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Motivation: Making Sense of Data
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Illustrative Example:
1000 datapoints 

𝑥1, 𝑥2



Technique: Create Model of Probability 
Density from Datapoints
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Gaussian Distribution (“Bell curve”)
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𝑛-dimensional
random
variable

mean or center
𝝁 ∈ ℝ𝑛

covariance matrix
𝚺 ∈ ℝ𝑛×𝑛

symmetric positive definite

aka “Normal” 
distribution

Bell Curve

Probability Distribution
Function (pdf)

Nice properties…
• Limiting distribution of a sum 

of random variables
• Symmetric around the mean
• Marginals are normal



Covariance for Gaussian Distribution
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Spherical or Isotropic Diagonal or Axis-Aligned General



Gaussian Model of Data
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Parameters: 𝝁, 𝚺



Gaussian Mixture Model (GMM)
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Proportion in 
𝑗th component

Component 𝑗Number of Components



GMM with Three Components
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Parameters: 𝜆𝑗 , 𝝁𝑗 , 𝚺𝑗 𝑗=1:𝑚



Motivation: Making Sense of Data
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Illustrative Example:
1000 datapoints 

𝑥1, 𝑥2

Real-World Scenario:
10,000+ datapoints 

𝑥1, 𝑥2, … , 𝑥500

Many more 
datapoints Much higher 

dimension



Applications: Gaussian Mixtures
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𝑛

𝑛
Tensors are Multi-dimensional Arrays
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𝑑 = order of the tensor (the number of ways or modes)

(𝑖1, 𝑖2, …, 𝑖𝑑) = index into tensor, 𝑖𝑘 ∈ 1, … , 𝑛 for 𝑘 = 1, 2, … , 𝑑

For this talk, all modes have the same size: 𝑛

3-way tensor

𝑛𝑑 = number of entries for 𝑑-way tensor of dimension 𝑛
Curse of 

Dimensionality

Curse of notation… 

𝑎𝑖𝑗𝑘 = 𝑖, 𝑗, 𝑘 entry of 3-way tensor 

A tensor is symmetric if its entries are invariant under permutation, i.e.,
𝑎𝑖𝑗𝑘 = 𝑎𝑖𝑘𝑗 = 𝑎𝑗𝑖𝑘 = 𝑎𝑗𝑖𝑘 = 𝑎𝑗𝑘𝑖 = 𝑎𝑘𝑖𝑗 = 𝑎𝑘𝑗𝑖



Tensor Norm & Inner Product
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Inner Product

Norm

−



Symmetric Tensor Outer Product
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𝑑 times

Visualization of 3-way 
Outer Product

=



Outer Products, Inner Products, and Norms
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Inner Product

Inner Product of 
Outer Products

Norm
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See Sherman & K (2020)



Moments of a Multivariate Random Variable
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First moment: 

Second moment: 

Third moment: 

𝑑th moment: 

𝑑th moment is a symmetric tensor or order 𝑑

Random variable:

Higher moments capture interactions between the variables



Moments Define a Distribution
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First moment: 

Second moment: 

Third moment: 

𝑑th moment: 

We focus primarily on matching just the dth moment

Random variable:

Higher moments capture interactions between the variables

“Method of Moments” 
matches empirical and 

model moments to 
estimate the parameters 

of a distribution.



Gaussian Mixture Model: 
Small Spherical Covariance
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Moment of the Model:

Approximate Moment of the Model:



Fitting the 𝑑th Moment
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Given 𝑟 observations: 

Find 𝑚 weights and mean vectors: 

Example: 𝑟 = 1000,𝑚 = 3

Such that…

Empirical 
or Sample 
MomentApproximate 

Model
Moment

ignoring 
covariance 

𝜎2𝐈



Optimization Formulation: Symmetric 
Tensor Decomposition
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Problem: Forming 
and storing the 
empirical moment 
tensors costs 𝒪(𝑝𝑛𝑑)
operations and 𝒪(𝑛𝑑)
storage

Problem: Forming 
and storing the 
approximate model 
moment tensor costs 
𝒪(𝑚𝑛𝑑) operations 
and 𝒪(𝑛𝑑) storage

But there is only 𝒪(𝑝𝑛) data and 𝒪(𝑚𝑛) parameters, so there is room for efficiency

Optimization Parameters



Optimization Formulation as Inner Products
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Casting as Optimization Problem
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• Never need to form empirical or approximate model moments explicitly, 
overcoming curse of dimensionality

• Function can be calculated with only dot products, total work 𝒪(𝑚2𝑛 + 𝑝𝑚𝑛)

and 𝒪 𝑚𝑛 + 𝑝𝑛 storage, versus 𝒪 𝑚𝑛𝑑 + 𝑝𝑛𝑑 as originally formulated

• Gradients equally efficient to calculate, via chain rule
• Issue: Inherent scaling problem (will come back to this later)
• Easy stochastic function and gradient if number of samples (𝑝) is large…



But the Approximation is Biased
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More Tensor Products
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=

=

(not symmetric!)



Symmetrization
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Lemma (Hackbusch, 2019)



Symmetric Tensors 
Correspond to Polynomials
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Proposition (Kileel-K-Pereira 2022)
(Kileel-K-Pereira 2022)
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Gaussian Mixture Model: General Case
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Optimization Parameters

Problem: Can we 
explicitly characterize 
the model moment 
tensor in terms of the 
parameters?



