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Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.

“In 1601, Johannes Kepler got access to the world’s best data tables on planetary orbits. 


And after 4 years and about 40 failed attempts to fit the Mars data to various ovoid shapes, 
he launched a scientific revolution by discovering that Mars’ orbit was an ellipse. 


This was an example of symbolic regression: discovering a symbolic expression that 
accurately matches a given dataset.”
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Can you see what function it is?

y = 8πx1(x2 + x3x4) Gμν = 8πG(Tμν + ρΛgμν)

Einstein’s equation for 

general theory of relativity
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Can you see what function it is?

y = 4π2

9.8(x1 + x2)
⋅ x3

3

Kepler’s third law

on planetary movement

P2 = 4π2

G(m1 + m2)
⋅ a3



Symbolic Regression

y = f ( x1, x2, ⋯, xn )



Symbolic Regression

y = f ( x1, x2, ⋯, xn )

function f : Accurate & Simple



Symbolic Regression is different from

Linear 

regression

Polynomial 
regression

Fourier 

transform

Wavelet

transform

Nonlinear 
regression

because it needs to find both the symbolic form of the function 
as well as its coefficients.



Symbolic Regression is different from

Neural Networks

because it needs to find a simple form for the function.



Why is Symbolic Regression hard?

When the length of the function increases, the 
number of functions increases exponentially.
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Consider functions of just ONE variable

Set of operations : + , × , sin,
Set of variables : x

Set of constants : 1, − 1

One operation: x + 1, x − 1, − 1 × x, x × x, sin x, x

Two operations: x + x + 1, x + x − 1, x × x + 1, x × x − 1, sin x + 1, sin x − 1, − sin x, x + 1,

x − 1, − x, sin x, sin x, sin sin x, x ⋯

Three operations: sin(x) + x + 1, sin x + x − 1, sin(x) + sin(x) + 1, sin(x) + x + 1, sin(sin(x)) + 1,

x − 1, sin( x) + 1, sin x − 1, sin x × x, sin x − x, ⋯

When the length of the function increases, the 
number of functions increases exponentially.



Symbolic Regression Methods

Evolutionary

Algorithms

Neural Networks Equation

Simplification



Evolutionary Algorithms for Symbolic Regression



Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

Evolutionary Algorithms for Symbolic Regression

1. Initial expressions are formed by randomly combining mathematical building blocks such as:

operations: +, − , × , /, , exp, sin, arcsin, etc.

variables: x1, x2, ⋯, xn

constants: 1, − 1, 0, π, e, 1.2, or a constant placeholder

Examples: x1 + 1, x2, x1 + sin(x2), sin(x1) + x2 − 1, sin(x1) + 1, x1
x2 + 1 , ex1

x2 + 1 , ⋯



Evolutionary Algorithms for Symbolic Regression

2. New equations are formed by recombining previous equations and probabilistically varying their subexpressions.
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x + x + x − c4 − y

x + x + x − sin(c3) − y



Evolutionary Algorithms for Symbolic Regression

2. New equations are formed by recombining previous equations and probabilistically varying their subexpressions.
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x + x + x − sin(c3) − y y − sin(y) − (x − x)

x + x + x − sin(y) − (x − x)



Evolutionary Algorithms for Symbolic Regression

2. New equations are formed by recombining previous equations and probabilistically varying their subexpressions.
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x + x + x − sin(y) − (x − x)

(x + x)x − sin(y) − (x − x)



Evolutionary Algorithms for Symbolic Regression

2. New equations are formed by recombining previous equations and probabilistically varying their subexpressions.
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(x + x)x − sin(y) − (x − x)

(x + x)x − sin(y) − c1



Evolutionary Algorithms for Symbolic Regression

2. New equations are formed by recombining previous equations and probabilistically varying their subexpressions.
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Evolutionary Algorithms for Symbolic Regression

