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“In 1601, Johannes Kepler got access to the world’s best data tables on planetary orbits.

And after 4 years and about 40 failed attempts to fit the Mars data to various ovoid shapes,
he launched a scientific revolution by discovering that Mars’ orbit was an ellipse.

This was an example of symbolic regression: discovering a symbolic expression that
accurately matches a given dataset.”

Paper: Al Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.
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Symbolic Regression
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Symbolic Regression

3./ » y = (x5, X, = x,)

function f : Accurate & Simple



Symbolic Regression is different from
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because it needs to find both the symbolic form of the function
as well as its coefficients.



Symbolic Regression is different from

Neural Networks

because it needs to find a simple form for the function.



Why is Symbolic Regression hard?

When the length of the function increases, the
number of functions increases
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Consider functions of just ONE variable

Set of operations : +, x, sin,y/
Set of variables : x

Set of constants: 1, —1

When the length of the function increases, the
number of functions increases exponentially.

One operation: x+1, x—1, —1xx, xxx, sinx, y/x

Two operations: x+x+1, x+x—1, xXx+1, xXx—1,sinx+ 1,sinx — 1, — sinx, \/;+1,

\/; -1, - \/;, sin\/)_c, 4/sin x, sinsinx, \/\/;
Three operations: sin(x)+x+ 1, sinx+x—1, sin(x)+ sin(x)+ 1, sin(x) + \/; + 1, sin(sin(x)) + 1,

\/\/;—1, sin(\/)—c)+1, Vsinx — 1, sinxx\/)—c, sinx—\/)—c,
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Evolutionary Algorithms for Symbolic Regression

1. Initial expressions are formed by randomly combining mathematical building blocks such as:

operations: +, —, X%, /, \/' exp, sin, arcsin, etc.

variables: x;, x,, -, x

n

constants: 1, — 1, 0, x, e, 1.2, or a constant placeholder

x| el

X2+1, X2+1,

Examples: xp+1, /%, x;+sin(x,), sin(x) +x, —1, sin(x;) + 1,

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.




Evolutionary Algorithms for Symbolic Regression

2. New equations are formed by and
Accuracy Equations in Sequence Event
-1.4197 xX+tx—c3—y random
-1.41347 x+tx+tx—c4—y mutation
-1.41339 x+x+x—sin(c;)—y mutation
-1.13805 x+x+x—sin(y)—(x —x) crossover
-1.08904 (x +x)x —sin(y) — (x —x) mutation
-1.08574 (x + x)x —sin(y) — ¢; mutation
-1.01841 x+x)x—y—c mutation
-0.978484 (x+x+x)x-y—cps mutation
-0.914336 (x+y—c3)y+xxcs mutation
-0.303559 (x+y—cqy+txxcs mutation
-0.0692607 (x +y—sin(x))y + xx-cis crossover
-0.0140815 (x+y—x)y+xx-cs mutation
-0.0050732 (x+y—x)y+xxcp mutation
-0.0050732 yy+cyxx mutation

Fig. S2. Sequence of solutions as they evolve to model the equation of an ellipse. This
sequence represents a single trajectory in Fig. S1. Small mutations and crossover events
during the evolutionary search slowly converge this sequence onto the exact equation.

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.
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2. New equations are formed by recombining previous equations and probabilistically varying their subexpressions.
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-0.0050732 (x+y—x)y+xxcp mutation

-0.0050732 yy+cyxx mutation

Fig. S2. Sequence of solutions as they evolve to model the equation of an ellipse. This
sequence represents a single trajectory in Fig. S1. Small mutations and crossover events
during the evolutionary search slowly converge this sequence onto the exact equation.

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.
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Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.



Evolutionary Algorithms for Symbolic Regression

2. New equations are formed by recombining previous equations and probabilistically varying their subexpressions.
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X+ x+x—sin(y) — (x —x)

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.
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2. New equations are formed by recombining previous equations and probabilistically varying their subexpressions.

Accuracy Equations in Sequence Event
-1.4197 xX+tx—c3—y random
-1.41347 x+tx+tx—c4—y mutation
-1.41339 x+x+x—sin(c;)—y mutation
-1.13805 x+x+x—sin(y)—(x —x) crossover
-1.08904 (x + x)x —sin(y) — (x — x) mutation
-1.08574 (x + x)x —sin(y) — ¢; mutation
-1.01841 x+x)x—y—c mutation
-0.978484 (x+x+x)x-y—cps mutation
-0.914336 (x+y—c3)y+xxcs mutation
-0.303559 (x+y—cqy+txxcs mutation
-0.0692607 (x +y—sin(x))y + xx-cis crossover
-0.0140815 (x+y—x)y+xx-cs mutation
-0.0050732 (x+y—x)y+xxcp mutation
-0.0050732 yy+cyxx mutation

Fig. S2. Sequence of solutions as they evolve to model the equation of an ellipse. This
sequence represents a single trajectory in Fig. S1. Small mutations and crossover events
during the evolutionary search slowly converge this sequence onto the exact equation.

