shown for clarity.



Applications of ONMF
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MyLymeData

oLyme disease a vector-borne disease typically transmitted by
tick or insect bite or blood-blood contact

o Symptoms often mimic those of others, e.g. MS / ALS /
Parkinsons / FMA ... and can become chronic

oCDC estimates 300,000 new diagnoses each year
oLikely a grandiose underestimate

o Poorly understood, poorly funded, poorly diagnosed, poorly
treated

. MyLymeData

On the Topic of Topic Modeling AMS Hawaii OJECT OF LYMEDISEASE.ORG



Mathematics

Comparisons on Lyme data

NMF hNMF Our Backprop

Nerve pain -
Psychiatric -

Heart-related symptoms -

Muscle aches -

Fatigue -

Facial nerve (Bell's) palsy -

Nerve pain Bulls-eye rash - Muscle aches \ ‘
Psychiatric Other Symptoms - Heart-related symptoms ‘
Red skin rash - Evidence of tick bite [1 Headache -
Facial nerve (Bell's) palsy Red skin rash Joint pain -
Severe headaches/neck stiffness Early Other Symptoms Flu-like symptoms
Shooting pains that interfere with sleep Shooting pains that interfere with sleep - Fatigue
Lightheadedness Lightheadedness - Bulls-eye rash +—
Other Symptoms Large joint pain - Memory loss -
Large joint pain None of the above symptoms Twitching -
Fainting, shortness of breath Early Flu-like symptoms Sleep impairment -

Evidence of tick bite

Early Flu-like symptoms
Early Other Symptoms
Gastrointestinal symptoms

Fainting, shortness of breath
Gastrointestinal symptoms
Headache

Joint pain

N

Cognitive impairment

Red skin rash

Facial nerve (Bell's) palsy
Severe headaches/neck stiffness

Sleep impairment - Muscle aches Shooting pains that interfere with sleep
Twitching - Severe headaches/neck stiffness Lightheadedness

Memory loss - Flu-like symptoms Other Symptoms
Cognitive impairment Nerve pain Large joint pain
Headache - Psychiatric Fainting, shortness of breath

Joint pain - Heart-related symptoms Early Flu-like symptoms

Flu-like symptoms - Memory loss Evidence of tick bite
Fatigue - Twitching Early Other Symptoms

Bulls-eye rash
None of the above symptoms

Sleep impairment
Cogpnitive impairment

Gastrointestinal symptoms
None of the above symptoms

The hidden topics here may provide insight on how symptoms manifest themselves

On the Topic of Topic Modeling



Applications of ONMF

ONMF for image reconstructio

Deanna Needell (UCLA)

n
[
n
|

BEBER!
EEN®R

Fig. 7: Image Compression Via ONMF. (Top) uncompressed
image of Leonid Afremov’s famous painting “Rain’s Rus-
tle.” (Middle) 25 of the 100 learned dictionary elements,
reshaped from their vectorized form to color image patch
form. (Bottom): Painting compressed using a dictionary of 100
vectorized 20 x 20 color image patches obtained from 30 data
samples of ONMEF, each consisting of 1000 randomly selected
sample patches. We used an overlap length of 15 in the patch
averaging for the construction of the compressed image.

Online nonnegative matrix factorization for Markovian data
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More applications

(O)NMF for image co-segmentation

(a) Cow (b) Dog (¢) Car (d) Bicycle

’ R g N o Q ;
-~ S PSS e
X R ;\‘. i 1
o % =
5
— - =y :
| ‘6 | : =
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Applications of ONMF

ONMF as a pattern detection and prediction tool — COVID19

Confirmed Death Recovered
0.23 0.14 0.10 0.07 0.23 0.14 0.10 0.07
0.06 0.05 0.04 .3 0.06 0.05 0.04 0.03
b .
ﬁ == —+— Korea, South
----- ~»— China
0.03 0.02 0.02 0.02
= S — US
— ltaly
7 —— Germany

0.02_0.02 0.02 002 S0z 0.02_ 0.02_ 0.02 — Spain

B — | N
o= e e
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

= o
| . ‘V’ﬁz

L = By 3
001 001 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 o0.01

Fig. 2. 24 Joint dictionary atoms of 6-day evolution patterns of new daily cases (confirmed/death/recovered) in six countries (S. Korea,
China, US, Italy, Germany, and France). Each dictionary atom is a 6 * 6 * 3 = 108 di ional vector corresponding to time * country *
case type. The corresponding importance metric is shown below each atom. 50 atoms are learned and the figure shows top 24 with the
highest importance metric.
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Applications of ONMF