2. New equations are formed by recombining previous equations and probabilistically varying their subexpressions.

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

(x + x)x − y − c1

(x + x + x)x − y − c13



Evolutionary Algorithms for Symbolic Regression

2. New equations are formed by recombining previous equations and probabilistically varying their subexpressions.
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(x + x + x)x − y − c13

(x + y − c3)y + x ⋅ x ⋅ c15



Evolutionary Algorithms for Symbolic Regression

2. New equations are formed by recombining previous equations and probabilistically varying their subexpressions.
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(x + y − c3)y + x ⋅ x ⋅ c15

(x + y − c4)y + x ⋅ x ⋅ c15



Evolutionary Algorithms for Symbolic Regression

2. New equations are formed by recombining previous equations and probabilistically varying their subexpressions.
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(x + y − c4)y + x ⋅ x ⋅ c15

(x + y − sin(x))y + x ⋅ x ⋅ c15

(y + sin(x))y



Evolutionary Algorithms for Symbolic Regression

2. New equations are formed by recombining previous equations and probabilistically varying their subexpressions.

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.
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Evolutionary Algorithms for Symbolic Regression

2. New equations are formed by recombining previous equations and probabilistically varying their subexpressions.
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(x + y − x)y + x ⋅ x ⋅ c16
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Evolutionary Algorithms for Symbolic Regression

2. New equations are formed by recombining previous equations and probabilistically varying their subexpressions.

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

y ⋅ y + c3 ⋅ x ⋅ x

(x + y − x)y + x ⋅ x ⋅ c16



Evolutionary Algorithms for Symbolic Regression

3. The algorithm retains equations that model the experimental data better than others 
and abandons unpromising solutions.

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.



Evolutionary Algorithms for Symbolic Regression

4. After equations reach a desired level of accuracy, the algorithm terminates, returning a set of equations that 
are most likely to correspond to the intrinsic mechanisms underlying the observed system.

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.



Two Basic Steps in an Evolutionary Algorithm

Mutation Crossover
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Seed the equation search by initializing the algorithm’s initial set of candidate equations 
with terms from equations from simpler systems (that were previously studied).

Evolutionary Algorithms for Symbolic Regression:

How to use prior knowledge

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.



Computation Tree can also be represented by a 

Directed Acyclic Computation Graph
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Computation Tree can also be represented by a 

Directed Acyclic Computation Graph
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Computation Tree can also be represented by a 

Directed Acyclic Computation Graph
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Accuracy & Complexity of Found Equations 

(evolution over time)

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.



Accuracy & Complexity of Found Equations 

(evolution over time)

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

1) Computation can take a long time for complex equations.

2) It is much more time consuming to find symbolic forms of 

equations than to compute their constant coefficients.



Use Symbolic Regression to find Laws in Physics

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.



Symbolic Regression can find equations

(more general relations than functions)

y = f(x1, x2, ⋯, xn) y − f(x1, x2, ⋯, xn) = 0
Function Equation

More general equation: F(x1, x2, ⋯, xn, y) = C
Example: x2 + y2 = 1



Avoid finding trivial relations, such as

sin2(3.1x) + cos2(3.1x) = 1
sin2(3.2x) + cos2(3.2x) = 1

x1 + 4.56 − x2x1/x2 = 4.56

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

Idea: use derivatives to find non-trivial relations

We define a potential equation to be nontrivial if it can predict 
differential relationships between two or more variables.



Use partial derivatives between pairs of variables

Consider equation f(x, y) = C, where x = x(t) and y = y(t) are both time-series data.

Then
∂f/∂y
∂f/∂x

= ∂x
∂y

≈ dx/dt
dy/dt

≈ Δx
Δy

.

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

We can now compare Δx/Δy values from the experimental data with ∂x/∂y .

compute

using


function f

measure

using 


experimental data

Compute values from the candidate function f(x,y) to see how well they match:

Instead of squared-error, mean error, correlation, etc., we can use the 

mean-log-error for numerical reasons (which is robust against outliers).

