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The randomization-based perspective of
experimental design
• Long served as the foundation of experimental design.
• Seminal work by two stalwarts (Neyman 1923, Fisher 1925, 1935).
• Connection with survey sampling.
• Died down in the later half of the twentieth century – lack of 

computational resources?
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Motivating example: A simplified education 
experiment
• Examining the impact of school-wide performance bonus scheme for 

teachers on performance of school
• Experimental units: 12 schools
• Treatment: Implement performance bonus scheme, Control: Do not 

implement
• Response: Year-end performance score (1-100)
• We will review some basic designs for this experiment and their 

popular analysis methods that we are no doubt all familiar with, and 
then see how randomization-based analysis can replace them. 
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Completely randomized design (CRD)

• Experimental unit: 12 schools
• Completely randomized allocation

• 6 receive treatment (T=1)
• 6 receive control (T=0)

• Response: Performance score (1-100)

• How to analyze the data? 

Unit 1 2 3 4 5 6 7 8 9 10 11 12

T 1 0 1 0 0 1 0 0 1 1 1 0

Score 66.85 70.52 68.53 57.34 66.89 68.53 59.52 59.22 66.02 72.58 64.34 58.40
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Two-sample t-test in R

> t.test(y1,y0)

Welch Two Sample t-test

data:  y1 and y0
t = 2.3463, df = 7.5603, p-value = 0.04874
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.04155153 11.61178180

sample estimates:
mean of x mean of y 
67.80833  61.98167 

Unit 1 2 3 4 5 6 7 8 9 10 11 12

T 1 0 1 0 0 1 0 0 1 1 1 0

Score 66.85 70.52 68.53 57.34 66.89 68.53 59.52 59.22 66.02 72.58 64.34 58.40
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Randomized block design (RBD)

• Experimental unit: 12 schools
• Covariate information (number of students) available
• Assumption: Performance of school is strongly dependent on the total 

number of students (covariate X)
• Modify the design to prevent confounding of treatment effects with X
• Create two blocks: schools with less than 1000 students (blue cells), and 

schools with greater than or equal to 1000 students (yellow cells)

Unit 1 2 3 4 5 6 7 8 9 10 11 12

x 1165 748 1010 1157 482 917 1108 823 1293 566 1089 689
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Randomized block design (contd.)

Unit 1 3 4 7 9 11 2 5 6 8 10 12

x 1165 1010 1157 1108 1293 1089 748 482 917 823 566 689

BLOCK 1 BLOCK 2

• In each block, assign three units to treatment and three units to 
control using a completely randomized assignment

T 1 1 0 1 0 0 0 0 1 0 1 1

Y 66.84 69.66 58.34 67.17 55.76 59.90 64.74 64.01 71.79 68.70 73.26 68.63
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Analysis of RBD
Data <- M[,3:6]

x   B T  yobs
1165 1    1 66.84
748 2    0 64.74
1010 1    1 69.66
1157 1    0 58.34
482 2    0 64.01
917 2    1 71.79
1108 1    1 67.17
823 2    0 68.70
1293 1    0 55.76
566 2    1 73.26
1089 1    0 59.90
689 2    1 68.63

> rbd <- lm(yobs ~ factor(B) + factor(T))
> anova(rbd)
Analysis of Variance Table

Response: yobs
Df Sum Sq Mean Sq F value    Pr(>F)    

factor(B)     1  93.298  93.298  16.000 0.0031106 ** 
factor(T)     1 175.568 175.568  30.108 0.0003866 ***
Residuals     9  52.481   5.831                      
---
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Matched-pair design

• Experimental unit: 12 schools
• Assumption: Performance of school is very strongly dependent on the 

total number of students – even a difference of 200-300 students may 
make a major difference.

• Solution: Create more blocks; extreme case: pair the 12 schools based 
on number of students

• Within each pair one receives treatment and one receives control 
with equal probability
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Matched-pair design and outcomes

Unit 1 2 3 4 5 6 7 8 9 10 11 12

x 1165 748 1010 1157 482 917 1108 823 1293 566 1089 689

Unit 1 4 2 12 3 11 5 10 6 8 7 9

x 1165 1157 748 689 1010 1089 482 566 917 823 1108 1293

T 1 0 1 0 0 1 1 0 1 0 1 0

Y 68.35 58.43 72.52 63.11 59.90 69.11 75.18 64.34 70.83 61.77 68.92 57.07
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Analysis of matched-pair design

> matched_data
Bmatch x T  yobs

1       1 1165    1 68.35
4       1 1157    0 58.43
2       2  748    1 72.52
12      2  689    0 63.11
3       3 1010    0 59.90
11      3 1089    1 69.11
5       4  482    1 75.18
10      4  566    0 64.34
6       5  917    1 70.83
8       5  823    0 61.77
7       6 1108    1 68.92
9       6 1293    0 57.07

