

#### IDENTIFYING MARKET STRUCTURE: A DEEP NETWORK REPRESENTATION LEARNING OF SOCIAL ENGAGEMENT

Kunpeng (KZ) Zhang

kpzhang@umd.edu

kpzhang.github.io

Joint work with Yi Yang (HKUST) & P. K. Kannan (University of Maryland)

#### What is competitive market structure?

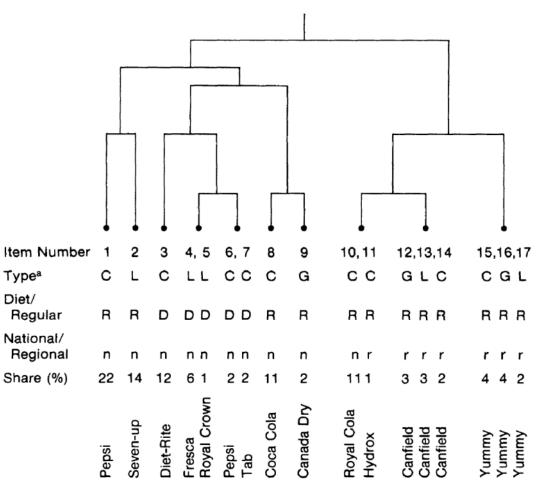
- Understanding the extent of competition among brands in a product-market
- Identifying sub-markets with the market, where competition within a submarket is much stronger than competition across sub-markets
- Given a focal brand, identifying brands in the market that compete very closely with it as compared to other brands

### Early market structure research

- Rao and Sabavala (1981)
- Input: panel data of consumer purchases/switching
- Similarity data using brand switching matrix
- Hierarchical clustering

**FIGURE D** 

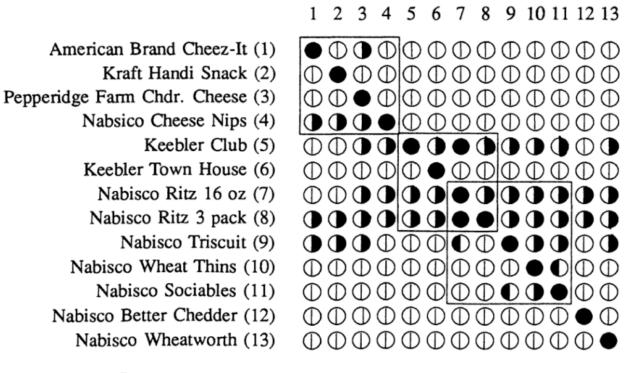
HIERARCHICAL STRUCTURE FOR SOFT DRINKS



 ${}^{a}C = Cola, L = Lemon/Lime, and G = Ginger ale.$ 

#### Focus on a focal brand (Subset selection methodology, Kannan and Sanchez 1994)

(b) Subset Identification Graphs



significant switching from brand j to brand i.
 significant switching from brand i to brand j.
 Subsets for each brand guarantee a PCS of at least 0.90

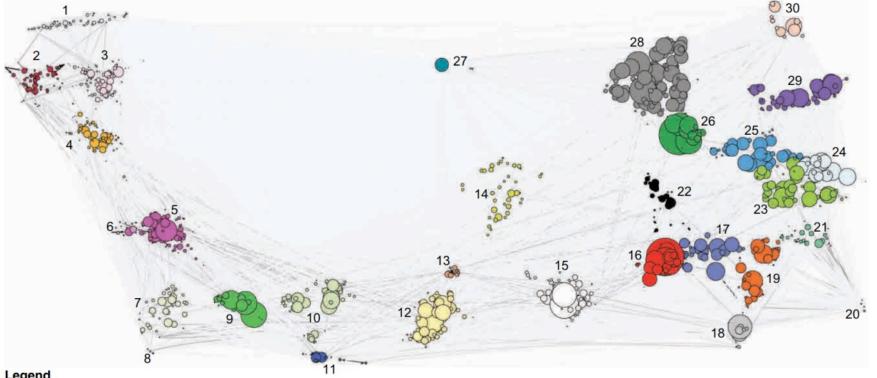
#### Evolution of literature

- Survey
  - Urban, Johnson and Hauser (1984)
  - Brand concept maps (BCM) (John et al. 2006)
  - ZMET (Zaltman and Coulter 1995)
- Scanner panel data
  - Grover and Srinivasan (1987)
  - Erdem (1996)
  - Lots of others...
- User click streams
  - e.g., Moe 2006
- Marketing mix
  - Carpenter and Lehmann (1985)
  - Kannan and Wright (1991)

# Recent resurgence in big data context

(Search logs - Ringer and Skiera, MKS 2016), Online reviews - France and Ghose (MKS, 2016)





#### Legend

Bubbles represent individual products (SKUs)

Bubble color indicates submarket membership

Bubble size indicates global competitive asymmetry (consideration frequency)

Arrows represent local competitive asymmetry and point at competitors of the product they originate in

Arrow weight indicates how intense a competitive relationship is: the darker and thicker the arrow, the more intense the relationship Submarkets are numbered 1 through 30

#### Evolution of literature

- Online search logs
  - Kim, Albuquerque, and Bronnenberg 2011
  - Ringel and Skiera 2016
- User-generated content
  - Customer reviews (Lee and Bradlow 2011)
  - Forum discussions (Netzer et al. 2012)
  - Chatter (Tirunillai and Tellis 2014)
  - Hashtags (Nam, Joshi, and Kannan 2017)
- Store-level sales data
  - Gabel, Guhl, and Klapper 2019

|                   | Primary/Survey<br>Data           | Text Mining<br>(UGC)         | Social Tag-based             | Search Data                              | Social<br>Engagement         |
|-------------------|----------------------------------|------------------------------|------------------------------|------------------------------------------|------------------------------|
| Data Volume       | Small                            | Large                        | Large                        | Large                                    | Very large                   |
| Data Veracity     | Authentic                        | Noisy                        | Moderate noisy               | Moderate noisy                           | Moderate noisy               |
| Privacy preserve  | Yes                              | Yes                          | Yes                          | No (need to insert<br>a tracking pixel)  | Yes                          |
| Data availability | Low (need to collect data daily) | High (publicly<br>available) | High (publicly<br>available) | Low (need to insert<br>a tracking pixel) | High (publicly<br>available) |
| Data pre-         | Low (use                         | High (text mining is         | High (text mining is         | Low (use                                 | Low (use network             |
| processing cost   | consideration set<br>directly)   | error-prone)                 | error-prone)                 | consideration set<br>directly)           | raw data)                    |