− 1
N

N

∑
i=1

log (1 + Δxi

Δyi
− ∂xi

∂yi )
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Find multiple equations using Pareto-front

Pareto-front: optimal tradeoff between accuracy & complexity of the equation.

Paper: Supporting Online Material for “Distilling Free-Form Natural Laws from Experimental Data,” by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.
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Paper: Supporting Online Material for “Distilling Free-Form Natural Laws from Experimental Data,” by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

Impact of noise

Noise can make symbolic regression significantly more difficult. In particular, noise makes 
approximating the gradient (numerical derivatives) more difficult because derivatives can 

be highly sensitive to noise.



Impact of noise

Paper: Supporting Online Material for “Distilling Free-Form Natural Laws from Experimental Data,” by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

We can use Loess smoothing - a non-parametric fitting method - to remove high 
frequency noise from data. Loess smoothing updates each sample in the dataset by fitting 
a small order polynomial to the sample and its nearest neighbors.

Other methods, such as filtering and convolution, also reduce high-frequency noise, 
but do not readily produce estimates of the signal derivative. Using Loess 
smoothing, we can obtain the numerical derivatives directly from the smoothing 
procedure by evaluating the symbolic derivatives of the local polynomial fits at each 
data sample.

We can measure the noise strength (percent noise) as the ratio of the standard 
deviation of the random noise to the standard deviation of the exact signal.
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Build Up an alphabet for symbolic regression (for future experiments)

Method: extract common subtrees of good equations that are found via symbolic regression.

Paper: Supporting Online Material for “Distilling Free-Form Natural Laws from Experimental Data,” by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.



Neural Network for Symbolic Regression



Neural Network for Symbolic Regression:

(1) Neural Network is the function



Neural Network for Symbolic Regression: (1) Neural Network is the function

Paper. Learning Equations for Extrapolation and Control, by Subham S. Sahoo, Christoph H. Lampert, and Georg Martius, 35th ICML, Sweden, PMLR 80, 2018.

A neural network is an acyclic computation graph.

Idea: Let’s use a neural network that “contains” the mystery function’s computation graph.

We train the neural network to get the coefficients in the mystery function.
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Train the above neural network.

For simplicity, assume after training, red edges have weight 1, other edges have weight 0.
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EQL÷

A network for equation learning that can handle divisions as well as techniques to keep training stable.
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Challenge posed by the division activation function:
Any division a/b creates a pole at b → 0

Such a divergence is a serious problem for gradient based optimization methods.

A few simplification made in the paper:

1. Assume that b>0 in practical systems.

2. Use division only in the output layer.

with an abrupt change in the convexity and diverging function value and its derivative.
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The division-activation function is given by hθ(a, b) = {
a
b if b > θ
0 otherwise

, where θ ≥ 0 is a threshold.

Using hθ = 0 as the value went the denominator is below θ
sets the gradient to zero, avoiding misleading parameter updates.
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Penalty term

To steer the network away from negative values of the denominator, we add a 
cost term to the training objective that penalizes “forbidden” inputs to each 

division unit:

pθ(b) = max(θ − b,0)
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Penalty Epochs

While the above approach prevents negative values in the denominator at training 
time (namely, for training samples), the right equation should not have negative 
denominators even for potential extrapolation data (namely, data outside of the 
region of training data).


Similarly, we would like to prevent that output values on future data having a very 
different magnitude than the observed outputs, as this could be a sign of 
overfitting (e.g., learning a polynomial of too high-degree).