X+ x+x—sin(y) — (x —x)

\ 4

(x + x)x — sin(y) — (x — x)

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.
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2. New equations are formed by recombining previous equations and probabilistically varying their subexpressions.

Accuracy Equations in Sequence Event
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(x 4+ x)x —sin(y) = ¢4

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.
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2. New equations are formed by recombining previous equations and probabilistically varying their subexpressions.
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X+ x)x=y—c

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.
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2. New equations are formed by recombining previous equations and probabilistically varying their subexpressions.
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X+x)x—y—c
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X+x+X)x—y—c3

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.



Evolutionary Algorithms for Symbolic Regression

2. New equations are formed by recombining previous equations and probabilistically varying their subexpressions.

Accuracy Equations in Sequence Event
-1.4197 xX+tx—c3—y random
-1.41347 x+tx+tx—c4—y mutation
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Fig. S2. Sequence of solutions as they evolve to model the equation of an ellipse. This
sequence represents a single trajectory in Fig. S1. Small mutations and crossover events
during the evolutionary search slowly converge this sequence onto the exact equation.

xXx+x+x)x—y—c3

\ 4

xX+y—c)y+x-x-cq5

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.
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2. New equations are formed by recombining previous equations and probabilistically varying their subexpressions.

Accuracy Equations in Sequence Event
-1.4197 xX+tx—c3—y random
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Fig. S2. Sequence of solutions as they evolve to model the equation of an ellipse. This
sequence represents a single trajectory in Fig. S1. Small mutations and crossover events
during the evolutionary search slowly converge this sequence onto the exact equation.

X+y=c)y+x-x-C5

\ 4

X+y=cpy+x-x-c5

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.
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2. New equations are formed by recombining previous equations and probabilistically varying their subexpressions.

Accuracy Equations in Sequence Event
-1.4197 xX+tx—c3—y random
-1.41347 x+tx+tx—c4—y mutation
-1.41339 x+x+x—sin(c;)—y mutation
-1.13805 x+x+x—sin(y)—(x —x) crossover
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Fig. S2. Sequence of solutions as they evolve to model the equation of an ellipse. This
sequence represents a single trajectory in Fig. S1. Small mutations and crossover events
during the evolutionary search slowly converge this sequence onto the exact equation.

x+y—c)y+x-x-¢5 (y+sin(x))y
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(x+y—sinx)y+x-x-cy5

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.
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2. New equations are formed by recombining previous equations and probabilistically varying their subexpressions.

Accuracy Equations in Sequence Event
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Fig. S2. Sequence of solutions as they evolve to model the equation of an ellipse. This
sequence represents a single trajectory in Fig. S1. Small mutations and crossover events
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X+y—=X)y+x-X-Cs

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.
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2. New equations are formed by recombining previous equations and probabilistically varying their subexpressions.
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2. New equations are formed by recombining previous equations and probabilistically varying their subexpressions.
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Fig. S2. Sequence of solutions as they evolve to model the equation of an ellipse. This
sequence represents a single trajectory in Fig. S1. Small mutations and crossover events
during the evolutionary search slowly converge this sequence onto the exact equation.

X+y—X)y+x-x-C

\ 4

y-y+ec3-x-x
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Evolutionary Algorithms for Symbolic Regression

3. The algorithm retains equations that model the experimental data better than others
and abandons unpromising solutions.

Accuracy Equations in Sequence Event
-1.4197 x+tx—c3—y random
-1.41347 xX+tx+x—cs—y mutation
-1.41339 x+x+x—sin(c;)—y mutation
-1.13805 x+x+x—sin(y) — (x —x) crossover
-1.08904 (x +x)x —sin(y) — (x — x) mutation
-1.08574 (x + x)x —sin(y) — ¢, mutation
-1.01841 x+x)yx—y—c mutation
-0.978484 (x+x+x)x-y—cp mutation
-0.914336 (x+y—c3)y+txxcs mutation
-0.303559 (x+y—rcy)y+txxcs mutation
-0.0692607 (x +y—sin(x))y + xxcs crossover
-0.0140815 (x+y—x)y+xxcs mutation
-0.0050732 (x+y—x)y+xxcy mutation
-0.0050732 yy+eyxx mutation
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Evolutionary Algorithms for Symbolic Regression

4. After equations reach a desired level of accuracy, the algorithm terminates, returning a set of equations that
are most likely to correspond to the intrinsic mechanisms underlying the observed system.