ONMF as a pattern detection and prediction tool — COVID19

Prediction of COVID-19 daily new confirmed cases Joint dictionary of 6-day evolution
400
Korea, S. 5000 China s [
—e— Original —e— Original
200 —-- Prediction | 5500 =i+ Prediction
B T o
us 4000 taly
200005 |7gx Original H.l —&~ Original Korea, South
10000 { —i*- Prediction H+ 2000 { =i+ Prediction K|'|-|.” china
H'” us
0 0 taly
Germany
4000 Germany 5000 Spain spain
—e~ Original N'lﬂ —e- Original "'ﬂl
2000 { -+ Prediction |'H|HH 2500 - Prediction HH.H”
[} o
N \Y N \ Ny N s
0.0"—'00,0 '\2,0'5'00_0'53:.0“’bo.e“'x‘;,c‘)n 0,01—'00,0 '\‘;,6’5'00,0'5'\’:.0“’DG,Q“'\‘;,G‘)D
A L L Ll L Ll P L L Ll LK Ll

Fig. 3. Joint dictionary learning and prediction for the time-series of new daily cases (confirmed/death/recovered) in six countries (S. Korea,
China, US, Italy, Germany, and France). After joint dictionary atoms are learned by minibatch learning, they are further adapted to the
time-series data by concurrent online learning and predictions. (Right) Joint dictionary atoms of 6-day evolution patterns of new confirmed
cases. The corresponding importance metric is shown below each atom. (Left) Plot of the original and predicted daily new confirmed cases
of the six countries. The errorbar in the red plot shows standard deviation of 1000 trials.
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Mathematics

More applications

ONMF on EEG node correlations (UCI EEG Alcoholism data, 64 electrodes)

P4

EEG-Temporal Dictionary of size 40 B
-~ (P35
—— CP6
== (PZ
—
0.05 E=3
e -
i
000 s
e
-0.05 —
o s 011 =
I —o

: ‘gl

0.07

293ReeRIIIIIFFAIEARRIAA2AAIQ

ttdttteditiidddtd
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Mathematics

More applications

ONMF on EEG data (node correlations)

B S P A A S SR AR AR ARSI
335 S oU TR ER R Rt Dy DO DR EREEN U NERRZREREQEDERRFREE

(Pearson) (ONMF)

On the Topic of Topic Modeling
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More applications

ONMF on EEG data (node correlations)

(Pearson w/ gradient) (ONMF w/ gradient) (ONMF w/o gradient,
r=16)

On the Topic of Topic Modeling



Applications of ONMF

ONTF to learn activation patterns in mouse cortex

Temporal activation

- Fee i

FIGURE 4. Learning 20 CP-dictionary patches from video frames on brain activity across the mouse cortex.
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Online nonnegative matrix factorization for Markovian data

Deanna Needell (UCLA)



Performance of tensor CUR methods
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Ribeira Braga Ruivaes
Size 1017 x 1340 x 33 | 1021 x 1338 x 33 | 1017 x 1338 x 33
Rank (60, 60,7) (60,60, 5) (65,65, 4)
Fiber CUR 0.29 0.26 0.31
Runtime | Chidori CUR 0.66 0.59 0.55
(seconds) HOSVD 1.49 141 1.42
st_ HOSVD 0.83 0.77 0.76
HOOI 2.29 2.67 3.30
Fiber CUR 24.14 17.93 15.53
SNR Chidori CUR 24.39 18.56 15.84
(dB) HOSVD 22.99 17.70 15.48
st_ HOSVD 22.18 17.90 15.49
HOOI 24.33 18.00 15.61

Original Fiber CUR Chidori CUR

Figure 5: Visual comparison of the original and compressed hyperspectral images. From top to
bottom, each row of the images are for the datasets Ribeira, Braga and Ruivaes, respectively.



Robustness of tensor CUR methods

frame frame runtime (sec)
size number | RCUR | RPCA
Shoppingmall || 256 x 320 1000 7.69 44.30
Restaurant 120 x 160 | 3055 3.48 31.63
OSsU 240 x 320 | 1506 10.39 | 68.62

Figure 1: Restaurant: The first column contains three randomly selected frames from the
original video. The middle two columns are the separated background and foreground outputs
of RCUR, respectively. The right two columns are the separated background and foreground
outputs of RPCA, respectively.



Robustness of tensor CUR methods
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Figure 5: Face modeling on EztYaleB: Visual comparison of the outputs by RCUR and RPCA
for face modeling task. The first row contains the original face images. The second and third
rows are the face models and the facial occlusions outputted by RCUR, respectively. The last
two rows are the face models and the facial occlusions outputted by RPCA, respectively.
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Thank you for listening!

» deanna@math.ucla.edu

.+ math.ucla.edu/~deanna
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