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Laboratory sciences

Materials science

» Optimizing payloads: reactive
species, biomolecules,
fluorescent markers, ..

» Controllers for robotic scientist
for materials science
experiments

» Optimizing nanoparticles to
maximize photoconductivity

() Optimal Dynamics
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Managing ride-hailing fleets

00000 ATRT = 3:12 PM “ %X 61% >
«  Uber = UBER
» Provides real-time, on-demand e
transportation. . West Dr
» Drivers are encouraged to enter or .
leave the system using pricing T
signals and informational guidance. E
*  Decisions:
i i
» How to price to get the right balance Princeton

of drivers relative to customers.
» Assigning and routing drivers to ' i

manage Uber-created congestion. o @

» Real-time management of drivers. Ll (S vinS

» Pricing (trips, new services, ..) 2 T

» Policies (rules for managing drivers, Google (1 24
customers, ..) = L

uberX
BLACK CAR
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Managing ride-hailing fleets

Now we have a logistic curve

forl each origin-destination Rider Driver
pair (i)
0 +0; p+6]a
Y _
P (p.ald)= 14 pfidiprdja (

Probability of success

Number of offers for each (i)
pair is relatively small.

Need to genera[ize the 0 04 08 12 16 2 24 28 32 36 4 44 48 52 56 6 64 68 72 76
learning across hundreds to Offered price
thousands of markets.
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Fleet management

- Fleet management problem
» Optimize the assignment of drivers to loads over time.
» Tremendous uncertainty in loads being called in

() Optimal Dynamics






‘An energy generation portfolio
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Energy from wind

a Wind power from all PJM wind farms
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« Mitigation
Information from dg or s can
used to guide surface vehjetes
performing cleanup. »~




Multiagent supply chain management

@ Pratt & Whitney jet engines
» Qver 1,000 parts

» Median lead time for a part is
120 days. Some lead times
are over 300 days.

» Parts often require reworking.

@ Managing the supply chain

» Challenge is determining
when to order parts given the
long lead times, and
production uncertainties.

» Suppliers work for multiple
customers.

() Optimal Dynamics
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CHALLENGES

We are looking for opportunities for making better
decisions where we have to deal with uncertainty

Freight transportation

Health systems

Logistics

Energy systems

Finance

Manufacturing

Supply chains

E-commerce

() Optimal Dynamics

Public health

Engineering

Personal transportation

Storm evacuations

Business processes

Laboratory sciences




GOALS & OBJECTIVES

Reduce costs Improve health

Increase profits Reduce risk

Improve reliability Increase yield

Minimize waste Reduce carbon production
Maximize strength Minimize lives lost

() Optimal Dynamics



GOALS & OBJECTIVES

Improve performance by making better decisions.

1ST STEP 2ND STEP

e
What decisions How do we ooy
are you make effective
making? decisions?

( j O pti m a'- Dy n a m i CS © WARREN POWELL 2021



Intelligent decisions

Artificial Intelligence

1. Making computers behave like humans
2. Making computers smarter than humans

19605-1970S
Rule-based Al

If eating meat, then
drink red wine

Given patient attributes,
use this treatment.

() Optimal Dynamics

19905
Optimization

Large scale linear &
integer programming

© WARREN POWELL 2021

2005
Machine
Learning

The new “Al"
Neural networks

2020+
77

2015
Reinforcement
Learning

Making decisions
Chess, Go, robots




WHAT'S NEXT IN AI?

Sequential decision problems, where we need to
make decisions over time, as new information
arrives.

| propose to unify 15 distinct fields that deal with
dynamic decision making into a new field that | call
Sequential Decision Analytics.

Sequential decision analytics includes all of
reinforcement learning, but is broader, with a greater
emphasis on uncertainty:.

() Optimal Dynamics



OUTLINE

- The five layers of intelligence
- Modeling sequential decision problems
- Designing policies

- Policy function approximations

- Cost function approximations

- Value function approximations
- Direct lookahead approximations

- A new educational field: sequential decision analytics
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THE 5 LAYERS OF INTELLIGENGE

Decision analytics [ Decisions ] “reinforcement learning”
)
Statistics/machine :
learning { Learnmg
(
ransactions and execu
> Data science
Dat . .
ayers | Communication

ormation acquisition and sitc
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THE 5 LAYERS OF INTELLIGENGE

Decision analytics [ Decisions ] “reinforcement learning”

\
Statistics/machine .
learning [ Learnmg

(

Transactions and execution

Data

> Data science
layers | Communication

Information acquisition and storage

\
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THE 5 LAYERS OF INTELLIGENGE

Decision analytics [ Decisions ] “reinforcement learning”
)
Statistics/machine -
learning [ Learmng
(
Transactions and execut
> Data science
Dat . i
ayers | Communication

ormation acquisition and sto
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Pattern Matching

What is the voice saying?
What is in the picture?

What is the email asking
for?

() Optimal Dynamics

MACHINE LEARNING

Types of Learning

Classification Inference

What product should | How will an increase in
recommend for this price affect market
customer? demand?

What treatment should | What is the condition of a
recommend for this patient? piece of equipment?

© WARREN POWELL 2021
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What will the market
demand be in three days?

How many loads will the
shipper need to move in a
week?




MACHINE LEARNING

Parametric

Every single
¥y =g models

machine learning

method falls in Shallow neural

networks

one of these

Nonparametric

three circles.
models

Deep neural
networks

() Optimal Dynamics



BRIDGING MACHINE LEARNING & SEQUENTIAL
DECISIONS

Machine learning as an optimization problem

min — Y ‘—
feF.,0e®/ N n=1

. 4 \ Aaihwe A
, \ \*vﬁ )

£ | ,\0' \w LS N%

18 S'37a 8 e,
v,/"‘}-, {\vl O \'A"

-{"’\\‘//A\l \\‘/, ‘\5/

- Price

The first step is choosing a mathematical model that will do the best job of fitting the data
(but be careful of overfitting with neural networks).

() Optimal Dynamics



BRIDGING MACHINE LEARNING & SEQUENTIAL
DECISIONS

Machine learning as an optimization problem

Parametric
mudels

Nonparametnc
models

“Big dataset™

Searching over statistical models

These consist of functions f € F
and tunable parameters 6 € 0/

() Optimal Dynamics



MACHINE LEARNING

> Neural networks struggle
with:

» Noise - Their high flexibility
tends to fit the noise.