To enforce this we introduce particular “penalty epochs”, which are injected at 
regular intervals (every 50 epochs) into training process.
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Penalty Epochs

During a penalty epoch, we randomly sample N input data points in the expected “test range” 
(including extrapolation region) without labels and the network is trained using the cost

LPenalty = Pθ + Pbound

where the latter is given by

Pbound =
N

∑
i=1

n

∑
j=1

max(yL
j (xi) − B,0) + max(−yL

j (xi) − B,0)

Basically, the penalty                 is > 0 if any output by the network is outside the range 
[-B,B]. The value B reflects the maximal desired output value.
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Pbound



Curriculum Training (for division activation function)

We let θ decrease with epoch t as θ(t) = 1
t + 1

It helps the network learn the equation more accurately in the end. For validation and testing, we use

θ = 10−4
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The division-activation function is given by hθ(a, b) = {
a
b if b > θ
0 otherwise



Network training

The network is fully differentiable, which allows us to train it in an end-to-end 
fashion using back propagation. The objective is Lasso-like:

L = 1
N

N

∑
i=1

( f(xi) − yi)2 + λ
L

∑
l=1

|w(l) | + Pθ

MSE loss L1 regularization

to get a 


simple function

Cost for small 

and negative


denominators in

devision
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Network training
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RNN y = x1 ⋅ 1

1 − x2
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We present “Deep Symbolic Regression” (DSR), a gradient-based approach for symbolic 
regression based on reinforcement learning.


In DSR, a recurrent network (RNN) emits a distribution over mathematical expressions.

Expressions are sampled from the distribution, instantiated, and evaluated based on their 
fitness to the dataset.


This fitness is used as the reward signal to train the RNN using a risk-seeking policy gradient 
algorithm.


As training proceeds, the RNN adjusts the likelihood of an expression relative to its reward, 
assigning higher probabilities to better expressions.

DSR is autoregressive, meaning each token is conditioned on the previously sampled token.

DSR exploits the hierarchical nature of trees by providing the parent and sibling as inputs to the RNN.
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Constraining the search space

It is straightforward to apply a priori constraints to reduce the search space. Here are some 
plausible constraints:


1) the children of an operator should not all be constants.


2) The child of a unary operator should not be the inverse of that operator, e.g., log(exp(x)) 
is not allowed.

We apply these constraints concurrently with autoregressive sampling by zeroing out the 
probabilities of selecting tokens that violate a constraint.
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A standard fitness measure in symbolic regression is normalized root-mean-square 
error (NRMSE), the root-mean-square error normalized by the standard deviation of 
the target values, σy .

That is, given a dataset (X,y) of size n and candidate expression f,

NRMSE = 1
σy

1
n

n

∑
i=1

(yi − f(Xi))2

Reward function:

R(τ) = 1
1 + NRMSE

Reward function for reinforcement learning
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Constant optimization

If the Library L includes constant token, sampled expressions may include several 
constant placeholders. These can be viewed as parameters β
of the symbolic expression, which we optimize by maximizing the reward function

β* = arg max
β

R(τ; β)
using a nonlinear optimization (nonlinear regression) algorithm, e.g., BFGS.

We perform this inner optimization loop for each sampled expression (namely, after a whole 
symbolic function is generated by the RNN) as part of the reward computation before 
performing each training step.
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Training the RNN using Policy Gradients

Now that we have a distribution over mathematical expressions p(τ |θ), where τ is a function and θ
is the RNN’s weights, we first consider the standard policy gradient objective to maximize 

Jstd (θ) = Eτ∼(τ|θ) R(τ)

RNN y = x1 ⋅ 1

1 − x2
2

25
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The standard REINFORCE policy gradient can be used to maximize this expectation via gradient ascent:

▽θ Jstd(θ) = ▽θ Eτ∼(τ|θ) R(τ) = Eτ∼p(τ|θ) R(τ) ▽θ log p(τ |θ)
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This result allows one to estimate the expectation using samples from the distribution. Specifically, an unbiased 
estimate can be obtained by computing the sample mean over a batch of N sampled expressions

▽θ Jstd(θ) ≈ 1
N

N

∑
i=1

R(τi) ▽θ log p(τi |θ)

This is an unbiased gradient estimate, but in practice it has high variance. To reduce variance, it is common to 
subtract a baseline function b from the reward. As long as the baseline is not a function of the current batch of 
expressions, the gradient estimate is still unbiased. Common choices of baseline functions are a moving 
average of rewards or an estimate of the value function.
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Risk-seeking policy gradient

We want to maximize the expected reward of the (one or a few) best expressions, not the average reward 
of all output expressions. (This is especially important when there are too many output expressions.)