> matched_analysis <- lm(matched_data$yobs ~ 
factor(matched_data$Bmatch) + factor(matched_data$T)) 
> anova(matched_analysis)
Analysis of Variance Table

Response: matched_data$yobs
Df Sum Sq Mean Sq F value    Pr(>F)    

factor(matched_data$Bmatch)  5  70.690  14.138  23.657  0.001722 ** 
factor(matched_data$T)       1 302.907 302.907 506.849 3.213e-06 ***
Residuals                    5   2.988   0.598                      
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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The steps in model-based analysis

• Hypothesis testing framework: equality of treatment effects
• Linear model, assumes normality of residuals
• Find a suitable test statistic
• Distribution of a test statistic under the null hypothesis (obtained 

from the model)
• Reject null if the observed value of the test statistic is very unusual 

(extreme) with respect to its null (small p-value)
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Model-based analysis to model-free analysis

• Hypothesis testing framework: equality of treatment effects (for all 
units)

• Linear model, assumes normality of residuals – No model, no 
normality assumption

• Find a suitable test statistic- Take ANY reasonable test statistic
• Distribution of a test statistic under the null hypothesis (obtained 

from the model) – obtained from randomization distribution
• Reject null if the observed value of the test statistic is very unusual 

(extreme) with respect to its null (small p-value)
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Randomization analysis of CRD data: test statistic 
and its randomization distribution under null

Unit 1 2 3 4 5 6 7 8 9 10 11 12 Abs 
diff of
means

Score 66.85 70.52 68.53 57.34 66.89 68.53 59.52 59.22 66.02 72.58 64.34 58.40

1 1 0 1 0 0 1 0 0 1 1 1 0 5.83

2 0 0 0 1 1 1 0 1 0 0 1 1 8.29

3 1 1 1 1 1 0 0 0 1 0 0 0 7.89

….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. …..

924 0 0 1 1 1 0 0 0 0 1 1 1 9.08

• Consider absolute difference of means in the two treatment groups as 
the test statistic. Observed value = |67.81 - 61.98| = 5.83. 

12!/(6! 6!) = 924 allowable assignments

Observed
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Assumption (sharp null): the outcome of each unit would be unchanged under a different assignment
(i.e., no treatment effect on ANY unit) 



Randomization distribution and p-value: CRD
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Randomization analysis of RBD data: test statistic 
and its randomization distribution under null

No 1 3 4 7 9 11 2 5 6 8 10 12 Abs 
diff of
means

1 1 1 0 1 0 0 0 0 1 0 1 1 7.65

2 1 0 1 1 0 0 0 1 0 1 0 1 3.68

3 1 0 1 0 0 1 0 1 1 1 0 0 3.87

….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. …..

400 0 1 1 1 0 0 1 1 0 0 0 1 0.95

• Consider absolute difference of means in the two treatment groups as 
the test statistic. Observed value = 7.65. 

6!/(3! 3!) x 6!/(3! 3!)  = 400 allowable assignments

Observed
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Randomization distribution and p-value: RBD
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Randomization analysis of Matched-pair data: test 
statistic and its randomization distribution under null

No 1 4 2 12 3 11 5 10 6 8 7 9 Abs 
diff of
means

1 1 0 1 0 0 1 1 0 1 0 1 0 10.05

2 1 0 0 1 0 1 1 0 0 1 0 1 0.26

….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. …..

64 0 1 1 0 0 1 0 1 0 1 0 1 0.77

• Consider absolute difference of means in the two treatment groups as 
the test statistic. Observed value = 6.47.

26= 64 allowable assignments

Observed
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Randomization distribution and p-value: MP
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Design and randomization-based analysis of 
randomized experiments
• Design: Define ALLOWABLE randomizations (prevent confounding with 

covariates)
• Bernoulli design: 212 = 4096
• CRD: 924
• RBD with two blocks: 400
• Matched-pair (RBD with six blocks of size two each): 64

• Analyze using randomization test:
• Choose test statistic (ANY reasonable statistic works)
• Calculate observed value of test statistic 
• Generate distribution of test statistic using repeated assignments under allowable 

randomizations
• Determine if observed value is “unusual”
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Do we need to stick to “standard” designs?