> Structure - It is difficult to

communicate structure:
» Monotonicity - Higher price
means lower demand
» Concavity — As with the
newsvendor problem to the
right.

() Optimal Dynamics
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MACHINE LEARNING

» Neural network for demand response:

100 data points, 300000 training iterations
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THE 5 LAYERS OF INTELLIGENGE

Decision analytics [ Decisions ] “reinforcement learning”
)
Statistics/machine -
learning [ Learmng
(
ransactions and execut

Data

> Data science
layers | Communication
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Information and decision processes

There are parallels between the process of making “decisions” and a
manufacturing line making “products’
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imdoYh pproach information processing and decisions like a manufacturing process.
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DECISIONS

. What contracts to sign for
Wh?tl prg:f)e to accept for a Which driver should | What is the best policy for | r@w materials?
SPOt load: move a load? high-frequency trading? Which vendor should

Which load to accept now L \¥/hat is the value ol supply each part?

to move next week -
Fow many dedicated How many syringes should - 6,3 ¢jal option? r :
Where should | drivers should we hava D¢ SENt to ach vaccination When should inventory
drivers be — — site, and when? How much battery sto be orderred?
domiciled? Which physician should needed to handle the \What ori hould
2 How many nurses L . at price snou
handle a procedure: chould we have to LYariability of wind? be charged
When should [ refill the customer’s tan it uie I \When should gas turbines be
with liquid nitrogen Which nurse should visit this | scheduled to handle drops in
Which customer tanks should doctor's office today? wind?

we fill when we are in the area yyhere should a patient be How many suppliers should you have for
assigned for specific treatment? || 4 particular part, and where?

Which material handling jobs

should be done by robots, and | \Wwhat bid should we place on e |Which supplier should
which robot? Google for a set of ad-words? | HOW many aireraft i, e tre turbine blades?
should | order for
delivery in five - -
When should inventory be Which fulfillment center years? Y How many jet englges should
refilled at a fulfillment center? | should handle an order? ' be made each day

CJ UPLITIAdU DYTTAITIICS



DECISIONS

Types of decisions.

Physical Decisions Financial Decisions

Informational Decisions

- L L

Managing inventories Pricing decisions

Assigning drivers and moving trucks Insurance decisions

Scheduling nurses and energy Managing investments
generators

Hedging contracts

() Optimal Dynamics
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Sending/receiving information
Marketing and advertising

Running experiments (lab or field)

Testing drugs




THE TIME FRAMES FOR DECISIONS

Strategic planning and design - We simulate operational decisions so we

understand how a system would respond to decisions far in the future:
How many gas turbines should a power grid have?
How should we design a building to withstand earthquakes?
What should the capacity of a levee or reservoir be?

Tactical planning decisions - We simulate operational decisions to help

make decisions that impact the system in the near future,
How much energy generation should the grid plan for tomorrow?
How many gallons of water should be ordered in anticipation of a hurricane?
How to allocate traffic management personnel to handle storm evacuations?

Real-time decisions - These are decisions that impact the system now:
Making real-time ramping decisions for energy generators.
Notifying houses within a zone to begin evacuations before a storm.
Operating pumps to mitigate flooding during a storm.

() Optimal Dynamics



THE TIME FRAMES FOR DECISIONS

Strategic planning and design - We simulate operational decisions so we
understand how a system would respond to decisions far in the future:

We need to simulate decisions in the future that do not depend on the state of the system
NOw.,

Tactical planning decisions - We simulate operational decisions to help
make decisions that impact the system in the near future,

We need to simulate decisions in the future that do depend on the state of the system now.

Real-time decisions - These are decisions that impact the system now:

We need to simulate the effect of a decision now
(which depends on the state of the system) on the future.

() Optimal Dynamics



DETERMINISTIC OPTIMIZATION

Airline scheduling

Airlines Optimization Model

Airline Schedule
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Alirlines around the world use tools that depend on this
mathematical model to perform strategic and operational planning.

() Optimal Dynamics
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DETERMINISTIC OPTIMIZATION

Low dimensional decisions

Planning a
path to your ~ _ |1 If wemove fromnode i to node j
destination ¥ (0 Otherwise

High dimensional decisions
Optimizing
facility ‘= 1 If we locate a facility at location i
locations ‘|0 Otherwise

() Optimal Dynamics



SEQUENTIAL DECISIONS

In Mmost settings, decisions are made over time..

Information that arrives after a decision is not known when we made the decision.

() Optimal Dynamics



SEQUENTIAL DECISIONS

Inventory management

Inventory Ordering Decisions

Customer Demands (information)

() Optimal Dynamics



SEQUENTIAL DECISIONS

Driver dispatch for truckload trucking

Decisions Assigning Drivers to Loads

Shippers Calling in Loads (information)

() Optimal Dynamics



SEQUENTIAL DECISIONS

Testing hew vaccines

Vaccination Decisions (what dosage, which people)

() Optimal Dynamics



SEQUENTIAL DECISIONS

Financial Trading

Buy-sell Decisions (what assets, how much)

Changes in Stock Prices

() Optimal Dynamics
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What price to accept for a
spot load?

DECISIONS

Which load to accept now

) ) |
Which driver should What is the best policy for
move a load?

high-frequency trading?
I

to move next week

What contracts to sign for raw
materials?

Which vendor should
supply each part?

Where should
drivers be domicile

How many dedicated
drivers should we have?

How many syringes should

What is the value of al—7
financial option

When should inventory

be sent to each vaccination

be ordered?

site, and when?

——

Which physician should
handle a procedure?

How many nurses
should we have to sq

of wind?

How much battery Storage 1s
needed to handle the variabilii

What price should
be charged

When should | refill the customer's tank
with liquid nitrogen

local hospitals and
doctor’s offices?

Which nurse should visit this

Which customer tanks should we

When should gas turbines be
scheduled to handle drops in
wind?

doctor's office todav?

fill when we are in the area?

Which material handling jobs
should be done by robots, and
which robot?

-

Where should a patient be
assigned for specific treatment?