Ideally, the RNN should always output the unique correct symbolic expression.

But in practice, the RNN can output a set of candidate symbolic expressions.

Idea: instead of maximizing the expected reward of all output expressions (and hoping they will 
eventually all converge to the correct expressions), let’s focus only on the best few output 
expressions and maximize their expected reward, and dismiss the other less-optimal 
expressions.

That is, we propose an alternative objective that focuses on learning only on “maximizing 
best-case performance”.
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Risk-seeking policy gradient

We first define Rϵ(θ) as the (1 − ϵ)-quantile of the distribution of the rewards under the current policy.

We then propose a new learning objective Jrisk (θ; ϵ) parameterized by ϵ :

:

Jrisk(θ; ϵ) = Eτ∼p(τ|θ) [R(τ) |R(τ) ≥ Rϵ(θ)]

This objective aims to increase the reward of the top ϵ fraction of samples from the  distribution,
without regard for samples below that threshold. It aims to increase best-case performance at 
the expense of lower average-case performance.
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Risk-seeking policy gradient

▽θ Jrisk(θ; ϵ) = Eτ∼p(τ|θ)[(R(τ) − Rϵ(θ)) ▽θ log p(τ |θ) | R(τ) ≥ Rϵ(θ)]

Monte Carlo estimate of the gradient from a batch of N samples:

▽θ Jrisk(θ; ϵ) ≈ 1
ϵN

N

∑
i=1

[R(τ(i)) − R̃ϵ(θ)] ⋅ 1R(τ(i))≥R̃ϵ(θ) ▽θ log p(τ(i) |θ)

Paper. Deep Symbolic Regression: Discovering Mathematical Expressions from Data via Risk-Seeking Policy Gradients, 

By Brenden K. Petersen, Mikel Landajuela Larma, T. Nathan Mundhenk, Claudio Santiago, Sookyung Kim and Joanne T. Kim, at ICLR 2021.



Evaluating DSR

Nguyen symbolic regression benchmark: a set of 12 commonly used benchmark expressions.
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Performance of DSR with Noisy data

Add Gaussian noise to y, where the noise has mean 0 and standard deviation 
proportional to the root-mean-square error of y.
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Paper. Deep Symbolic Regression: Discovering Mathematical Expressions from Data via Risk-Seeking Policy Gradients, 

By Brenden K. Petersen, Mikel Landajuela Larma, T. Nathan Mundhenk, Claudio Santiago, Sookyung Kim and Joanne T. Kim, at ICLR 2021.

Comparison of Running Time

Without early stopping, Genetic Programming is faster, as it does not require neural 
network training.


Considering early stopping, Deep Symbolic Regression can be faster when it has a high 
recovery rate and as a result can trigger early stopping more often.
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Equation Simplification for Symbolic Regression

Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.

Name of the algorithm: AI Feynman

Benchmark equations: 100 equations from “Feynman Lectures on Physics”, which have 1 to 9 independent variables.

Elementary functions: +, -, *, /, sqrt, exp, log, sin, cos, arcsin, tanh.
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For each equation, 100,000 samples are taken. 


Each input variable is uniformly sampled between 1 and 5.

Sampling the Training/Test Equations

Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.



Equation Simplification for Symbolic Regression: AI Feynman Algorithm

Neural Network(x1, ⋯, xn, y)
Samples ̂f(x1, ⋯, xn)

≈ f(x1, ⋯, xn)

Discover

properties of
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Simplify

Function f


for symbolic 
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Universal Approximation Theorem

Multilayer feedforward networks are universal approximations, by Kurt Hornik, Maxwell Tinchcombe, and Halbert White, in Neural Networks, vol. 2, pp. 359-366, 1989. 