Comparison of different types of data

# Differences among extant literature

|                               | Kim et.al 2011                                                             | Lee and Bradlow<br>2011                                                                    | Netzer et.al<br>2012                                                                           | Ringel and Skiera<br>2016                                               | Culotta and Cutler<br>2016                    | Nam, Joshi and Kannan<br>2017                            | Our study                                                                                               |
|-------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Objective                     | To visualize user<br>search behavior and<br>understand market<br>structure | To visualize<br>competitive market<br>structure using text<br>mining on customer<br>review | To visualize<br>competitive<br>market structure<br>using text mining<br>on forum<br>discussion | To understand<br>asymmetric<br>competition in the<br>product categories | To infer attribute-<br>specific brand ratings | To analyze user generated<br>tags for marketing research | To propose a novel<br>deep network<br>representation<br>learning framework<br>for marketing<br>research |
| Brands/Products               | 62 products, 4<br>brands                                                   | 9 brands                                                                                   | 169 products, 30<br>brands                                                                     | 1,124 products                                                          | 200 brands                                    | 7 brands                                                 | 5,478 brands                                                                                            |
| Consumers/Users               | N.A.                                                                       | N.A.                                                                                       | 76,587                                                                                         | 100,000+                                                                | 14.6 million                                  | N.A.                                                     | 25,992,832                                                                                              |
| Data sources                  | Amazon                                                                     | Customer review at<br>Epinions                                                             | Online<br>discussion forum                                                                     | Product comparison<br>website                                           | Twitter                                       | Social tagging platform<br>Delicious                     | Facebook public fan<br>pages                                                                            |
| Data type                     | Consumer search                                                            | Text                                                                                       | Text                                                                                           | Consumer search                                                         | Network                                       | Social tags                                              | Network                                                                                                 |
| Brand association methodology | Consideration set                                                          | Text-mining                                                                                | Text-mining                                                                                    | Consideration set                                                       | Network learning                              | Network learning                                         | Network learning                                                                                        |
| Asymmetry                     | Yes                                                                        | No                                                                                         | No                                                                                             | Yes                                                                     | No                                            | No                                                       | Yes                                                                                                     |
| Dynamic                       | No                                                                         | No                                                                                         | No                                                                                             | No                                                                      | No                                            | Yes                                                      | Yes                                                                                                     |
| Dimension<br>reduction        | Yes                                                                        | Yes                                                                                        | No                                                                                             | No                                                                      | No                                            | Yes                                                      | Yes                                                                                                     |
| External validation           | N.A.                                                                       | N.A.                                                                                       | Purchase data,<br>survey                                                                       | Survey                                                                  | Survey                                        | Brand concept map (survey)                               | Event study,<br>link prediction                                                                         |
| Privacy preserve              | Yes                                                                        | Yes                                                                                        | Yes                                                                                            | No (need to insert a tracking pixel)                                    | Yes                                           | Yes                                                      | Yes                                                                                                     |
| Data availability             | Low (need to collect data daily)                                           | High (publicly<br>available)                                                               | High (publicly<br>available)                                                                   | Low (need to insert a tracking pixel)                                   | High (publicly<br>available)                  | High(publicly available)                                 | High(publicly<br>available)                                                                             |
| Data preprocessing cost       | Low (use<br>consideration set<br>directly)                                 | High (text mining is error-prone)                                                          | High (text<br>mining is error-<br>prone)                                                       | Low (use<br>consideration set<br>directly)                              | Low (use network raw data)                    | Low (tags are well defined)                              | Low (use network<br>raw data)                                                                           |

Proposed methodology

• We expect to:

oHandle large-scale (easy-to-obtain) data

oLearn complex and implicit patterns from data

oIdentify (sub)markets without pre-specifying boundaries

OCapture dynamic changes of market structure

#### Data

- From social media platforms Facebook
  - "Likes"
  - "Comments"
  - "Sharing"
- Nature of the data
  - higher-level brand metrics as compared to SKU-level

# "Liking" brands on Facebook

Close to 90% of users on Facebook say that they "Like" at least one brand on Facebook (Lab42 survey)

50% say that they find the brand's Facebook page more useful than the company's website.

Of the Facebook users who "Like" brands:

- 82% said that Facebook is a good place to interact with brands
- 75% said that they felt more connected to the brand on Facebook
- 69% said that they Liked a brand because a friend in their network did

### Why do they "like" the brands?

#### **Reasons for Becoming a Brand Fan on Facebook**

**QUESTION:** The following are the reasons of becoming a fan that were mentioned to us by others. Which, if any, of the following reasons led you to become a Fan or 'Like' the following brands on Facebook?

| 49% To support the brand I like                           | 27% To share my interests / lifestyle with others                                    |
|-----------------------------------------------------------|--------------------------------------------------------------------------------------|
| 42% To get a coupon or discount                           | 21% To research brands when I was looking for specific products / services           |
| <b>41</b> % To receive regular updates from brands I like | 20% Seeing my friends are already a fan or "liked"                                   |
| 35% To participate in contests                            | <b>18</b> % A brand advertisement (TV, online, magazines)<br>led me to fan the brand |
| <b>31%</b> To share my personal good experiences          | 15% Someone recommended me to fan the brand                                          |

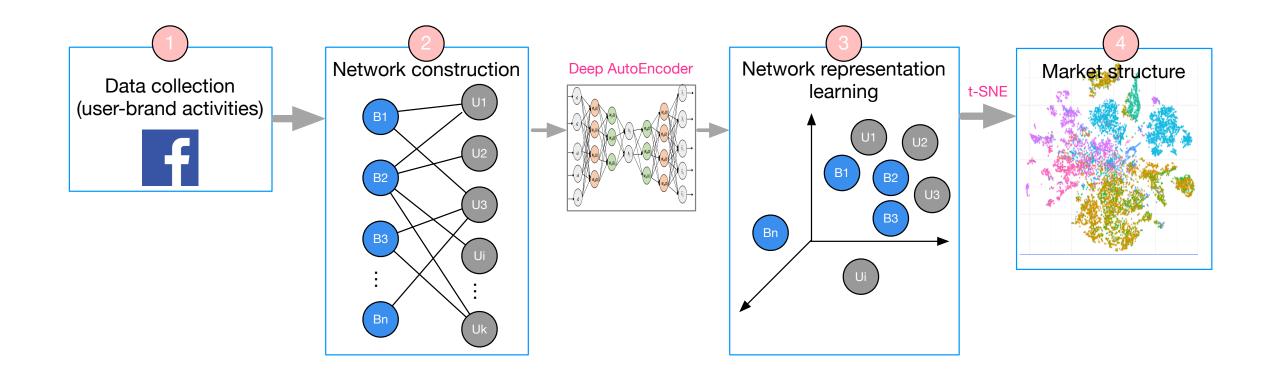
Syncapse/Hatspex U.S. Survey March 2013 (n=2,080). Primary brands under study included BMW, BlackBerry, Xbox , Disney,Zara, Levi's, H&M, Victoria's Secret, Adidas Originals, Nike, Monster Energy Drink, Caca-Cola, Dr Pepper , Oreo, Skitfes, Starbucks, McDonald's, Subway, Walmart, Target.

Source: Syncapse.com

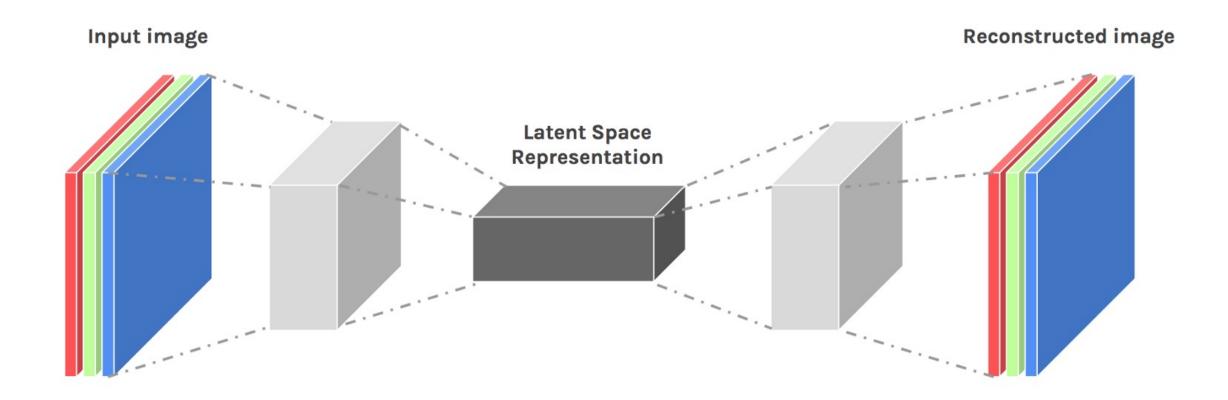
Does like translate to purchase? loyalty?