Gaussian Model Moment
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Theorem (Kileel-K-Pereira 2022) Proof techniques
• Equivalence of symmetric tensors 

and polynomials
• Marginals of multivariate 

Gaussians are univariate Gaussian
• Binomial theorem



GMM Model Moment
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Theorem (Kileel-K-Pereira 2022) 



Empirical versus GMM Model Moment
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Previous Approach was Biased
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New Method: Exact

Previous Method: Approximate



Previous Approach was Biased
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New Method: Exact

Previous Method: Approximate



Previous Approach was Biased
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New Method: Exact

Previous Method: Approximate



Optimization Formulation
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Optimization Parameters

Problem: Can we 
explicitly characterize 
the model moment 
tensor in terms of the 
parameters?



Optimization Formulation
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Optimization Parameters



Optimization Formulation as Inner Products
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See forthcoming arXiv posting for full details!!



Example Calculation: 𝑑 = 3
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Theory for computing inner 
product of two GMM moment 
tenors or empirical and GMM 

moment tensor – see 
forthcoming arXiv paper for 

details!



Casting as Optimization Problem
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• Never need to form empirical or model moments explicitly, 
overcoming curse of dimensionality

• Function can be calculated using simple calculations, 
total work 𝒪(𝑚2𝑛 + 𝑝𝑚𝑛2 +𝑚2𝑛3) per iteration and 𝒪 𝑚𝑛 + 𝑝𝑛 storage

• Gradients can be calculated as well
• Easy stochastic function and gradient if number of samples (𝑝) is large, as before
• Issue: Inherent scaling problem



Non-uniqueness problem
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Non-uniqueness problem
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FIX: Append a constant 𝑐 to the end of every observation vector, 
creating vectors of dimension 𝑛 + 1

RESULT: Implicitly, a weighted combination of all the moments from 1 to 𝑑.
This means we include all moments up to order 𝑑 in the optimization.

Problem: Moments of order 𝑑 are the same!

See forthcoming arXiv posting for full details!!
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State of the Art: Expectation Maximization (EM)
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EM Algorithm in a Nutshell
Make initial guesses for parameters
Repeat until log-likelihood converges:
1. Compute membership weights for 

each datapoint
2. Update the component parameters 

using the membership weights

EM is State of the Art
• Inexpensive
• Relatively easy to implement
• Optimizing a different cost function
• Sensitive to initialization
• Sensitive to overlapping Gaussians

MoM has theoretical advantages but has 
not been used much in practice previously 
because of its great expense

See, e.g., Xu and Jordan (1996) for 
discussion of its robustness



Method of Moments can beat EM

• Randomly-generated problem with 

overlapping Gaussians

• Diagonal covariances

• Dimensionality: 𝑛 = 100

• Number of Gaussians: 𝑚 = 20

• Observations: 𝑝 = 8000

• Compared three methods

• EM: Expectation Maximization

• MM3: Method of Moments, 𝑑 = 3

• MM4: Method of Moments, 𝑑 = 4

• 10 runs each with different initial 

guesses
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Method of Moments can beat EM
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Same setup as previous slide except higher noise
• Randomly-generated problem with 

overlapping Gaussians

• Diagonal covariances

• Dimensionality: 𝑛 = 100

• Number of Gaussians: 𝑚 = 20

• Observations: 𝑝 = 8000

• Compared three methods

• EM: Expectation Maximization

• MM3: Method of Moments, 𝑑 = 3

• MM4: Method of Moments, 𝑑 = 4

• 10 runs each with different initial 

guesses



Related Works

• Many theoretical advantages to method of moments and 
connections to tensors
• Hsu and Kakade (2013) – diagonal covariance, 𝑑 ≤ 3

• Ge, Huang, Kakade (2015) – vectorized covariances, loses symmetries

• Bakshi, Diakonikolas, Jia, Kane, Kothari, and Vempala (2020) – robust 
learning using tensor decomposition

• Khouga, Mattei, Mourrian (2021) – GMM identifiability

• Computational approaches (limited handling of covariances)
• Anandkumar, Ge, Hsu, Kakade (2014) and Anandkumar, Ge, Hsu, 

Kakade, Telegarsky (2014) – orthogonal symmetric tensor 
decomposition

• Sherman & K., 2020 – (general) symmetric tensor decomposition, 
emphasis of implicit computation to avoid curse of dimensionality

• Inner products of moment tensors
• Muandet, Fukumizu, Dinuzzo, Schölkopf (2012) – up to 3rd order
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Key Differences in Our Work
• Novel tensor formulation 

of Gaussian moments
• No spherical or axis-

aligned covariance 
assumptions

• Computationally 
efficient, no exponential 
dependence on 𝑑



Take-aways and Future Work
• Our focus: Method of moments for Gaussian mixture models (GMMs)

• Key results
• Formulation of GMM moment in terms of tensor outer 

products

• Efficient computation and storage, avoiding exponential dependence on moment order

• Novel approach to scaling ambiguity using augmentation

• Amenable to stochastic formulations

• Plus…dot product of moment tensors in terms of Bell polynomials, avoiding 
exponential dependence on moment order 

• Plus…modifying empirical moment tensor to “remove” Gaussian noise 

• Future work
• Implementation details, especially for general Gaussians

• Analysis of optimization landscape and comparison to that of max likelihood

• Bounding number of samples required for accurate estimation

• Application studies
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See forthcoming arXiv
posting for full details!!

J. Kileel,  T. Kolda, and J. M. Pereira. 
Tensor Moments of Gaussian Mixture 

Models: Theory and Applications