A simpler statement of the “Universal Approximation Theorem” (by Ian Goodfellow): 

“A feedforward network with a single layer is sufficient to represent any function, but 

the layer may be infeasibly large and may fail to learn and generalize correctly.”
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We train a feed-forward, fully connected neural network with six hidden layers with softplus 
activation functions, the first three layers having 128 neurons and the last three layers having 64 

neurons. 


For each mystery function, we generated 100,000 data points, using 80% as the training set and the 
remainder 20% as the validation set, training for 100 epochs with learning rate 0.005 and batch size 

2048. 


We use the RMSE loss function and the Adam optimizer with a weight decay of 0.01.

log(1 + ex)
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Example: f = (x1 − x2)(x2
3 + x3x4 − x4 + 3) → f1 = x1 − x2 and f2 = x2

3 + x3x4 − x4 + 3

Example: f = (x1 − x2)2 + (x3 − x4)2 → f = z2
1 + z2

2 with z1 = x1 − x2, z2 = x3 − x4

Example: f = (x1/x2)2 + (x3/x4)2 → f = z2
1 + z2

2 with z1 = x1/x2, z2 = x3/x4

Example: f = x3 (x2
1 + x2

2)x3 → f = g(h(x1, x2), x3) with h(x1, x2) = x2
1 + x2

2 and g(h, x3) = x3 hx3
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Functions in practice often have these simplifying properties:


1. Units: f and the variables upon which it depends have known physical units.


2. Low-order polynomial: f (or part of f) is a polynomial of low degree.


3. Compositionality: f is a composition of a small set of elementary functions, each 
typically taking no more than two arguments.


4. Smoothness: f is continuous and perhaps even analytic in its domain.


5. Symmetry: f exhibits translational, rotational, or scaling symmetry with respect to 
some of its variables.


6. Separability: f can be written as a sum or product of two parts with no variables 
in common.
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Functions in practice often have these simplifying properties:


1. Units: f and the variables upon which it depends have known physical units.
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Property 1 enables dimensional analysis, which often transforms the problem into a 
simpler one with fewer independent variables.



Dimensional analysis

Often the problem can be simplified by requiring the units of the two sides of an equation to match.
Fundamental Units: Meter, second, kilogram, kelvin, volt
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Functions in practice often have these simplifying properties:


1. Units: f and the variables upon which it depends have known physical units.


2. Low-order polynomial: f (or part of f) is a polynomial of low degree.
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Property 2 enables polynomial fitting, which quickly solves the problem by solving a 
system of linear equations to determine the polynomial coefficients.



Polynomial Fit

Many functions in practice are low-order polynomials, e.g., the kinetic energy K = m
2 (v2

x + v2
y + v2

z )

or have parts that are, e.g., the denominator of the gravitational force F = Gm1m2
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

We use a module to test if a mystery can be solved by a low-order polynomial. 

It uses standard techniques for polynomial fitting, and declares success if the best-fitting polynomial 
gives root mean square error (RMSE) less than a threshold.
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Brute Force Search

When the problem is small enough, simply try all simple (short) symbolic expressions, 
and declares success when the maximum fitting error is below a threshold. 

How to enumerate all simple (short) symbolic expressions: use computation 
tree, or its string representation.

A string representation: reverse Polish notation

Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.



String Representation for Function: Reverse Polish notation

Examples of “reverse Polish notation” (where parentheses are unnecessary):

x + y → xy+

−2/3 → 0 < < 1 > > /

mv/ 1 − v2/c2 → mv * 1vv * cc * / − R/

The brute-force algorithm solves the constants in the symbolic 
expressions using non-linear regression, and focuses on 
enumeration of the remaining part of the symbolic expressions.
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Examples of “reverse Polish notation” (where parentheses are unnecessary):

x + y → xy+

−2/3 → 0 < < 1 > > /
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mv v2 c2

v2/c2
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1 − v2/c2
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Define the winning function to be the one with RMSE (root mean square error) less than a threshold 
that has the smallest total description length:

DL = log2 N + λ log2[max(1, ϵ
ϵd

)]

where ϵd = 10−15 and N is the rank of the string on the list of all strings tried.