- What Are Likes Worth? A Facebook Page Field Experiment (2017)
   Daniel Mochon, Karen Johnson, Janet Schwartz, Dan Ariely
- Does "Liking" Lead to Loving? The Impact of Joining a Brand's Social Network on Marketing Outcomes (2017)
  - Leslie K. John, Oliver Emrich, Sunil Gupta, Michael I. Norton
- We are more interested in the information on content, user engagement with brands

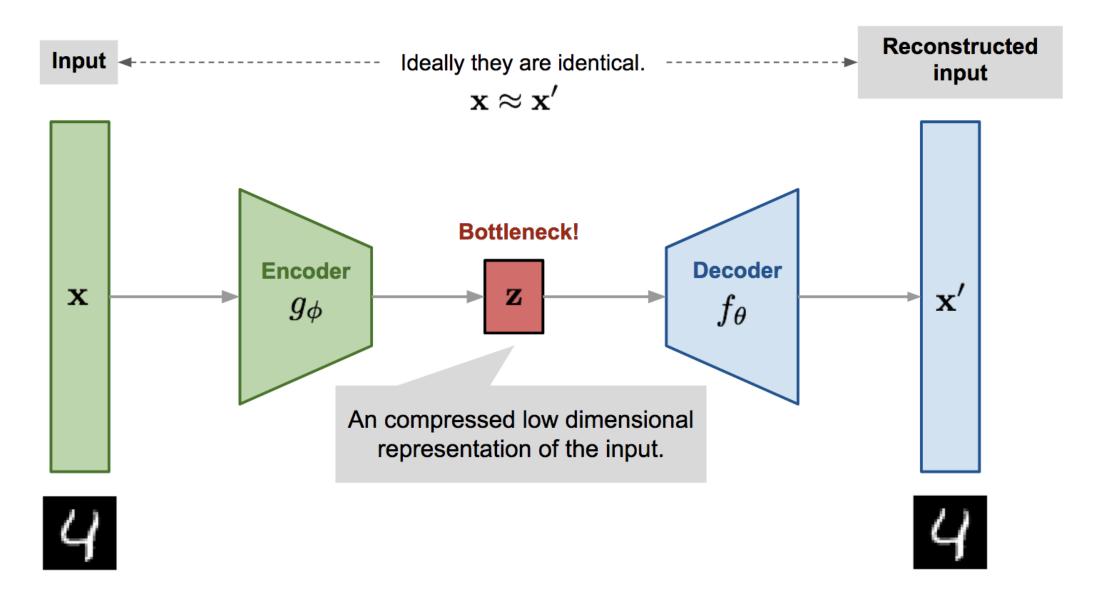
# Our proposed approach – overall framework

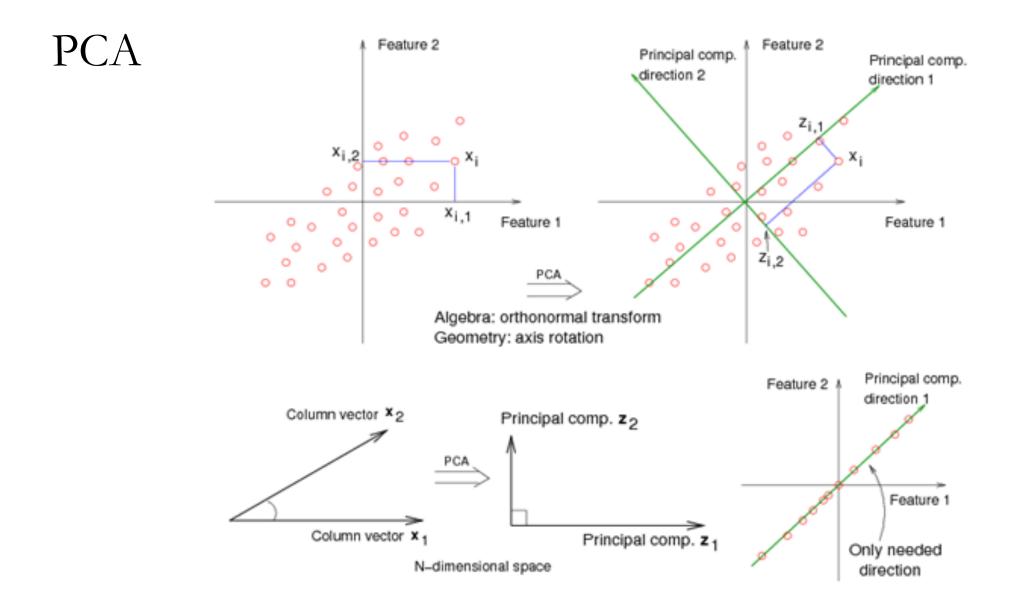


## Deep autoencoders

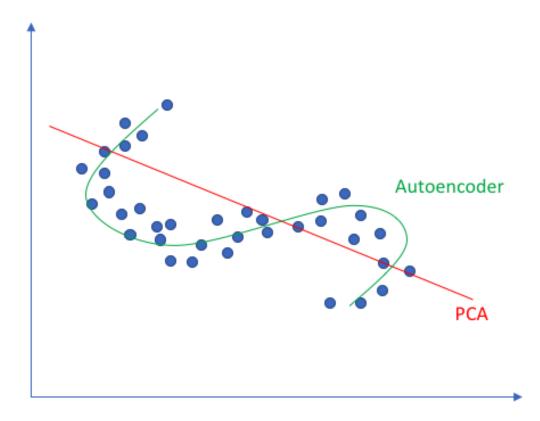


#### Deep autoencoders





Linear vs nonlinear dimensionality reduction



### Data collection

- Facebook public pages
  - Top list of US brands based on #followers from Socialbakers.com
  - 25 different categories: **brands (our focus)**, celebrities, community, entertainment, media, places, society and sport, etc.
  - <u>Graph API</u> to collect all user-brand interactions: posts, comments, likes, and shares.
  - Jan. 1, 2017 Jan. 1, 2018 for analysis

| Number of brands                                 | 5,478       |
|--------------------------------------------------|-------------|
| Number of users                                  | 25,992,832  |
| Number of unique user-brand interactions         | 36,927,613  |
| Number of like interactions                      | 87,876,623  |
| Number of unique user-brand like interactions    | 29,611,805  |
| Number of comment interactions                   | 18,703,549  |
| Number of unique user-brand comment interactions | 7,612,358   |
| Total number of user-brand interactions          | 106,580,172 |

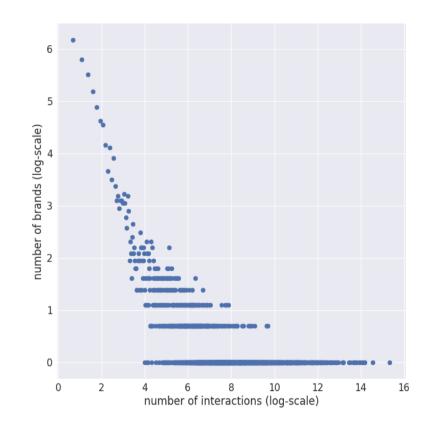


facebook.