CRD
(924 allowable 

randomizations)

RBD with two blocks
(400 allowable 

randomizations)

Matched-pair
(64 allowable 

randomizations)

• Define a measure of balance between treated and control groups
• Certain values of the measure indicate balanced groups and are 

acceptable
• Certain values of the measure indicate lack of balance and are 

unacceptable

Insert something here? Insert something here?
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Balance measure for different assignments

Unit 1 2 3 4 5 6 7 8 9 10 11 12 Balance

x 1165 748 1010 1157 482 917 1108 823 1293 566 1089 689

1 
(CRD)

1 0 1 0 0 1 0 0 1 1 1 0 352.83

2 
(RBD)

1 0 1 0 0 1 1 0 0 1 0 1 22.833

3
(MP)

1 0 1 0 0 1 1 0 1 0 1 0 4.833

….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. …..

924 0 1 0 1 0 0 1 0 1 0 1 1 186.83

Balance measure: Absolute Difference in x (enrollment) between treatment groups
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How the balance improves from CRD to MP
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We can choose any reasonable cut-off for the 
balance measure
• We can declare all assignment vectors that yield balance measures 

not exceeding 300 as acceptable
• Stricter than CRD but less strict than RBD 

• Or we can declare all assignment vectors that yield balance measures 
not exceeding 150 as acceptable

• Stricter than RBD but less strict than MP
• The randomization test for the above two designs can be performed 

in exactly the same manner as before
• Make sure that “an allowable” randomization is defined before you 

design the experiment and the same rule is followed during analysis 
while generating the randomization distribution of the statistic
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When blocking is no longer intuitive: multiple 
covariates
• Large number of covariates associated with each experimental unit

• previous year's performance score, 
• total number of students, 
• race variables (proportion of white, black, Asian, Native American and Latino 

students),
• proportion of female students
• enrollment rate
• poverty rate in neighborhood 
• ….. and many more
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Visualization for two continuous covariates
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Visualization for two continuous covariates
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Visualization for two continuous covariates
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Visualization for two continuous covariates
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Visualization for two continuous covariates
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Criterion for randomization

• Mahalanobis distance M (a multivariate distance between group 
mean vectors)

• Acceptance criterion: 

• Here a is a pre-determined constant 

• Trade-off between throwing away randomizations and balancing 
groups

aM ≤
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Reducing variance of average covariate 
difference between groups

Figure courtesy: Kari Lock Morgan and Donald B. Rubin 32



The Stem-cell Experiment

• Type 1 Diabetes and Regenerative Medicine
• Converting stem cells to insulin-generating beta cells using chemical 

modulators
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Experimental unit

• A well containing about 20,000 stem cells. Arranged in 8x12 array in 
plates (96 wells per plate).

• Each well will receive treatment or control (apply modulator or not)
• Response: Percentage of cells that are converted to beta cells (after a 

specified time following the experiment)
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Assigning a single modulator to units
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PROBLEM: Assign treatment to two 3x4 arrays (plates) of wells
(identify 12 wells that receive treatment and 12 that do not)

Plate 1

Plate 2



Assigning a single modulator to units
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1 1 1 1

1 1 1 1

1 1 1 1

Plate 1

0 0 0 0

0 0 0 0

0 0 0 0

Plate 2

PROBLEM: Assign treatment to two 3x4 arrays (plates) of wells
(identify 12 wells that receive treatment and 12 that do not)

Treatment effect likely to be confounded with factors affecting
plate-to-plate variation!



Avoiding bad assignments: Blocking
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1 1 0 0

1 1 0 0

1 1 0 0

Plate 1

0 0 1 1

0 0 1 1

0 0 1 1

Plate 2

Within each plate, assign six units to treatment

GOOD ASSIGNMENT ?
STATISTICIAN’S SUGGESTION: RANDOMIZE!



A hypothetical conversation (usually not 
mentioned)
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1 1 0 0

1 1 0 0

1 1 0 0

STATISTICIAN:
Oh dear! This is a terrible assignment. I 
cannot analyze data and draw meaningful 
conclusions from such an assignment. Could 
you please ask your student to randomize 
the assignments?

BIOTECHNOLOGIST:
My student came up with this 
deterministic assignment. Is this 
OK?

Images from: https://career.uconn.edu/, http://weusemath.org

https://career.uconn.edu/
http://weusemath.org/


A hypothetical conversation (contd.)
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1 1 0 0

1 1 0 0

1 1 0 0

STATISTICIAN:
Oh no! That would be cheating! Since your 
student obtained this assignment via 
randomization, it is OK now.

BIOTECHNOLOGIST:
After randomization, my student 
came up with this assignment that 
seems to be the same as before! I 
suppose we should scrap it and 
generate another assignment?

Images from: https://career.uconn.edu/, http://weusemath.org

https://career.uconn.edu/
http://weusemath.org/


The million dollar question ….
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How can the same assignment be 
acceptable if it is generated by 
randomization and unacceptable if not?

Define an acceptable randomization apriori!