The two terms correspond roughly to the number of bits required to store the symbol string and the 
prediction errors, if the hyperparameter λ is set to equal the number of data points Nd .

In experiments, we use λ = Nd to prioritize simpler formulas.

Balance Accuracy & Complexity

Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.



Test “Translational Symmetry and Generalizations”
We test for translational symmetry using the trained neural network (that approximates the 
mystery function f). 


We first check if f(x1, x2, x3, ⋯) = f(x1 + a, x2 + a, x3, ⋯)
If that is the case, then we replace x′ 1 = x2 − x1 .

Otherwise, we repeat this test for all pairs of input variables, and also test whether any variable pair can 
be replaced by its sum, product, or ratio.

If any of these simplifying properties is found, the resulting transformed mystery (with one fewer 
input variable) is interactively passed into a fresh instantiation of the full AI Feynman symbolic 
regression algorithm.

to within a precision threshold.

x1 and x2 by 
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Test “Separability”
We test for “Separability” using the trained neural network.

A function is separable if it can be split into two parts with no variables in common.

We test for both “Additive Separability” and “Multiplicative Separability”, corresponding to these 
two parts being added and multiplied, respectively.

For example, to test whether a function of two variables is multiplicatively separable, i.e., of the form

f(x1, x2) = g(x1)h(x2)
for some univariate functions g and h, we first select two constants c1 and c2; for numerical 
robustness, we choose c_{I} to be the means of all the values of x_{i} in the mystery dataset, for I=1,2. 
We then compute the quantity

Δsep(x1, x2) = 1
frms

⋅ f(x1, x2) − f(x1, c2)f(c1, x2)
f(c1, c2)

For each data point. This is a measure of non-separability, since it vanishes if f is multiplicatively separable.
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If separability is found, we define the two univariate mysteries y′ = f(x1, c2) and y′ ′ = f(c1, x2)/f(c1, c2) .
We pass the first one, y′ = f(x1, c2) back to fresh instantiation of our full AI Feynman symbolic regression algorithm, 

and if it gets solved, we redefine y′ ′ = y
y′ 

⋅ cnum, where cnum represents any multiplicative numerical constant

that appears in y′ .

We then pass y′ ′ back to our algorithm, and if it gets solved, the final solution is y = y′ y′ ′ 

cnum
.

We test for “additive separability” analogously, simply replacing * and / by + and - above; also, cnum will represent
an additive numerical constant in this case. If we succeed in solving the two parts, then the full solution to the 
original mystery is the sum of the two parts minus the numerical constant.

When there are more than two variables, we test all the possible subsets of variables that can lead to 
separability and proceed as above for the newly created two mysteries.
Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.
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Extra transformations

Apply the following transformations to variables and y, and try to solve the mystery equation: 
square root, raise to the power of 2, log, exp, inverse, sin, cos, tan, arcsin, arccos, and arctan.

Example: if may be hard to discover the symbolic equation for r = (x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

but if we transform r to r^{2}, we can use polynomial regression to solve

r2 = (x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.



AI Feynman is good at finding complex equations compared to Genetic Programming.


For example, the neural network strategy is used six times when solving

F = Gm1m2
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

Without dimensional analysis: three times to discover translational symmetry that replaces
x1 − x2, y1 − y2, z1 − z2,

then use separability to repeatedly simplify the function.

Compare the “AI Feynman Algorithm” to Genetic Programming

Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.



An example of how a particular mystery dataset (Newton’s law of gravitation with nine variables) is solved.

Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.



AI Feynman

Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.



A more robust approach: find formulas that are Pareto-optimal, in the sense of having the 
best accuracy for a given complexity. It can make the symbolic regression algorithm orders 
of magnitude more robust toward noise and bad data.