How many suppliers should you have for a
particular part, and where?

What bid should we place on
Google for a set of ad-words?

How many aircraft
should | order for

delivery in five

When should inventory be
refilled at a fulfillment center?

Which fulfillment center should
handle an order?

years?

W/ hich supplier should
Mmanufacture turbine blades?

CJ Optimat Dynamics

How many jet engines should be
made each day?




INFORMATION

Market prices for spot freight | Prices of raw materials by region

Driver r_equests for Changes in asset prices
loads; time-at-home

Offered loads by shipper, by lane |gquests |

Quality of orders
provided by a vendor

Production delays in—;

Employment rate; IC\lOeL\Jxr/]S/OVID-lg cases by brder fulfillme| Transit delays
Driver application| unemployment filings '— c o or
. . [
for jobs by region Patient arrivals and Wind generation from a wins OMPELRoT Prices
symptoms Requests for nursed farm
Customer usage rate of liquid nitrogen from doctor’s offices Electricity prices on the grid

Number of nurses calling in sick

Equipment failures at customer

nitrogen tanks Availadbji[l.ity of specialists to treat || capacity shutdowns at suppliers due to
a condition »
Flow of different parts to each labor or political problems
machining station \¥hether a bid wins an ad-click Lead times required by each
auction Availability of anufacturer
production capacity ~_. . .
Flow of orders for a product by | Orders for a product from for new jets Daily production of new jet
region around the country different regions engines

CJ UPLITIAdU DYTTAITIICS 5.5



Initial
Decision

SEQUENTIAL DECISIONS

What we
know now

N

jg =

() Optimal Dynamics

Even small
sequential decision
problems explode
dramatically as we
plan into the future




OUTLINE

- The five layers of intelligence
- Modeling sequential decision problems
- Designing policies

- Policy function approximations

- Cost function approximations

- Value function approximations
- Direct lookahead approximations

- A new educational field: sequential decision analytics




MODELING SEQUENTIAL DECISION PROBLEMS

The biggest challenge when making decisions under uncertainty is modeling.

Everyone writing out a deterministic optimization model, or machine
learning model, knows how to write out their problem mathematically...

Mathematician

.we lack a standard modeling framework for sequential decisions.

(BE;

() Optimal Dynamics




A i ‘,,‘ R R /.u_a S j}__’«:’ \: W
pfogramming ~ |
e N

r ' 74 &y
S

Y

sg‘;‘\ ~ f
RS e 2 o -
\;? (:! Y 7 - 3
) 2 S .
i ‘
1 :'" - T ” Lo,

A o % P~ . \
- &R ~Optimal
AN - )

4 -\
-V e\ rning
ﬁ w/ -~ \ % y A

Al

~:"Stochastic
search ' |

e £V )
R ,

5 "',
hd N ~".. “~ *
b ] . \\’/'. — ‘ &
learning = =
: =7
: 5 ARt P” S /4
- —= N Q‘\;’j" Z 7
E ;:g‘: \:4_ = - 7 . Ll v -
1= = % S
’5 2% — \\ > =
” ‘Q

Stochastic' =~ .. decision %4 g

) , ety pore B Bec ol T & Simulation
control T A vl PO 4.7 optimization

4 ——
- i
' 4 . — / —
TR, -
L ~
- 2 =
- X O
- »”
|

© Warren Powell 2021 | ’ /u,’ —



John R. Birge
Frangois Louveaux

S8 Introduction
{0 Stochastic
Programming

Optirﬁal
Iiearning

i

Burr Settles

Jiongmin Yong
Xun Yu Zhou

Stochastic
Controls

Hamiltonian Systems and
HIB Equations

Michael C. Fu Editor

2 .
a3rdav

FINIHLY

A’
1L

MULTI-ARMED BANDIT N .
ALLOCATION INDICES ey : :
'SECOND EDITION| - F N s Dynamic Programming
s i g N and Optimal Control

Model Predictive
Control

Dimitri P. Bertsekas

WWILEY

INTRODUCTION To
STOCHASTIC SEARCH

Online Computation
and

2 R\ Competitive Analysis

Reinforcement RN Discrete Stochastic Allan Borodin  Ran E1-Yanly

Learni ng h | Dynamic Programming

i =
Markov Decision Processes |

MARTIN L. PUTERMAN e : D

JAMES C. SPALL i Material .
Dperations Research Vol. 1

STOCHASTIC
SIMULATION
OPTIMIZATION

An Optimal Computing Budget Allocation

Chun-Hung Chen * Loo Hay Lee

Solving the Curses of Dimensiona

~ Approximate Dynamic
e | Programmmg

lity

_ Warren B. Powell

AND OPTIMIZATION s
Estimation, Simulation,
and Control i rc h
TR



SEQUENTIAL DECISIONS

Any sequential decision problems can be written:

(So,xO, Wllsll X1, Wz,

What we know (or believe) What we observe (or learn)

The decision

Each time we make a decision, we receive a contribution C(S;, x;).
Decisions are made with a method or policy X™(S;).

The goal is to find the policy that maximizes expected contributions:

max E{}{—o C(Se, X™(5))1S0}

() Optimal Dynamics



MODELING SEQUENTIAL DECISION PROBLEMS

Every sequential decision problem can be modeled using 5 core components

)) State Variab leS St — (R t, It, Bt) Nathoe 'C H db kof Robust Optimization !ﬁX]
- . . - 7/dNADO0K 0 A, =50 Approximate Dynamic
* Physical state R, other information /;, belief state By. inicin ) gimulation , = Analysis o = e
Programming _ptimization A -
» DeCISIOIl Varlables (x t» at ’ ut) oo MULTLARMED BRI |' S _ '-
. . )ptima cooar= | | =0 | -
L Made Wlth pOllcy Xﬂ: (St I 6) (01’ Aﬂ: (St) or Uﬂ: (St)) Learning g N ".. o7 OO
: . prp—m— OPTIMAL [e g @ [ omum
» Exogenous information W; e CONTROL N S| ==
- - _,.,.,H,.‘ \
* What do we learn for the first time between t and ¢t + 1?7 | — .
.. . M socHasTic
» Transition function Sy.q = SM(Se, x¢, Wet1) e norcenen CPMEATON
» How do the state variables evolve over time? N
» Objective function

. Esomwl,....,wT|so Y=o C(St

These five elements describe any sequential decision problem.