graph api

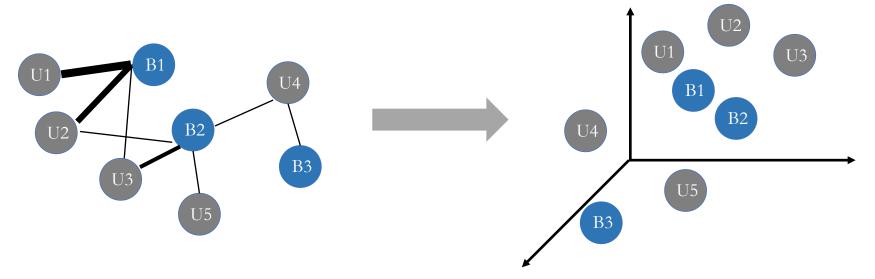
#### Data collection

- Data cleansing
  - Fake user removal (simple but effective rules following previous works) (Zhang et al. 2016)





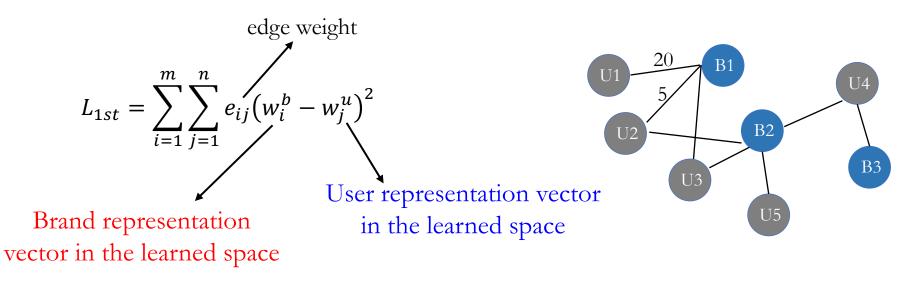
- 3. Deep network representation learning
  - Mathematically, given a large information network, our method aims to learn node representations in a low dimensional space



- <u>Learning objective</u>: preserve local/global network structures and semantics as much as possible
  - Minimize the total loss:  $L_{1st} + L_{2nd}$  and the reconstruction error:  $e_{rec}$

# 3.1 First order similarity

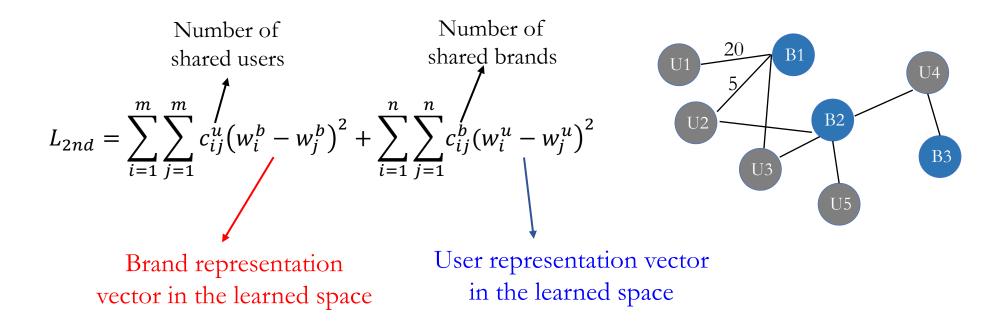
- Similarity to neighbors
  - The local pairwise similarity between user node and brand node
  - The edge weight indicates the similarity strength between two nodes.
    - If there is no edge between two nodes, their first-order similarity is almost 0



i.e., output of encoder

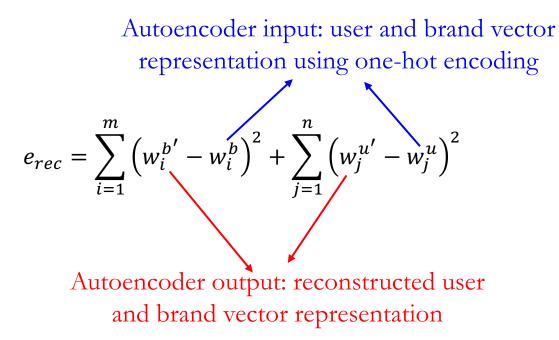
# 3.2 Second order similarity

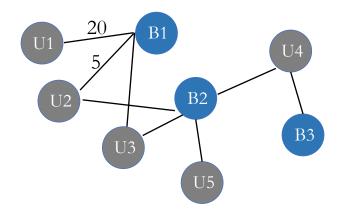
- Similarity to neighbors of neighbors
  - The similarity of a node with its neighbor's neighbor, such as brand node and another brand node; user node and another user node
    - If two nodes do not have any intermediate nodes in between, their second-order similarity is close to 0



## 3.3 Reconstruction error

• Minimize the reconstruction error between the learned representation and the original representation





- 4. Market structure discovery
  - The output of the *K*-th layer (last layer of encoder) is the learned representation (e.g., 300 dimensional vector) for market structure discovery

 Further dimension reduction for visualization
 ot-Distributed Stochastic Neighbor Embedding (t-SNE) (L.J.P. van der Maaten, 2014)

#### Evaluation

Challenges

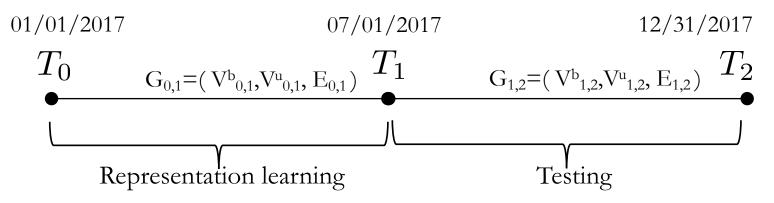
O Lack of ground truth for market structure discoveryO Industry classification (e.g., SIC or NAICS)

- Static do not re-classify firms over time
- Key: brand representation
- Alternative evaluation: link prediction

o Good representation: should well capture latent, complicated semantic, and structural information among brands.

Naylor, Lamberton, and West 2012; Kuksov, Shachar, and Wang 2013; Culotta and Cutler 2016

# Link prediction



- <u>Algorithm</u> (input:  $G_{0,1}$  and  $G_{1,2}$ )
  - 1. Learn low-dimensional representation for each user and brand in the training period;
  - 2. Randomly select N users (e.g., N=100, N=1000);
  - 3. Initialize an empty set  $S = \Phi$ ;
  - 4. Foreach user  $u_i$  in N users:

Foreach brand b<sub>i</sub> in all existing brands, do:

Calculate the proximity score between  $u_i$  and  $b_j$ :  $s_{ij}$ ;

 $S \leftarrow (u_i, b_j, s_{ij});$ 

- 5. End For
- 6. Sort S w.r.t.  $s_{ij}$  to get top *n* user-brand pairs (denoted as *P*);
- 7. Calculate precision@n and recall@n: precision@n =  $\frac{|P \cap E_{1,2}|}{n}$ , recall@n =  $\frac{|P \cap E_{1,2}|}{|E_{1,2}^T|}$

The set of all newly formed links in  $G_{1,2}$  for brands and users appeared in the training period