Pre-define a measure of balance and 
acceptable randomization

• Average distance between pairs of points assigned to 
control (0)

• Hamming distance, e.g. distance between [1,1] and [2,1] 
is 1, distance between [1,3] and [2,4] is 2.

• A randomization is acceptable if the average Hamming 
distance between units assigned to control exceeds 1.5

1 1 0 0

1 1 0 0

1 1 0 0

0 1 0 0

0 1 1 0

1 0 1 1

Avg Hamming distance: 1.4 Avg Hamming distance: 1.6
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The randomization test: generate all 
“acceptable” randomizations
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1 1 1 0

0 1 1 0

1 0 0 0

0.60 0.36 0.13 0.48

0.46 0.48 0.36 0.33

0.07 0.55 0.82 0.75

1 0 1 0

1 0 1 0

1 0 0 1

0.60 0.36 0.13 0.48

0.46 0.48 0.36 0.33

0.07 0.55 0.82 0.75

trep=-1.18

0 1 0 0

0 1 1 0

1 0 1 1

0.60 0.36 0.13 0.48

0.46 0.48 0.36 0.33

0.07 0.55 0.82 0.75

trep=-0.51

trep=-2.92

Data remains same, only repeated assignments are 
generated using the same mechanism as the one used in 
the experiment to obtain the data



The randomization test
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Randomization distribu     
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pvalue = 0.02



Multi-factor experiments

• 224 New York schools
• Five new interventions labelled A-E, e.g.,

• Quality review (A)
• School-wide performance bonus scheme for the teachers (B)

• Response: A cumulative score on the annual progress report.
• A 25 factorial experiment with five factors each at two levels: 1( 

treatment), 0 (control).
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Acceptable assignments

• Completely randomized assignment (CRA) of the 32 treatment 
combinations to the 224 schools (each treatment to eight schools).

• But need balance over 50 covariates
• Different levels of protection (balance):

• Maximum protection to five main effects
• Less protection to two-factor interactions
• Zero protection to three, four, five-factor interactions
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Improving balance through acceptable 
randomizations 

Branson, Z., Dasgupta, T. and Rubin, D.B. (2017)
“Improving Covariate Balance in 2K factorial
designs via Re-randomization,” The Annals of
Applied Statistics, 10, 1958-1976.
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Randomization tests

Dasgupta, T., Pillai, N. and Rubin, D.R.
(2015), “Causal Inference for 2K factorial
designs by using potential outcomes,’’
Journal of the Royal Statistical Society, Series
B, 77(4), 727-753.
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Randomization tests (contd.)
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Randomized experiments in the age of data 
fusion

Need to “combine results from many experimental and observational studies, 
each conducted on a different population and under a different set of conditions 
in order to synthesize an aggregate measure of targeted effect size that is better, 
in some sense, than any one study in isolation." Pearl (2016), in a recent PNAS 
issue on causal inference from big data.

Expt 1: CRD

Expt 2: RBD

Expt 3: Matched-pair

Expt 4: Non-standard known 
probabilistic assignment

Combined p-value
Luo, X., Dasgupta, T., Xie, M. and Liu, R. (2021), 
“Using confidence distribution to leverage the 
potential of Fisher randomization tests: inference, 
computation and fusion learning". Journal of the 
Royal Statistical Society, Series B., 83, 777-797.
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Why are randomization tests great?

• Intuitive - analyze as you randomize. Easy to teach.
• Flexibility and broad applicability

• Continuous/binary response
• ANY test statistic
• ANY probabilistic assignment mechanism (beyond standard designs)
• multiple factors

• A “valid” test of the sharp null hypothesis of equal treatment effect for all 
experimental units

• Possible to invert to obtain confidence intervals
• A Bayesian connection (Rubin 1984) Also see Espinosa, V., Dasgupta, T. and Rubin, 

D. B. (2016), “A Bayesian perspective on the analysis of unreplicated factorial designs using 
potential outcomes,” Technometrics, 58, 62-73
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Some other references

• Ding, P. and Dasgupta, T. (2016), “A Potential Tale of Two by Two 
Tables from Completely Randomized Experiments”, Journal of the 
American Statistical Association (Theory and Methods), 111, 157-168.

• Ding, P. and Dasgupta, T. (2018) “A randomization-based perspective 
of analysis of variance: a test statistic robust to treatment effect 
heterogeneity,” Biometrika, 105 (1), 45-56.

• Luo, X., Dasgupta, T., Xie, M. and Liu, R. (2021), “Using confidence 
distribution to leverage the potential of Fisher randomization tests: 
inference, computation and fusion learning". Journal of the Royal 
Statistical Society, Series B., 83, 777-797.
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