Modeling supply chain problems

We start by identifying:

» What are the performance metrics you
are focusing on?

» \What decisions are involved?

» What are the sources of uncertainty and
new information?

»  What information is needed to compute
metrics, make decisions, and model their
evolution over time (“state variables”)

() Optimal Dynamics
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OUTLINE

- The five layers of intelligence
- Modeling sequential decision problems
- Designing policies

- Policy function approximations

- Cost function approximations

- Value function approximations
- Direct lookahead approximations

- A new educational field: sequential decision analytics




DESIGNING POLICIES

Policy Definition
A policy is method that maps a state
variable into a decision .. any method.

() Optimal Dynamics



DESIGNING POLICIES

Policies and the English language

Algorithm Format Prejudice
Behavior Formula Principle
Belief Grammar Procedure
Bias Habit Process
Canon Laws/bylaws Protocols
Code Manner Recipe
Commandment Method Ritual
Conduct Modec Rule
Control law Mores Style
Convention Orthodox Syntax
Culture Patterns Technique
Customs Plans Template
Duty Policies Tenet
Etiquette Practice Tradition
Fashion Precedent Way of life

() Optimal Dynamics http.//tinyurl.com/policiesanddecisions
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Designing policies

Every sequential decision problem can be modeled using 5 core components

» State variables Sy = (R, I, Bt)
* Physical state R;, other information I, belief state By.

» Decision variables (x-a, Us)
S DhGk i et @ (or A™(S,) or UT(S,))
» Exogenous information Wy, 4

« What do we learn for the first time between t and ¢t + 1?

» Transition function Sy.q = SM(Se, x¢, Wet1)
e How do the state variables evolve over time?

~

» Objective function

. IES(}[EW1,----:WT|SO Z?:O C(S )

These five elements describe any sequential decision problem.,
(j Optlmal- Dynam|CS © WARREN POWELL 2021




Evaluating policies

. * Optimality proofs
1) Theoretically

* Regret bounds

* Asymptotic convergence

2) Through numerical simulations

3) In the field

() Optimal Dynamics



BRIDGING MACHINE LEARNING & SEQUENTIAL

DECISIONS
Machine learning Sequential decisions
nay 373 C(S", X" (S" |9)

nz(feF,Be@f N n=1 t=0

@ (St xe, Wes1)
Searching over policies System model

Searching over functions “Big dataset”

Lookup Parametric
tables models

Nonparametrlc
models

() Optimal Dynamics



DESIGNING POLICIES

Two fundamental strategies for designing policies

Policy search - Search over a class of methods for making decisions
to optimize some metric over time.

Finding the best class of policy.
Finding the best policy within the class.

Lookahead approximations — Approximate the impact of a decision
now on the future.

The contribution from the first period, plus

An approximation of the sum of contributions in future time periods resulting
from the first decision.

() Optimal Dynamics




DESIGNING POLICIES

Policy search

1) Policy function approximation (PFA)

These are analytical functions that specify what to do given what we know:.
Examples:

a) Order-up-to inventory policy 8 = (§™™", gmax)

Qmaxlr

emin

b) Buy when the price goes below ™"
and sell when it goes above 6™**

c) Lookup tables, linear/nonlinear models, neural networks, nonparametric
models, ..

() Optimal Dynamics




DESIGNING POLICIES

Policy search

2) Cost function approximations (CFAs)

These are parameterized optimization problems:

a) Find the shortest path to a destination, but add a buffer 8 (e.g. 15 minutes) to make sure
you arrive on time,

b) Optimize energy generation for tomorrow to meet forecasted demand, but add reserves 6
in case of a generator failure.

c) Advertise the product x which solves:

XUCB(§™0) = max(Estimated revenuel + 6 - Standard deviation of estimated revenuel?
X X
X

Now solve: max E{YN_ C(S™ X™(5™8)) |So}

Parametric CFAs are widely used in industry, yet dismissed by the academic research
community. This is actually quite a powerful strategy.

() Optimal Dynamics



Cost function approximations

- Lookup table
» We can organize potential catalysts into groups

» Sclentists using domain knowledge can estimate correlations in
experiments between similar catalysts.

2
@f-;{ e
%§ Q{F
e o
X X
$ $
) )
. w w
. o
e & & o & &
N ~ = N " - N
1.4 nm Fe 1 0.7 0.7 0.6 0.4 0.4 0.2
1nm Fe 0.7 1 0.7 0.6 0.4 0.4 0.2
2nm Fe 0.7 0.7 1 0.6 0.4 0.4 0.2
10nm ALD Al203+1.2 nm IBS Fe 0.6 0.6 0.6 1 1 0.3 0
2 nm Ni 0.4 0.4 0.4 1 1 0.7 0.6
Ni 0.6 nm 0.4 0.4 0.4 0.3 0.7 1 0.6
10nm ALD Al203+1 nm Ni 0.2 0.2 0.2 0 0.6 0.6 1
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Cost function approximations

Correlated beliefs: Testing one material teaches us about other

materials

‘/////////////////ﬁ

J N

il
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Cost function approximations

Cost function approximations (CFA)

> Upper confidence bounding
XUCB(Sn |9UCB) —

Sl O

X

> |Interval estimation

X IE(Sn |9IE) =ar(

n

Hy

o))

» Thompson sampling

X" = arﬁg}

() Optimal Dynamics
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AN\

Cost function approximations
Picking 8% = 0 means we are evaluating each

choice at the mean.

66



Cost function approximations

N\

1/

Picking 8% = 2 means we are evaluating each

choice at the 95t percentile.
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Cost function approximations

Optimizing the policy
» e optimize 6 to maximize:
IE z,N
max . F(0")=EF (x™",W)
where
X"=X"(S"|0") =argmax, (z + 05 ) =(a",5")

1

Notes:

» This can handle any belief mode
including correlated beliefs,
nonlinear belief models.

» All we require is that we be able
to simulate a policy.