Find Pareto-optimal functions: A more robust approach

Paper. AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity, by Silviu-Marian Udrescu, Andrew Tan, Jiahai Feng, Orisvaldo Neto, 
Tailin Wu, and Max Tegmark, in 34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



Use more general modality of computation graph to simplify function

Paper. AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity, by Silviu-Marian Udrescu, Andrew Tan, Jiahai Feng, Orisvaldo Neto, 
Tailin Wu, and Max Tegmark, in 34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



An example of generalized symmetry

Paper. AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity, by Silviu-Marian Udrescu, Andrew Tan, Jiahai Feng, Orisvaldo Neto, 
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Compositionality: Let us first consider the case of “compositionally”, where f(x) = g(h(x))

and h is a scalar function simpler than f in the sense of being expressible with a smaller graph.

By the chain rule, we have ▽ f(x) = g′ (h(x)) ▽ h(x)

so ̂▽ f = ± ̂▽ h where hats denote unit vectors: ̂▽ f = ▽ f
| ▽ f |

̂▽ h = ▽ h
| ▽ h |

This means that if we can discover a function h whose gradient is proportional to that of f (for 
details see the reference paper below), then we can simply replace the variables x in the original 
mystery data by the single variable h(x) and recursively apply the AI Feynman algorithm to the new 
one-dimensional symbolic regression problem of discovering g(h).

Test “Compositionality”

Paper. AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity, by Silviu-Marian Udrescu, Andrew Tan, Jiahai Feng, Orisvaldo Neto, 
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Generalized symmetry: Let us now turn to “Generalized Symmetry”, where k of the n 
arguments enter only via some scalar function h of them. Specifically, we say that an f has 
“Generalized Symmetry” if the n components of the vector x ∈ Rn

can be split into groups of k and n-k components (which we denote by the vectors

x′ ∈ Rk and x′ ′ ∈ Rn−k

such that f(x) = f(x′ , x′ ′ ) = g[h(x′ ), x′ ′ ] for some function g).

▽x′ 
f(x′ , x′ ′ ) = g1[h(x′ ), x′ ′ ] ▽ h(x′ )

So ̂▽x′ 
f = ± ̂▽ h where       denotes the derivative of g with respect to its first argument.

Test “Generalized Symmetry”

By the chain rule, we have

g1

Paper. AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity, by Silviu-Marian Udrescu, Andrew Tan, Jiahai Feng, Orisvaldo Neto, 
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Generalized Additivity: If f is a function of two variables, then we also test for “Generalized Additivity” 
where f(x1, x2) = F[g(x1) + h(x2)]

If we define the function s(x1, x2) = ∂f/∂x1
∂f/∂x2

then s(x1, x2) = g′ (x1)
h′ (x2)

if f satisfies the generalized additivity property. In other words, we simply need to test if s is 
of the “multiplicatively separable form”

s(x1, x2) = a(x1)b(x2)
which we already know how to test.

Test “Generalized Additivity”

Paper. AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity, by Silviu-Marian Udrescu, Andrew Tan, Jiahai Feng, Orisvaldo Neto, 
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The neural network is a fully-connected, feed-forward neural network with 4 
hidden layers of 128, 128, 64 and 64 neurons, respectively, all with tanh 
activation function.

Network Training

Paper. AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity, by Silviu-Marian Udrescu, Andrew Tan, Jiahai Feng, Orisvaldo Neto, 
Tailin Wu, and Max Tegmark, in 34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



Leveraging “normalizing flows” to symbolic regress “probability distributions”

An important but more difficult symbolic regression problem is when the unknown function f(x) is a 
probability distribution from which we have random samples       rather than direct evaluations xi f(xi) .

We tackle this by adding preceding the regression by a step that estimates f(x) .
For this step, we use the popular “normalizing flow” technique, training an invertible neural network 
mapping x → x′ = g(x) such that x′ has a multivariate normal distribution n(x′ ) .
We then obtain our estimator fNN(x) = n[g(x)] |J | where J is the Jacobian of g.

Extension: Symbolic Regression for Probability Distribution
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Questions are welcome!