# Link prediction

- Baselines and variants
  - $\circ 2 \ge 2 \text{ design}$

| ΝΤ. 1   | ſ | Homogeneous   | Brand-brand network derived from the original user-brand network (Zhang et al. 2016; Culotta and Cutler 2016; etc.) |
|---------|---|---------------|---------------------------------------------------------------------------------------------------------------------|
| Network |   | Heterogeneous | The original user-brand network<br>(preserve semantics)                                                             |
| Model   |   | Shallow       | Matrix factorization (user-brand matrix)<br>(latent representation – not deep, ignore structural information)       |
| woder   |   | Deep          | Our deep Autoencoder representation learning<br>(capture deep structures and semantics encoded in the network)      |

| Confusion | Positive       | Negative       |
|-----------|----------------|----------------|
| Matrix    | (Predicted)    | (Predicted)    |
| Positive  | True Positive  | False Negative |
| (Actual)  | (TP)           | (FN)           |
| Negative  | False Positive | True Negative  |
| (Actual)  | (FP)           | (TN)           |

Recall = TP/(TP + FN)

Precision = TP/(TP + FP)

F1 = 2\*Precision\*Recall/(Precision + Recall)

| precisi                    | on@n          | n=10    | n=100   | n=500   | n=1000   | n=5,000  | n=10,000 | n=100,000 |
|----------------------------|---------------|---------|---------|---------|----------|----------|----------|-----------|
|                            | Shallow model | 0.400   | 0.262   | 0.132   | 0.078    | 0.022    | 0.012    | 0.001     |
| Homogeneous<br>brand-brand | Shallow model | (0.109) | (0.023) | (0.018) | (0.008)  | (0.002)  | (0.000)  | (0.000)   |
| network                    | D             | 0.410   | 0.271   | 0.139   | 0.082    | 0.023    | 0.014    | 0.001     |
|                            | Deep model    | (0.092) | (0.027) | (0.020) | (0.009)  | (0.003)  | (0.001)  | (0.000)   |
|                            | 01 11 1 1     | 0.430   | 0.291   | 0.157   | 0.095    | 0.028    | 0.018    | 0.001     |
| Heterogenous               | Shallow model | (0.102) | (0.030) | (0.024) | (0.008)  | (0.005)  | (0.002)  | (0.000)   |
| brand-user<br>network      |               | 0.52*** | 0.322** | 0.173** | 0.124*** | 0.034*** | 0.028*** | 0.001***  |
|                            | Deep model    | (0.092) | (0.022) | (0.051) | (0.011)  | (0.008)  | (0.001)  | (0.000)   |

| recal                                 | llan          | n=10    | n=100   | n=500   | n=1000  | n=5,000 | n=10,000 | n=100,000 |
|---------------------------------------|---------------|---------|---------|---------|---------|---------|----------|-----------|
|                                       | Shallow model | 0.031   | 0.260   | 0.488   | 0.602   | 0.828   | 0.918    | 0.996     |
| Homogeneous<br>brand-brand            |               | (0.008) | (0.002) | (0.060) | (0.050) | (0.036) | (0.016)  | (0.005)   |
| network                               | Deep model    | 0.032   | 0.275   | 0.505   | 0.621   | 0.832   | 0.912    | 0.997     |
|                                       | Deep moder    | (0.013) | (0.032) | (0.054) | (0.047) | (0.049) | (0.032)  | (0.003)   |
|                                       | Shallow model | 0.037   | 0.287   | 0.521   | 0.637   | 0.870   | 0.935    | 0.998     |
| Heterogenous<br>brand-user<br>network |               | (0.015) | (0.065) | (0.074) | (0.045) | (0.023) | (0.047)  | (0.000)   |
|                                       | _             | 0.056** | 0.311** | 0.582** | 0.686** | 0.897** | 0.967**  | 0.999**   |
|                                       | Deep model    | (0.013) | (0.035) | (0.077) | (0.054) | (0.078) | (0.024)  | (0.002)   |

| precisa                               | ion@n         | n=10     | n=100    | n=500    | n=1000   | n=5,000  | n=10,000 | n=100,000 |
|---------------------------------------|---------------|----------|----------|----------|----------|----------|----------|-----------|
|                                       | Shallow model | 0.460    | 0.387    | 0.331    | 0.291    | 0.130    | 0.078    | 0.012     |
| Homogeneous<br>brand-brand            | Shanow model  | (0.132)  | (0.112)  | (0.021)  | (0.012)  | (0.004)  | (0.003)  | (0.000)   |
| network                               | Deep model    | 0.490    | 0.393    | 0.332    | 0.295    | 0.131    | 0.078    | 0.012     |
|                                       | Deep moder    | (0.020)  | (0.003)  | (0.018)  | (0.017)  | (0.003)  | (0.003)  | (0.000)   |
|                                       | Shallow model | 0.500    | 0.422    | 0.344    | 0.320    | 0.162    | 0.087    | 0.012     |
| Heterogenous<br>brand-user<br>network | Shanow model  | (0.102)  | (0.060)  | (0.022)  | (0.072)  | (0.010)  | (0.017)  | (0.000)   |
|                                       | Deep model    | 0.522*** | 0.436*** | 0.365*** | 0.355*** | 0.187*** | 0.091*** | 0.013***  |
|                                       | Deep moder    | (0.092)  | (0.040)  | (0.012)  | (0.035)  | (0.014)  | (0.047)  | (0.000)   |

| recal                                 | llan          | n=10     | n=100    | n=500    | n=1000   | n=5,000  | n=10,000 | n=100,000 |
|---------------------------------------|---------------|----------|----------|----------|----------|----------|----------|-----------|
|                                       | Shallow model | 0.031    | 0.033    | 0.128    | 0.223    | 0.509    | 0.607    | 0.915     |
| Homogeneous<br>brand-brand            | Shanow model  | (0.008)  | (0.021)  | (0.008)  | (0.008)  | (0.013)  | (0.013)  | (0.008)   |
| network                               | Deep model    | 0.032    | 0.035    | 0.131    | 0.226    | 0.510    | 0.605    | 0.921     |
|                                       | Deep moder    | (0.005)  | (0.047)  | (0.018)  | (0.011)  | (0.010)  | (0.015)  | (0.007)   |
|                                       | Shallow model | 0.049    | 0.056    | 0.365    | 0.241    | 0.549    | 0.658    | 0.981     |
| Heterogenous<br>brand-user<br>network |               | (0.022)  | (0.009)  | (0.012)  | (0.010)  | (0.012)  | (0.024)  | (0.015)   |
|                                       | Deep model    | 0.049*** | 0.076*** | 0.412*** | 0.352*** | 0.584*** | 0.743*** | 0.990***  |
|                                       | Deep model    | (0.009)  | (0.003)  | (0.010)  | (0.007)  | (0.009)  | (0.008)  | (0.002)   |

| precision              | precision@1000 |          | 30%      | 50%      | 70%      | 90%      | 100%     |
|------------------------|----------------|----------|----------|----------|----------|----------|----------|
|                        | Shallow model  | 0.103    | 0.195    | 0.248    | 0.263    | 0.282    | 0.291    |
| Homogeneous            | Snallow model  | (0.012)  | (0.008)  | (0.008)  | (0.012)  | (0.015)  | (0.012)  |
| brand-brand<br>network |                | 0.097    | 0.190    | 0.248    | 0.267    | 0.284    | 0.295    |
|                        | Deep model     | (0.042)  | (0.010)  | (0.021)  | (0.031)  | (0.023)  | (0.017)  |
|                        |                | 0.143    | 0.225    | 0.256    | 0.283    | 0.312    | 0.320    |
| Heterogenous           | Shallow model  | (0.015)  | (0.031)  | (0.042)  | (0.008)  | (0.052)  | (0.072)  |
| brand-user<br>network  | Deen model     | 0.183*** | 0.242*** | 0.273*** | 0.301*** | 0.337*** | 0.355*** |
|                        | Deep model     | (0.024)  | (0.032)  | (0.037)  | (0.012)  | (0.032)  | (0.035)  |