P

gt
\\H
R

v
RN

Opportunity cost
/

| (
A

=N

0 05 1 15 2 25 3 35 4
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Hybrid direct lookahead/CFA

- An energy storage problem:

A M

Demqnd

M [ \ NN |'l
=V S 5 iy A6 IRy
Al J \ VA
»/ V \ /I \\
\ \

Electricityprices

Ll )L =

! -
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Hybrid direct lookahead/CFA

Forecasts evolve over time as hew information
arrives:

Rolling f ts, /
[ rotng forecats, /NN
717 N\

" | [Forecast made 7 \\ “\ \

=1 at midnight: ’;rr

; / \ N
| __,/// / \ Actual \ ‘\\‘

1z 13 1
Hours starting at noon on 13/07/09

(] Optlmal Uylained © 2022 WB Powell




Hybrid direct lookahead/CFA

Benchmark policy — Deterministic lookahead

t+H
XtD—LA(St) _ arg min (C(St, X.) +{ Z Cttl)?tt.D
X o( R t'=t+1,. t+H) t'=t+1
xt + PR + X, < f2
%o + X5, < fi
ftfg + f:igl = ﬁttl
YT+ X7, < RmaXew
e+ L < fE
fz‘tﬂz[t; F x‘zﬂt', < yut darge

~rd ~Tg disch arg e

() Optimal Dynamics © 2092 WB Powell



Hybrid direct lookahead/CFA

Benchmark policy — Deterministic lookahead

X (S 10)= arg min [C(st,xt){”f cxtD

Xeo( R U=t 41, 1+ H) t'=t+1

RS+ BERIS + Xy < 2

%o + % < [

X3+ %0 < R
YT+ %7, < RmaXew
o+ Xy < Optfits
Xty + X, < ytraEe
fz‘g 1+ f;;q, < ydisch arge

() Optimal Dynamics © 2092 WB Powell



Hybrid direct lookahead/CFA

Benchmark policy — Deterministic lookahead

arg mln [C(Stixt)+|:t§_|: Gtt')ztt':D

X, (K t'=t+1,..,t+H ) t'=t+1

XtD—LA (St

N\ ~7"g < Rttl

() Optimal Dynamics © 2092 WB Powell



Hybrid direct lookahead/CFA

Lookahead policies peek into the future
> Optimize over deterministic lookahead model

A

The lookahead model

t t+1 t+2 t+3
The real process

() Optimal Dynamics © 2092 WB Powell



Hybrid direct lookahead/CFA

Lookahead policies peek into the future
» Optimize over deterministic lookahead model

D A
k= N
& < {/‘C&g“{ﬁ
o ><)<x'/\i
© P
2 (OO
S o !
¢ X I
8 Q/Q‘\f‘»*;\' [
O <
D | |
c I I
= Vv
t t+1 t+2 t+3

The real process

() Optimal Dynamics © 2092 WB Powell



Hybrid direct lookahead/CFA

Lookahead policies peek into the future
> Optimize over deterministic lookahead model \

A

The lookahead model

() Optimal Dynamics

A’i\x\‘
E Y
<%

N < . X\:‘
. /a/‘\ (v\f:) ‘

< pS
3 A
< i
o
A
A%

D

t+1 t+2 t+3
The real process
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Hybrid direct lookahead/CFA

Lookahead policies peek into the future
» Optimize over deterministic lookahead model

b

— _ )“’f\vx""‘
5 1 e
@) T
= s
S kL
Q Qo
< O
T ' o
X | B2
@ I w )
Q «‘?’/9&‘:)@(;
) | D L
R | |
= Vv

t t+1 t+2 t+3

The real process
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Hybrid direct lookahead/CFA

One-dimensional contour plots - perfect forecast

Performance of lookup parameterization policy under perfect forecasf
T T T | |

05 6 = 1 for perfect forecasts. ' k N

15| "/ /)
|, s . 4
-2 [ ———
25~

Percentage of improvement (100*A F"(#))

w
[$)]

0.0 0.2 0.4 0.6 0.8 1.0 1.2

¢
© 2022 W.B. Powell
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Hybrid direct lookahead/CFA

One-dimensional contour plots-uncertain forecast

Performance of lookup parameterization policy with 0':=40

—— —
e —
< ===
S 10}k \ .
e \
i) ) -
>
o
=
E
S
8 oL —_— : i
s - .
= > .
e \

an 1 | | )
0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
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Energy storage optimization

- Tuning the parameters

0; =1 6; € [0,1] » 6; € [0.5,1.5] » 0, € [1,2]
Performance of the lookup policy obtained by the SGF-CFA method with batch size of 12, eta=1 and #<=1.5
60 T T T T T | T |
— 50
I
s
S
QO 4
>
o
o
3
30
=
o
>
o
= .
O -
£
— |
c
b}
O 1fr
S
[}
o
0
40 | L | | | | ! |
0 2 4 6 8 10 12 14 16 18

Starting points for stochastic search for 6
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Cost function approximations

Other applications

» Alrlines optimizing schedules with schedule slack to handle
weather uncertainty.

» Manufacturers using buffer stocks to hedge against production
delays and quality problems.

» QGrid operators scheduling extra generation capacity in case of
outages.

»  Adding time to a trip planned by Google maps to account for
uncertain congestion.

See for more on parametric cost function approximations.

() Optimal Dynamics


http://tinyurl.com/cfapolicy

Policy search

.+ Tuning the policy (PFAs or CFAS):

» We heed to maximize

T
maxg F (0) = E{E C(Se, X{(S¢16)) |So}

t=0
» We cannot compute the expectation, so we run

simulations: P

() Optimal Dynamics




Policy function approximations

How do we search for the best 67 X,
A

» Derivative-based
Stochastic gradient methods:

0" = 6"+, V,F (6", W)

L X
» Derivative-free 2

Build a belief model F(8) ~ EF (8, W) that |
approximates our function.

» Both of these approaches are sequential
decision problems!

() Optimal Dynamics



DESIGNING POLICIES

Two fundamental strategies for designing policies

Policy search - Search over a class of methods for making decisions
to optimize some metric over time.

Finding the best class of policy.
Finding the best policy within the class.

Lookahead approximations — Approximate the impact of a decision
now on the future.

The contribution from the first period, plus

An approximation of the sum of contributions in future time periods resulting
from the first decision.

