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Emerging Infectious Diseases (EIDs)

— newly identified species of pathogens (such as Zika
virus, COVID-19)

— pathogens affecting a new population (e.g., West
Nile virus, bird flu, swine flu, SARS)

— drug-resistant bacteria

— reemerging infections (e.g., Measles and drug
resistant TB)




EIDs and Social Media

» Theoretical Approaches

— Risk Communication (How do public health

agencies use social media to communicate EID-related
information to the public?)

— Information seeking and information

sharing (how do social media users access, process, and
share information?)

— Misinformation (How are the public exposed to
misinformation on social media?)
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Using Social Media for Crisis and Risk
Communication

Tang, L., Liu, W., Thomas, B., Tran, M., Zou, W., Zhang, X., & Zhi, D.
(2021). Texas public agencies’ tweets and public engagement during the
COVID-19 Pandemic: Natural language processing approach. Journal of
Medical Internet Research: Public Health and Surveillance. 7(4): e26720.
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How do public health agencies use
social media during EID outbreaks |

» Functions of organizational social
media use (Lovejoy & Saxton, 2012)

— Information
— Action
— Community




How do public health agencies use
social media during EID outbreaks Il

 Health Belieft Model

nention and

‘ Behavior

can prevent illness




Texas public agencies’ tweets and public engagement during the
COVID-19 Pandemic: Natural language processing approach.

Items to classify:

Collecting  Types of message:

tweets

(n=15382) Information, action,
_ community
Creating

training Behaviors

dataset

recommended

Using training

data to train Health Beliefs (from

algorithm and .

testing (BERT) the Health belief
Classifying M()del): Severity,
the big data

set susceptibility, benefit,
barriers, self efficacy
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Results

Types of Message Behaviors Recommended

—— Information —— Handwashing
Action Social distancing
Community Mask/Face covering

—— Staying at home/Shelter in place
Getting tested

—— Learning more information
Other behaviors

Janl.llar)' Febrluary




Public Engagement

« Features associated * Features associated
with retweeting with endorsement
— Information (+) and (Likes)
action (+) — Action (+) and
— Severity (+)and community (+)
susceptibility (+) — Severity (+)and
susceptibility (+)




How are social media users exposed to vaccine
misinformation

Tang, L., Fujimoto, K., Amith, M., Cunningham, R., Costantini, R.A.,
York, F., Xiang, G., Boom, J., & Tao, C. (2021). “Down the rabbit hole”
of vaccine misinformation on YouTube: Network exposure study.
Journal of Medical Internet Research, 23(1): e23262. .
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Vaccine Misinformation and YouTube
Algorithm

Filter bubbles

- Recommendation algorithm

+ Diffusion of information on
YouTube

A

interaction

PLATFORM O
% x preference

recommendation

Echo chamber

Closed groups in the network
Friends’ recommendation




How do we use

YouTube? RQ1:When YouTube users
start their viewing with
Goal-oriented browsing (start from Erovaccme or antivaccine

keyword-based search) eywords, or an antivaccine
seed video, to what extent

will they will be exposed to

Th Kk del pro- and antivaccine
e networ exposure model measures Content.—)

the degree to which a node in the )
S : RQ2: What is the degree of
network is exposed to other nodes with £
a certain attribute exposure ol pro-an
' antivaccine videos as well

as other videos unrelated to
vaccines to additional
antivaccine videos?

Direct navigation (start from a seed
video on another platform)
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Data Collection

Goal oriented browsing: Based on asset of key words derived from the most popular Twitter
hashtag (a list of positive keywords and a list of negative keywords)

Direct navigation: Based on two lists of antivaccine videos (conspiracy theory and antivaccine
expert)

First 6 recommended videos, three levels
CAS?T used for data collection

Annotation
815 videos—>(remove duplicates)—> 538 videos
M et h o) d Related to vaccine or not

Unrelated video: is it related to autism? Does it contain health information? Does it contain health
misinformation?

Related video: is it pro or antivaccine?
Sources of video

Data analysis




Pro-vaccine search network Anti-vaccine search network
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Vaccine conspiracy seed network Anti-vaccine expert seed network




RQ1l: When YouTube users start their viewing with pro-vaccine,
or anti-vaccine keywords, or an anti-vaccine seed videos, to
what extent will YouTube users be exposed to pro and anti-
vaccine content?

Search Networks Seed Networks

Anti-Vaccine Expert
Pro-Vaccine Search ~ Anti-Vaccine Search ~ Conspiracy Seed Seed Network
Network (n=283) Network (n=354) Network (n=483) (n=551)

Pro-vaccine (% wrt vax videos) 38 (93%) 35 (87.5%) 34 (49%) 15 (38%)

Anti-vaccine (% wrt vax videos) 3 (7%) 5 (12.5%) 36 (51%) 25 (63%)

Source of Videos (% with regard to vaccine related videos)

Pharmaceutical companies and for 0 0 0 0
profit organizations (2 D 5 O

3 (7%) 5 (13%) 33 (47%) 26 (65%)
8 (20%) 9 (23%) 27 (39%) 13 (33%)
o o9 2 599 o o9 o o
0 (0%) 2 (5%) 0 (0%) 0 (0%)




RQ2: What is the degree of exposure of pro and anti-
vaccine videos as well as other videos unrelated to
vaccines to additional anti-vaccine video?