# Impact of training size

| precision                             | ı@1000        | 10%      | 30%      | 50%      | 70%      | 90%      | 100%     |
|---------------------------------------|---------------|----------|----------|----------|----------|----------|----------|
|                                       | Shallow model | 0.103    | 0.195    | 0.248    | 0.263    | 0.282    | 0.291    |
| Homogeneous<br>brand-brand            | Shanow model  | (0.012)  | (0.008)  | (0.008)  | (0.012)  | (0.015)  | (0.012)  |
| network                               | Deep model    | 0.097    | 0.190    | 0.248    | 0.267    | 0.284    | 0.295    |
|                                       | Deep moder    | (0.042)  | (0.010)  | (0.021)  | (0.031)  | (0.023)  | (0.017)  |
|                                       | Shallow model | 0.143    | 0.225    | 0.256    | 0.283    | 0.312    | 0.320    |
| Heterogenous<br>brand-user<br>network | Shanow model  | (0.015)  | (0.031)  | (0.042)  | (0.008)  | (0.052)  | (0.072)  |
|                                       | D 11          | 0.183*** | 0.242*** | 0.273*** | 0.301*** | 0.337*** | 0.355*** |
|                                       | Deep model    | (0.024)  | (0.032)  | (0.037)  | (0.012)  | (0.032)  | (0.035)  |

## Impact of training size

| recall@1000                           |                             | 10%      | 30%      | 50%     | 70%      | 90%      | 100%     |
|---------------------------------------|-----------------------------|----------|----------|---------|----------|----------|----------|
|                                       | Shallow model               | 0.080    | 0.153    | 0.193   | 0.203    | 0.219    | 0.223    |
| Homogeneous<br>brand-brand            |                             | (0.009)  | (0.006)  | (0.006) | (0.007)  | (0.011)  | (0.008)  |
| network                               | Deep model                  | 0.075    | 0.150    | 0.194   | 0.204    | 0.220    | 0.226    |
|                                       |                             | (0.005)  | (0.010)  | (0.007) | (0.003)  | (0.005)  | (0.011)  |
| Heterogenous<br>brand-user<br>network | Shallow model<br>Deep model | 0.108    | 0.179    | 0.223   | 0.257    | 0.271    | 0.241    |
|                                       |                             | (0.031)  | (0.018)  | (0.013) | (0.026)  | (0.017)  | (0.010)  |
|                                       |                             | 0.124*** | 0.198*** | 0.24*** | 0.289*** | 0.314*** | 0.352*** |
|                                       |                             | (0.009)  | (0.008)  | (0.019) | (0.029)  | (0.008)  | (0.007)  |

• The number of randomly selected users: 1000

## Like network only

#### • The number of randomly selected users: 1,000

| precis       | precisionan  |          | n=100    | n=500    | n=1,000  | n=5,000  | n=10,000 | n=100,000 |
|--------------|--------------|----------|----------|----------|----------|----------|----------|-----------|
|              |              | 0.320    | 0.279    | 0.258    | 0.233    | 0.127    | 0.067    | 0.011     |
| Homogeneous  | Linear model | (0.094)  | (0.056)  | (0.008)  | (0.008)  | (0.004)  | (0.001)  | (0.001)   |
| brand-brand  |              | 0.323    | 0.284    | 0.258    | 0.235    | 0.135    | 0.069    | 0.011     |
| network      | Deep model   | (0.147)  | (0.082)  | (0.017)  | (0.009)  | (0.014)  | (0.034)  | (0.002)   |
|              |              | 0.424    | 0.365    | 0.312    | 0.287    | 0.152    | 0.087    | 0.011     |
| Heterogenous | Linear model | (0.035)  | (0.042)  | (0.039)  | (0.008)  | (0.032)  | (0.003)  | (0.000)   |
| brand-user   |              | 0.486*** | 0.398*** | 0.354*** | 0.314*** | 0.178*** | 0.091*** | 0.011     |
| network      | Deep model   | (0.026)  | (0.032)  | (0.023)  | (0.009)  | (0.037)  | (0.004)  | (0.001)   |

| recal        | llan         | n=10     | n=100    | n=500    | n=1,000  | n=5,000  | n=10,000 | n=100,000 |
|--------------|--------------|----------|----------|----------|----------|----------|----------|-----------|
|              |              | 0.002    | 0.024    | 0.111    | 0.201    | 0.458    | 0.563    | 0.896     |
| Homogeneous  | Linear model | (0.001)  | (0.005)  | (0.003)  | (0.006)  | (0.015)  | (0.010)  | (0.006)   |
| brand-brand  |              | 0.002    | 0.025    | 0.124    | 0.204    | 0.476    | 0.560    | 0.882     |
| network      | Deep model   | (0.002)  | (0.002)  | (0.011)  | (0.018)  | (0.052)  | (0.023)  | (0.034)   |
|              |              | 0.041    | 0.056    | 0.332    | 0.350    | 0.521    | 0.635    | 0.911     |
| Heterogenous | Linear model | (0.003)  | (0.004)  | (0.029)  | (0.029)  | (0.075)  | (0.079)  | (0.009)   |
| brand-user   |              | 0.049*** | 0.068*** | 0.350*** | 0.404*** | 0.562*** | 0.663*** | 0.929***  |
| network      | Deep model   | (0.005)  | (0.006)  | (0.021)  | (0.043)  | (0.037)  | (0.063)  | (0.028)   |

### Comment network only • The number o

#### • The number of randomly selected users: 1,000

| precis       | precision@n  |          | n=100    | n=500    | n=1,000  | n=5,000  | n=10,000 | n=100,000 |
|--------------|--------------|----------|----------|----------|----------|----------|----------|-----------|
|              |              | 0.189    | 0.179    | 0.156    | 0.134    | 0.067    | 0.045    | 0.010     |
| Homogeneous  | Linear model | (0.169)  | (0.041)  | (0.014)  | (0.008)  | (0.005)  | (0.003)  | (0.000)   |
| brand-brand  |              | 0.189    | 0.168    | 0.162    | 0.137    | 0.062    | 0.044    | 0.010     |
| network      | Deep model   | (0.097)  | (0.019)  | (0.052)  | (0.010)  | (0.032)  | (0.002)  | (0.001)   |
|              |              | 0.213    | 0.192    | 0.167    | 0.154    | 0.122    | 0.080    | 0.010     |
| Heterogenous | Linear model | (0.025)  | (0.087)  | (0.029)  | (0.024)  | (0.052)  | (0.020)  | (0.001)   |
| brand-user   |              | 0.234*** | 0.210*** | 0.173*** | 0.168*** | 0.126*** | 0.088*** | 0.011*    |
| network      | Deep model   | (0.045)  | (0.023)  | (0.067)  | (0.019)  | (0.033)  | (0.002)  | (0.002)   |