() Optimal Dynamics




Lookahead approximations

Lookahead approximations combine:
» The immediate contribution (or cost) of a decision made now..
» ...and an approximation of future contributions (or costs)

(B8

(j Optimal- DynamiCS © WARREN POWELL 2021
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DESIGNING POLICIES

Lookahead policies are based on solving

X:(S,) = argmax, @ ﬂm E Z C (S0, X2 (Se)) 1Se4a m>

Contribution we receive now Future contributions

This looks like scary mathematics, but it is what all of us are doing when
we make decisions now that consider what might happen in the future.

The challenge is .. how to compute it!!!

() Optimal Dynamics



DESIGNING POLICIES

Lookahead policies are based on solving

C (S0 X5 (5)) |S>

VWO NN W NN W NN VRO RO Y

() Optimal Dynamics




DESIGNING POLICIES

Lookahead approximations
Approximate the impact of a decision now on the future

T
X{(S;) = argmax, | C(S;, x;) + E E z C (St,XZ_T,(Str)) 1Se41 } |Se, Xt

t'=t+1

3) Value function approximations (VFAs)

X (S)= arg max (C(Sr,xt)+ {m St,xr})

XJM(S,) = argmax, (C(S,,x)+E{7.,(S,,)] 5, %,})

=arg maxxl (C(Sf,xt) + Zx (Stx))
= arg masz QI (St ) xt) (va_]eaI'ningu)

() Optimal Dynamics



DESIGNING POLICIES

Lookahead approximations
Approximate the impact of a decision now on the future

X{(Se) = argmaxy | C(Sexe) +E C (Se XF(S,1)) ISt IS0 xe

Dynamic Programming
and Optimal Control

=arg maxxl (C(Sf,xt) + Zx (Stx))
= arg masz QI (St ) xt) (va_]eaI'Hingu)

() Optimal Dynamics



DESIGNING POLICIES

Lookahead approximations
Approximate the impact of a decision now on the future

T
X;(St) = argmax, C(St,xt) ]E z C(St, (S ') |St+1 )
t'=t+1

3) Value function approximations (VFAs)
X/ (S,) =argmax, (C(S,.x)+E{V [S.)]S.x})
Approximate Dynamic

( S ) | Programming
s 1 t+1 4 2 t Solving the Curses of Dimensionality

X"(S)=arg max (C(Sz, x)+E {
= argmax (C(St,x )

= arg max, Q (S.,x,) ("Q-learning")

1277t

() Optimal Dynamics



DESIGNING POLICIES

Lookahead approximations
Approximate the impact of a decision now on the future

T
X{(S;) = argmax,, (@{mgx {[E z C (St,XZ_T, (St:)) |
t'=t+1

3) Value function apprgkimations (VFAs)
X (S)= arg max . (C(Sr,xt) +E {Vt+1(Sr+l)| St,xr})

’ )+E{I7t+1(Sr+l)|Sf’xf}) |

Tt

—_ L\
(S))
’xl‘)—l_K St ) Reinforcemen t \\
L g

earnin

XJ(S,) = argmax (C (S,

= argmax (C (

= arg max |

("Q-learning") /s'g
4

() Optimal Dynamics
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Q Imagine 25 large storage devices spread around the PJM

ogrid:




The value of grid level storage
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The value of grid level storage
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The value of grid level storage
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The value of grid level storage
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Approximate dynamic programming for energy storage

Derivatives are used to estimate a piecewise linear
approximation

Ve(Ry)

L]l
Il

/l

\

ad
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Approximate dynamic programming for energy storage

With luck, your objective function improves
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; l M ) ) le,-*’““i‘,‘v‘
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Approximate dynamic programming for energy storage

Congested grid:

» Green and blue circles indicate energy storage

P
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Approximate dynamic programming for energy storage

Congested grid:

» Green and blue circles indicate energy storage
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NOTABLE APPLICATIONS

Reinforcement Learning High-Dimensional ADP

liteCam
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Major achievement — Playing Go
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DESIGNING POLICIES

4) Direct lookahead policies (DLAs) - Here we create an
approximation called the approximate lookahead model.

~

(St Xet» Wet 41, Ste41 Xe e+ We gz o0 Seeh Xeen W1 445 -0

There are six classes of approximations we can introduce.
Our direct lookahead policy now requires solving:

XPLA(S,10) = argmax, | C(Se, x.) +

Sampled information process

Restricted horizon Limited decisions

“Policy-within-a-policy” Reduced state space

() Optimal Dynamics



DESIGNING POLICIES

Direct Lookahead Policies (DLAS)

Tilde variables are used to model approximate lookahead

=
= ﬂ
= L
= Wi
s Rl
§ . %Wﬁ I
= | G |
_"=-" I I
[—
t t+1 r+2 r+3
The base model

() Optimal Dynamics



The lookahead model

() Optimal Dynamics

DESIGNING POLICIES

Direct Lookahead Policies (DLAS)

Tilde variables are used to model approximate lookahead

)
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t+1 r+2 r+3
The base model




DESIGNING POLICIES

Direct Lookahead Policies (DLAS)

Tilde variables are used to model approximate lookahead

D
E o Q‘ﬁ:\}r i/ﬂx.
= Y
(=) o0
= ﬁ%*/'
= e
v~ A//

S | L XY
—= I T
g 2 i/ﬂ;}
@ : O
[—

{ t+1 r+2 t+3

The base model
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DESIGNING POLICIES

Kingston
°

— Examples of Lookahead Models v @7 gurtos
Control i Ve

Dané;)ury
The deterministic lookahead model fle - P oS TN
-+ Thisis what is most widely used in practice. : sﬁm@(ﬂ
Standard approach is to use a "best estimate” (which ;%3,“’ o sl
e v means deterministic) of travel times in the future. = )5,7 m
This is often referred to as "“model predictive control” }‘\f a5 joisea
ﬁj s 168 miles
Robust optimization - We could use the y g
goth percentile of travel times. bss )
Stochastic programming - We represent o O o
fangois Louveaux . P@ | 5 b
T the future using, say, 20 samples. Ghkeep 3
to Stochastic ] . . Newidrin<rigs Wagbuy gls
Programming Approximate dynamic programming g i
| applied to approximate lookahead model T oo s el

178 miles g ? e
T amford

T — Chance constrained programming - |
i owning Impose constraint on the probability of
being late.