._ Search Networks Seed Networks

Average Anti-vaccine Exposure
. Mean (SD)
. Min < Max

. # of nodes exposed
. # of nodes unexposed

Anti-vaccine Exposure (odds
ratios

non-vaccine video (Cl 95%)

vaccine video (Cl 95%)

pro-vaccine video (Cl 95%)

anti-vaccine videos (Cl 95%)
autism videos (CI 95%)
health videos (CI 95%)

accurate health information (Cl

95%)
health misinformation (CI 95%)

Pro-Vaccine Search
Network

0.01 (0.12)
1
4 (1.4%)
279 (98.6%)

0.50 (CI: 0.04, 27.0)
1.99 (CI: 0.04, 25.0)

2.18 (CI: 0.04, 27.9)
0.00 (CI: 0, 108.7+)
0.00 (CI: 0, 50.3+)
5.62(Cl: 0.44, 297)

5.71(Cl: 0.45, 301.8)

0.00

Anti-Vaccine Search

Network

0.02 (0.10)
0.11<1
15 (4.2%)
339 (95.8%)

0.48 (Cl: 0.12, 2.8)
2.1 (CI: 0.36, 8.3)

2.4 (Cl: 0.41, 9.5)

0.00 (CI: 0.0, 18.1+)
0.00 (CI: 0.0, 4.0%)
0.00 (CI: 0.0, 0.36)

0.00 (CI: 0.0, 0.37+)

0.00 (CI: 0.0, 30.6%)

Conspiracy Seed
Network

0.12 (0.28)
0.13<1
119 (24.7%)
364 (75.3%)

0.07 (CI: 0.04, 0.14)
13.6* (Cl: 7.3, 25.9)

8.94* (CI: 3.9, 21.6)
11.6* (CI: 5.0, 28.8)
0.92 (CI: 0.16, 3.6)
1.52 (CI: 0.98, 2.4)

0.97 (CI: 0.60, 1.5)

1.80* (CI: 1.1, 2.9)

Anti-Vaccine Expert
Seed Network

0.07 (0.21)
0.13<1
86 (15.6%)
465 (84.4%)

0.4 (CI: 0.02, 0.09)
24.4* (CI: 10.8, 58.4)

12.1*%(CI: 3.6, 46.1)
27.9%(CI: 9.6, 97.3)
2.1(Cl: 0.65, 5.9)
2.0 (Cl: 1.2, 3.5)

1.22(Cl: 0.72, 2.0)

176*(Cl: 1.0,2.9) V[




How about a different language and
cultural context?




Statistics

terms

0.035 (0.18)
0.67

Mean (SD)
Range

Nodes Exposed, n (%)
Nodes unexposed, n (%)

11 (3.5)
304 (96.5)

Odds ratio (95% CI)

Nonvaccine video 0.30 (0.01- 2.11)

Vaccine video 0.32 (0.01-2.28)

Pro-vaccine video
Anti-vaccine video

0.36 (0.01-2.58)
0 (0-8.94)2

Mixed vaccine messages
video
Neutral vaccine video

1.28 (0.28-9.71)

0.45 (0.01-3.22)
Health Related 0.56 (0.01-4.08)

Covid Related 0.27 (.01-1.93)

Search networks
Pro-vaccine search  Anti-vaccine search Conspiracy videos

terms

0.048 (0.215)
0.33

14 (4.8)
276 (95.2)

3.71(0.42-44.98)

4.60 (0.51-55.83)

1.23 (0.25-12.82)
0 (0-15.88)2

0(0-18.83)2
6.27 (0.69-76.10)
5.29 (0.59-64.08)

4.36 (0.49-52.78)

Seed networks

network

0.037 (0.190)
0.17

8 (3.7)
206 (96.3)

4.90 (0.54-59.63)

6.75 (0.74-82.34)

2.82(0.54-30.52)
7.21 (0.13-85.49)

6.28 (0.11-72.90)

7.46 (0.81-91.03)
1.93(0.04-20.48)

6.54 (0.72-79.74)

Expert videos
network

0.083 (0.277)

0.33

12 (8.3)
132 (91.7)

8.37 (2.23-34.22)

3.69 (0.86-13.96)

0.64 (0.01-4.92)
6.1 (1.12-27.63)

0 (0-12.50)2
9.92 (0.12-784.56)
8.86 (2.32-34.42)

5.8 (1.53-21.69)
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|dentifying Vaccine Adverse Events from Social
Media Data

Lian, A., Du, J., & Tang, L. (2022) Using a machine learning
approach to monitor COVID-19 vaccine adverse events (VAE) from

Twitter data. Vaccines, 10(1):103.
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111,229 tweets 65,787 tweets
Machine learning-based
e

filtering
ﬁ COVID VAE
Data

S~

Collection and
rule-based filtering ~

Analysis

COVID-19 vaccine adverse Vaccine personal
events related posts experience posts

Random subset Machine learning-based

named entity recognition
5600 tweets . Lo
Entity normalization
Vaccine type

Annotated dataset to support machine
learning algorithms (including filtering
and named entity recognition) Normalized VAEs

Adverse event
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new vaccinations




Pfizer Top 10 Adverse Events from Twitter PFIZER TOP 10 ADVERSE EVENTS FROM VAERS
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MODERNA TOP 10 ADVERSE EVENTS FROM VAERS
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THANK YOU! QUESTIONS?