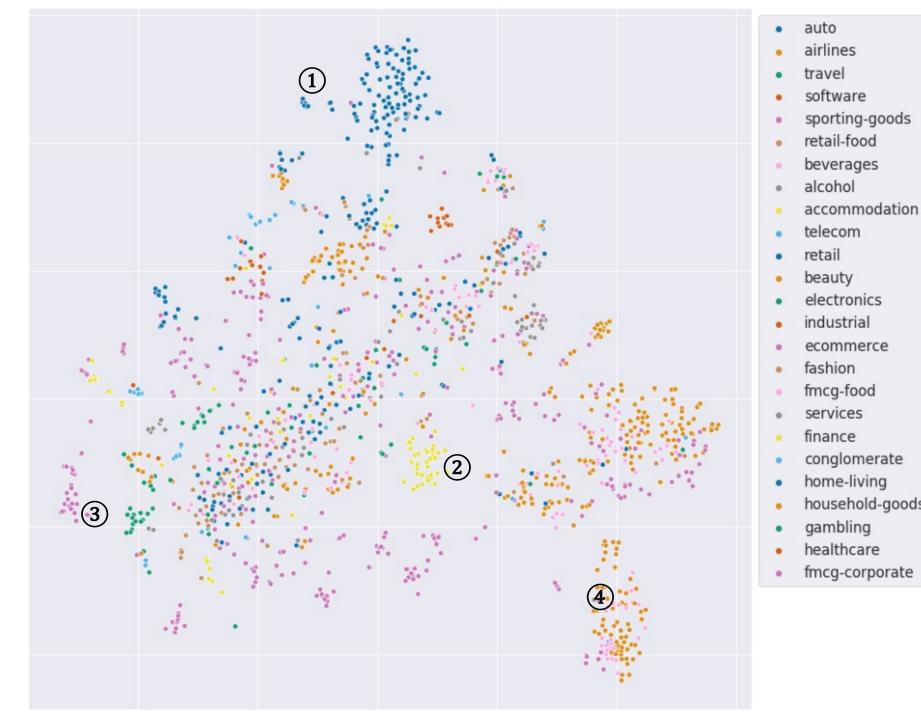
| recall@n     |              | n=10    | n=100   | n=500    | n=1,000  | n=5,000  | n=10,000 | n=100,000 |
|--------------|--------------|---------|---------|----------|----------|----------|----------|-----------|
|              |              | 0.002   | 0.017   | 0.068    | 0.117    | 0.291    | 0.393    | 0.834     |
| Homogeneous  | Linear model | (0.002) | (0.003) | (0.006)  | (0.008)  | (0.017)  | (0.018)  | (0.008)   |
| brand-brand  |              | 0.002   | 0.019   | 0.068    | 0.114    | 0.295    | 0.393    | 0.842     |
| network      | Deep model   | (0.001) | (0.012) | (0.022)  | (0.032)  | (0.042)  | (0.053)  | (0.012)   |
|              |              | 0.019   | 0.042   | 0.077    | 0.162    | 0.333    | 0.442    | 0.885     |
| Heterogenous | Linear model | (0.003) | (0.019) | (0.045)  | (0.029)  | (0.029)  | (0.056)  | (0.034)   |
| brand-user   |              | 0.018   | 0.044** | 0.082*** | 0.182*** | 0.352*** | 0.453*** | 0.894***  |
| network      | Deep model   | (0.004) | (0.012) | (0.051)  | (0.037)  | (0.026)  | (0.033)  | (0.046)   |

## Extra validation

- Amazon Mechanical Turk (AMT)
  - 28 auto brands
  - 28x28 survey matrix brand-brand similarity
  - 28x28 deep-learning matrix
  - Correlation is significantly positive (r = 0.385, *p*-value = 0.000)
- Google search interest score
  - 19 airlines
  - Pearson's two-tailed correlation between two sets of 361 (=19\*19) similarity scores
  - significantly and highly correlated (r = 0.630, *p-value* = 0.0000)