0

\mdt ynamics See Chapter 19 at



http://tinyurl.com/RLandSO

The unit commitment problem (for PIJM)
— _Planning tomorrow’s schedule




The unit commitment problem (for PJM)
_Planning tomorrow’s schedule
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The timing of decisions

- The day-ahead unit commitment problem

Midnight Midnight

Noon

Midnight

Midnight

Noon

Noon

Noon

___________ayﬂ

R e S s Ray
D e T eyt e o B R T LT B T e v ey ol

fme o nm D mimm Cmm o e e o B e e e e e oot et
T ey o s e e e e i e e e

T
D e e e et

60000

50000

40000

30000

20000

10000

= oM M~ — ! M M~ = M M~ = ;N m M~ = M

~ = 0 @ ™M M~ — n g m
L B B o R o I VAt R 0 B S = "2 I T I V= Ve

WO oM~ M~ 00 0o oy O O O A A N
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The timing of decisions

Intermediate-term unit commitment problem

1:00 pm 2:00 pm 3:00 pm
1:15 pm 1:45 pm 2:15pm 2:30 pm
1:30 ‘ ‘ ‘

D T T T D T T DT T P DT e DTy

60000

50000 -

40000

30000

20000 -

10000

0 TTTTTT T T T T T T T I T I T I T I I T T T T T e T T T T e T T T T T T T P e e P I T T T T T e e T T T I T T T T T T T T rT I rITIrrorl

ﬂﬂﬂﬂﬂﬂﬂﬂﬂ
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The timing of decisions

- Intermediate-term unit commitment problem

1:00 pm 2:00 pm 3:00 pm
1:15 pm 1:45 pm 2:15pm 2:30 pm
1:30 ‘

o o o T e e e e e e
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The unit commitment problem
t t'

N
7

>» Day-ahead unit commitment

Load curtailment notification

e e e, e, — =D

Natural gas generation

———————————D>

|.> Tapping spinning reserve
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The unit commitment problem
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The unit commitment problem
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DESIGNING POLICIES

Policy search policies

Policy function approximations (PFAs)
Simple rules, functions

Examples:
« Orderupto
« Buy low, sell high

Cost function approximations (CFAs)
Parameterized cost models

Examples
+ Schedule slack for trips
- Buffer stocks for inventory

() Optimal Dynamics

Lookahead policies

Value function approximations (VFAs)

» Making a decision now using the value of
being in a future state
» Examples:

- The value of a truck driver
+ The value of holding an asset

Direct lookaheads (DLAS)

» Models that optimize over a planning
horizon (deterministically/stochastically)
» Examples:

- Google maps
- Energy planning models




4 ’The four classes of peliciesigre’ -5 - T RTEQE --:Zf-.lf' ST
universal - -they cover every method R e T N
for making‘decisions described in- 5
~the research l|terature or used n-
i practlce -
- : _. . -o
XA Thls means you are already usmg
T *-one of the four classes of polIC|es (or
i e “ahybrid) in your own decisions. "
R 0 But are you domg the best you can’?
g e e R N 3% . 2,
¥ v ? .. : ot . ‘-. : . X3 "+ @ e - .. » : - ' & \.. o"



THE UNIVERSAL FRAMEWORK FOR SEQUENTIAL
ISION

Warren B. Powe LEgrmce on%niversity
http://tinyurl.com/powelljungle

Policy Function Approximation(PFA)
If this then do

T

max E E C(Sr,Xﬂ'(St))wo
T
t=0 XPFA(S18) = z Orpr(Se)

fEF
Neural network

Whe?‘e Sf-l-l = SM(St,Xﬁ(St), Wt-l-l)

and given (50, Wiy, W, ..., W, ... ) Cost Function Approximation (CFA)

Y CFA (5,16) = argmax,c x; + Z qu)f(st)
argmax, (He+0"" Gy
Value Function Approximation (VFA)

/XVFA(SrIf?) = argmax,(C(S, x) + E{Ves1(Se+1)1Se, xc})

= argmax,(C(S;, x) + VX (5)

The four classes of policies (PFAs,
CFAs, VFAs and DLAs) are universal.
Any sequential decision problem will use

= argmax Q(S;, x)

s,
04_,0’
one of these four classes (or a hybrid), including 6”%
whatever you might be doing now.
Direct Lookahead (DLA)

The optimal policy (if we could solve it) is given by AL
XPLA(S,10) = argmax, | c.x, + Z A

t+H
X*(S;) = argmax, (C(St,x) + E {max ]E{ Z C(Sp1, X™(S,1)) |S,+1} Sr,xt}> t'=t+1
m

t'=t+1




DESIGNING POLICIES

> Policies in the "policy search” class are simplest

o As aresult, this is what you are most likely going to see used in
practice.

. but ..
o The price of simplicity is tunable parameters’
..and ..

o Tuning is hard"

() Optimal Dynamics



AN ENERGY STORAGE PROBLEM

Consider a basic energy storage problem

Wind energy
6000

5000 e -

4000-

3000 ‘ : .

2000- O

1000 3, i L e e

Grid Prices

Demand (load)

i

Battery  _,
storage |
160 me—r——*"’ ,
140
120
100
80
60
40
20

We are going to show that with minor variations in the characteristics of this problem,
we can make each class of policy work best.

( j O pti m al‘ Dy n a' m i CS © WARREN POWELL 2021



AN ENERGY STORAGE PROBLEM

Each policy is best on certain problems

o CFA Error Determ. CFA
Problem: Problem description PFA ) VFA
correction Lookahead] Lookahead
A stationary problem with heavy-tailed prices,
A relatively low noise, moderately accurate 0.959 0.839 0.936 0.887 0.887

forecasts.

A time-dependent problem with daily load
B patterns, no seasonalities in energy and price, 0.714 0.752 0.712 0.746 0.746
relatively low noise, less accurate forecasts.

A time-dependent problem with daily load,
C energy and price patterns, relatively high noise,] 0.865 0.590 0.914 0.886 0.886
forecast errors increase over horizon.

A time-dependent problem, relatively low
D ) 0.962 0.749 0.971 0.997 0.997
noise, very accurate forecasts.