## Global market structure visualization

https://market-structure.github.io



software

beauty

finance

conglomerate

household-goods

home-living

gambling

electronics

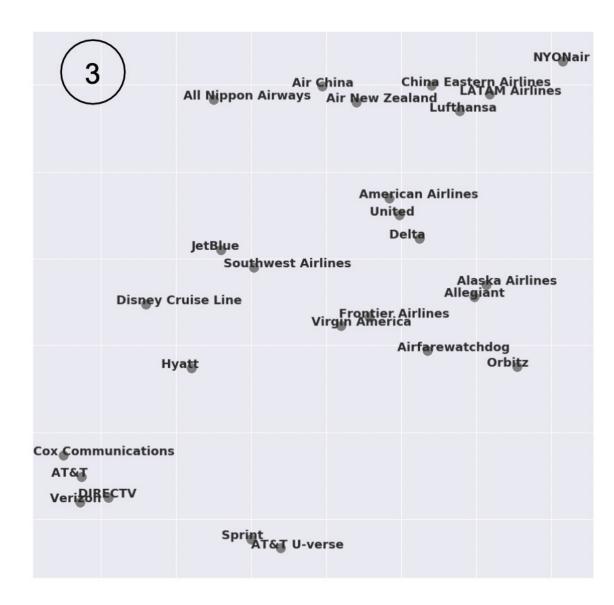
ecommerce

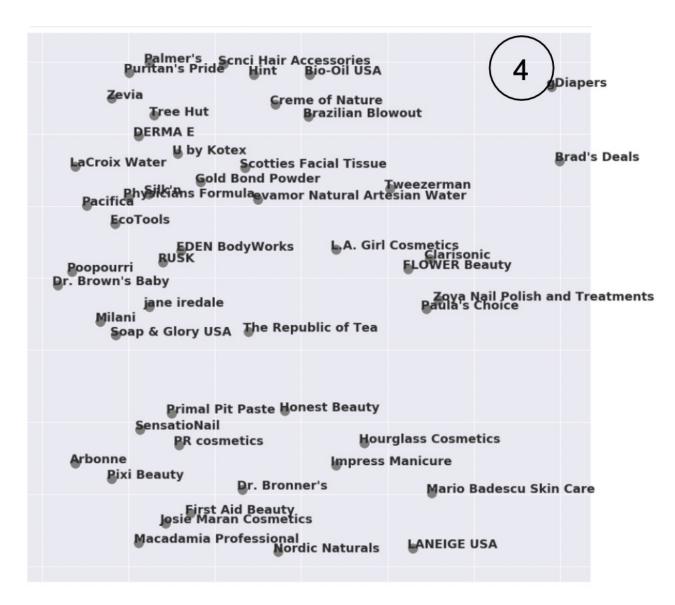
sporting-goods

# Zoom-in on each cluster





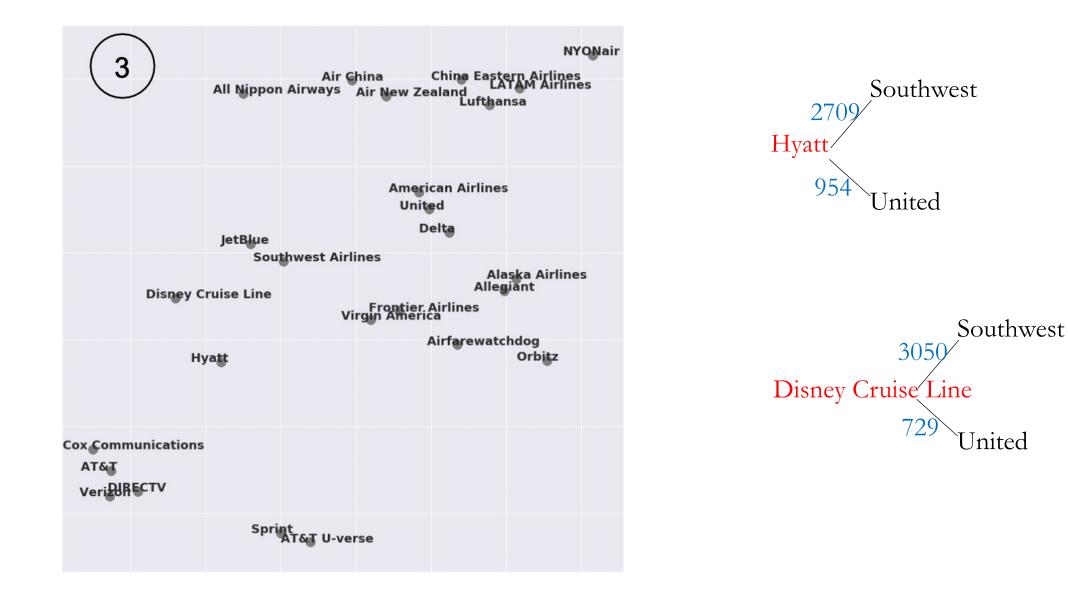




# Identify similar brands

| Focal<br>brand |    | United          | Southwest<br>Airlines | Audi USA              | Nissan                |
|----------------|----|-----------------|-----------------------|-----------------------|-----------------------|
|                | 1  | American        | JetBlue               | Mercedes-<br>Benz USA | Mazda                 |
|                | 2  | Delta           | Frontier              | BMW USA               | Toyota                |
|                | 3  | Lufthansa       | Allegiant             | Land Rover            | Volkswagen            |
| Rank           | 4  | Southwest       | Delta                 | Lexus                 | Kia Motors<br>America |
|                | 5  | Alaska          | Alaska                | Chevrolet<br>Camaro   | Subaru of<br>America  |
|                | 6  | All Nippon      | United                | Maserati USA          | Chrysler              |
|                | 7  | Air China       | Airfarewatchdog       | Kawasaki USA          | FIAT                  |
|                | 8  | LATAM           | American              | Firestone Tires       | Jaguar                |
|                | 9  | Air New Zealand | Virgin America        | Tesla                 | Alfa Romeo            |
|                | 10 | Airfarewatchdog | Hyatt                 | Ram Trucks            | KLIM                  |

# Identify opportunities/threats



United

# Small brands

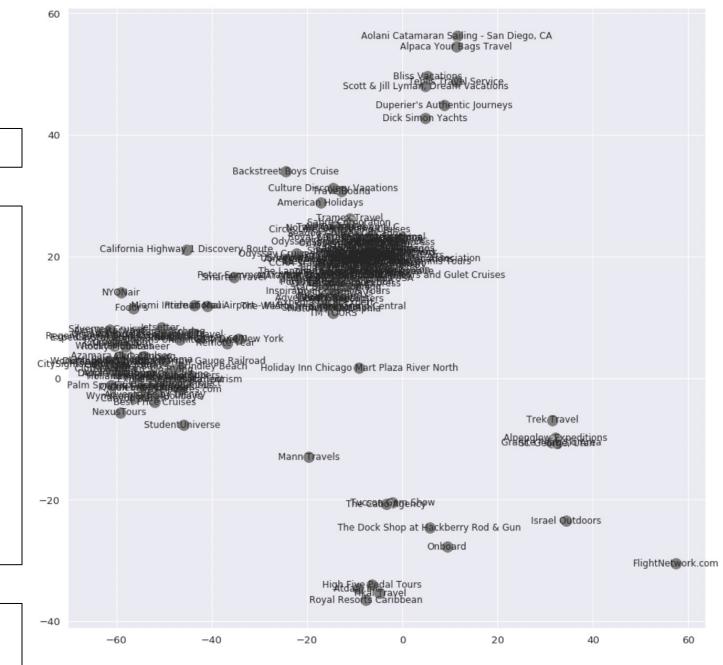
Predominantly located in 2 areas

"The Luxury Travel Expert" - an information portal for luxury travel and premium tours, 11,000 followers as of data collection

Most similar brands: expert-led, small-group, luxury, and premium tours

"Smithsonian Journeys" "The Peninsula Beverly Hills" "Peter Sommer Travels" "Quasar Expeditions" "DuVine Cycling"

"The Luxury Travel Expert" is also close to "The Peninsula Beverly Hills," a 5-star hotel



Visualization of market structure of 241 travel brands

# Within-industry analysis

Visualization of market structure of 163 auto brands

Less clustered and more ambiguous compared to using all data





# Within-industry analysis

"FMF Racing" - is a company that develops dirt bike exhausts for off-road or racing motocross riding

Top 10 proximal brands derived using engagement data from 'auto' brands only:

"Lucas Oil" "KTM USA" "Yamaha Motor" "Arctic Cat" "Two Brothers 22 Racing" "Phoenix Pro Scooters" "Auto Alliance" "Valvoline USA" "Lance Camper" "Castrol"

"Lucas Oil," "Valvoline USA," and "Castrol" are global automotive oil brands

Top 10 proximal brands derived using engagement data from all brands:

"KTM USA"
"Polaris Snowmobiles"
"Fox Racing"
"Mickey Thompson Performance Tires & Wheels"
"Two Brothers Racing"
"King Shocks"
"Arctic Cat"
"Addictive Desert Designs"
"NISMO"
"Skunk2 Racing"
"MBRP performance exhaust"

All related to off-road motocross riding

## Case study

• Amazon acquires Whole Foods (August, 2017)

| Lowes Home Improvement | -0.184         | _               |
|------------------------|----------------|-----------------|
| Office Depot           | -0.122         |                 |
| Best Buy               | -0.085         |                 |
| Overstock              | -0.085         | _               |
| Barnes & Noble         | -0.043         |                 |
| Target                 | -0.025—        |                 |
| Costco                 |                | -0.013          |
| Love With Food         |                | 0.035           |
| Walmart                |                | 0.074           |
| Victoria Fine Foods    |                | 0.087           |
| Enjoy Life Foods       |                | 0.134           |
| Goya Foods             |                | 0.142           |
| Kroger                 |                | 0.165           |
| Whole Foods Market     |                |                 |
| HelloFresh             |                |                 |
| -0                     | .3 -0.2 -0.1 ( | 0.0 0.1 0.2 0.3 |

# Case study

• Tesla delivers model 3 (July, 2017)

| Maserati USA          | -0.209                                |
|-----------------------|---------------------------------------|
| BMW USA               | -0.189                                |
| Mercedes-Benz USA     | -0.174                                |
| Hennessey Performance | -0.16                                 |
| Audi USA              | -0.121                                |
| Chevrolet Camaro      | -0.089                                |
| The Auto Gallery      | -0.075                                |
| Land Rover            | -0.013-                               |
| Lexus                 | -0.012-                               |
| Ram Trucks            | 0.035                                 |
| Extreme Turbo Systems | 0.087                                 |
| Mini                  | 0.104                                 |
| Toyota                | 0.143                                 |
| Hyundai               | 0.212                                 |
| Mazda                 |                                       |
| Kia Motors America    |                                       |
| -0                    | .4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 |

## Conclusions

Develop deep network representation learning on large-scale social media data for market structure discovery

Add on to existing research on market structure discovery from a network analysis perspective

Able to pin a large amount of brands on the market structure map to precisely visualize brand relationships

Showcase how new technology can be used to better tackle a traditional marketing task

## Conclusions

The research contributes to understanding the market boundaries and overlaps among different product categories

Dynamic analysis of changes in market structure and boundaries

Different implications of likes, comments and shares?