Same as (C), but the forecast errors are
E . . . 0.865 0.590 0.914 0.922 0.934
stationary over the plannlng horizon.

Joint research with Prof. Stephan Meisel, University of Muenster, Germany.

» .. any policy might be best depending on the data.
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BRIDGING MACHINE LEARNING & SEQUENTIAL DECISIONS

Machine learning Sequential decisions

1 N T
EZZC(S?:XE(SJH |9)
n=1 t=0

@M (Se, xt, Wes1)

System model

Searching over functions | “Big dataset” Searching over policies

ook ‘ — Policy function approximations Analytical functions
- - / Cost function approximations Optimization problem
Value function approximations Optimization problem

Direct lookahead Optimization problem
approximations

Nonparametrlc
models
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Choosing a policy class

WARREN B. POWELL
A new book:

First book to introduce a universal modeling framework,
covering all four classes of policies.

Describes the tools for modeling and solving any REINFORCEMENT
sequential decision problem, from simple learning LEARN'NG AND

problems to truckload fleets to complex supply chains. STOCHASTIC OPTIM]ZATIUN ‘

Aimed at a technical audience interested in writing
software to develop models such as those described in 3
this presentation. A UNIFIED FRAMEWORK o

Provides the foundation for a new field we are calling FOR SEQUENTIAL DECISIONS

sequential decision analytics.

To appear May, 2022,

http.//tinyurl.com/RLandS0O/
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http://castlelab.princeton.edu/sda

Choosing a policy class

An introductory book:

Uses a teach-by-example style

Illustrates how to model sequential decision problems
using a rich set of examples

Illustrates all four classes of policies

Highlights uncertainty modeling

http.//tinyurl.com/sdaexamplesprint

() Optimal Dynamics

Foundations and Trends® in Technology,
Information and Operations Management
Sequential Decision Analytics and
Modeling:

Modeling with Python

Suggested Citation: Warren Powell (2022), “"Sequential Decision Analytics and Model-
ing:", Foundations and Trends” in Technology, Information and Operations Management:
Vol. xx, No. xx, pp 1-. DOI: /2XOOCKXXXXXX.

Warren B. Powell
wbpowell328@gmail.com

This article may be used only for the purpose of research, teaching, n.w

and/or private study. Commercial use or systematic downloading (by
! . the essence of knowledge
robots or other automatic processes) is prohibited without explicit

Publisher approval Boston — Delft



http://castlelab.princeton.edu/sda

OUTLINE

- The five layers of intelligence
- Modeling sequential decision problems
- Designing policies

- Policy function approximations

- Cost function approximations

- Value function approximations
- Direct lookahead approximations

- A new educational field: sequential decision analytics




The core disciplines of decision analytics
Linean =
Each of these fields
have well-defined
communities, using

_ common notation and
Prooramming = ”"‘.IZ."Z',‘,.":TI\"‘, eStab|IShed tOOIS

and LINEAR
OPTIMIZATION

ELL R John N

The concepts are

There are widely used B MONTE taught In hundreds of
textbooks that cover ofSocasic ey SRR academic programs,
common material, with 'Y producing thousands of
standard notational vt ——meu N graduates each year
frameworks.. " B which can be hired by

industry.
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OPTIMIZATION UNDER UNCERTAINTY

The fields that deal with

decisions and uncertainty /. J—
are completely fragmented. o i |
Programming % Optimization - [
Sequential decision analytics is not a MUL“_ARMEDBAND,T] PN - Opimal Control
recognized field. Dpiimal ) M |
te) : 1 Gittins, Kevin i 161 Nemirc N\ b . X INTRODUCTION 1o
There are 15 distinct communities i T | Tl ;-i o% ¢ Ll o
that deal with decisions under | 2 i
uncertainty

) Rs T
** Dnline Computation

Each community offers tools that i C —— AL STOCHASTIC
0 : . ) Reinforcemen \ dTKOV CCISION I'Tocesses - Allen Borodin fon B Yorlv >

work only for narrowly defined ‘

problem classes.

OPTIMIZATION

An Optimal Computing Budget Allocation
Chun-Hung Chen * Loo Hay Lee

Learning W

Stochastic
Controls

Hamiltonian Systems an
HIB Equations
MARTIN L. PUTERMAN

Real applications require skills that
span a wide range of problem
settings.

() Optimal Dynamics



OPTIMIZATION UNDER UNCERTAINTY

The fields that deal with
decisions and uncertainty

WARREN B. POWELL % .‘ Foundations and Trends® in Technology,
a re co m p lete ly frag mented [} q . O i Information and Operations Management
arl : Sequential Decision Analytics and
Sequential decision analytics is hot a | Modne
. . & {:\_ odeling wit ython
recognized field. REINFORCEMENT “ N T — —
. N W | EARNING mp e T e '
There are 15 distinct communities o STOCHASTIC OPTIMIZATION peen B Povel
. A UNIFIED FRAMEWORK
uncertainty B FOR SEQUENTIAL DECISIONS
Each community offers tools that Available at
wWOork on[y for Speciﬂc prob[ems Z . ht_tp://_tlnyurl..com/RLandSO ‘ g http://tinyurl.com/sdaexamplesprint

Real applications require skills that
span a wide range of problem
settings.

These will be the first booRs to present sequential decision problems
and solution methods in a unified way.
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SEQUENTIAL DECISION ANALYTICS

. WARREN p. p
An academic proposal e

We need to establish academic programs in
engineering focusing broadly on sequential decision
analytics, comparable to existing programs in machine RE,NFORCEMENT

learning. LEARNING m
| STOCHASTIC gpry

As with machine learning, this program could be A UNIFIED FRAMEWgRy
centered on methodology, or different problem FOR SEQUENTIAL DEgisjgs
domains that span engineering (all fields), the sciences

(all fields), business, finance, logistics, energy and
health.

FOR MORE INFORMATION, VISIT

http.//tinyurl.com/sdafield
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Thank you!

See

http://tinyurl.com/sdafield

for an introduction to a field I am calling

“Sequential Decision Analytics”

My new book is available at

http://tinyurl.com/RLandSO/



http://tinyurl.com/sdafield
http://tinyurl.com/RLandSO/