Accuracy Equations in Sequence Event
-1.4197 x+tx—c3—y random
-1.41347 x+tx+x—cs—y mutation
-1.41339 x+x+x—sin(c;) —y mutation
-1.13805 x+x+x—sin(y) — (x —x) crossover
-1.08904 (x +x)x —sin(y) — (x —x) mutation
-1.08574 (x +x)x —sin(y) — ¢, mutation
-1.01841 x+x)x—y—c mutation
-0.978484 (x+tx+x)x-y—cp3 mutation
-0.914336 (x+y—c3)y+xxcs mutation
-0.303559 (x+y—cy)y+xxcs mutation
-0.0692607 (x +y—sin(x))y + xxcs crossover
-0.0140815 (x+y—x)y+xxcs mutation
-0.0050732 (x+y—x)y+xxcy mutation
-0.0050732 yy+cyxx mutation
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Two Basic Steps in an Evolutionary Algorithm

Crossover
X+x+x—¢4— x+x+x—sin(c) -y y=sin(y) - (x—x)
x+x+x—sm(c3)— x+x+x—sin(y) — (x — x)

ee 0 > 36:@
9"0‘3 09@@ ®



Two Basic Steps in an Evolutionary Algorithm

Mutation
XF+XF+X—C—Y X+x+x—sin(c;) —y y=sin(y)— (x—x)
x+x+x—sin(c3)—y x4+ x+x—sin(y) — (x — x)

R



Evolutionary Algorithms for Symbolic Regression:
How to use prior knowledge

Seed the equation search by initializing the algorithm’s initial set of candidate equations
with terms from equations from simpler systems (that were previously studied).
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Computation Tree can also be represented by a
Directed Acyclic Computation Graph

f0,0)=4.771-(3.714 - @) + cos(@)
+(3.714 — @?)-cos(0)

(0) <= load [3.714)
(1) <= load [w]

(2) <= mul (1), (1)
(3) <= sub (0), (2)
(4) <= load (0]

(5) <= cos (4)

(6) <= mul (3), (5)
(7) <- load [4.771])
(8) <=mul (7), (3)
(9) <- add (6), (5)
(10) <- add (9), (B)
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Computation Tree can also be represented by a
Directed Acyclic Computation Graph

f00)=4.771 - @?) + cos(0)
+(3.714 — @?)-cos(0)

(1) <= load [w]

(2) <= mul (1), (1)
(3) <= sub (0), (2)
(4) <= load (0]

(5) <= cos (4)

(6) <= mul (3), (5)
(7) <- load [4.771])
(8) <= mul (7), (3)
(9) <= add (6), (5)
(10) <- add (9), (B)
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Computation Tree can also be represented by a
Directed Acyclic Computation Graph

f00)=4.771 —l-’) + cos(0)
+(3.714 — @*)-cos(0)

(2) <= mul (1), (1)
(3) <= sub (0), (2)
(4) <= load (0]

(5) <= cos (4)

(6) <= mul (3), (5)
(7) <= load [4.771]
(8) <= mul (7), (3)
(9) <= add (6), (5)
(10) <- add (9), (8)
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Computation Tree can also be represented by a
Directed Acyclic Computation Graph

f0.0)=4.771 @ + cos(0)

+(3.714 — @*)-cos(0)

(3) <= sub (0), (2)
(4) <= load (0]

(5) <= cos (4)

(6) <= mul (3), (5)
(7) <- load [4.771]
(8) <= mul (7), (3)
(9) <= add (6), (5)
(10) <- add (9), (8)
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Computation Tree can also be represented by a
Directed Acyclic Computation Graph

A0,0)=4.771 + cos(#)

+(3.714 - 5)-cos(0)

(4) <= load (0]

(5) <= cos (4)

(6) <= mul (3), (5)
(7) <- load [4.771)
(8) <= mul (7), (3)
(9) <= add (6), (5)
(10) <- add (9), (8)
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Computation Tree can also be represented by a
Directed Acyclic Computation Graph

f0,0)=4.77]

+ Co
+(3.714 - 5)-005(0) ‘"

(5) <= cos (4)

(6) <= mul (3), (5)
(7) <= load [4.771]
(8) <= mul (7), (3)
(9) <= add (6), (5)
(10) <- add (9), (8)

4
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Computation Tree can also be represented by a
Directed Acyclic Computation Graph

f0.0)=4.771 * +
+(3.714- )-cos(o)-

(6) <= mul (3), (5)
(7) <= load [4.771]
(8) <= mul (7), (3)
(9) <- add (6), (5)
(10) <- add (9), (8)
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Computation Tree can also be represented by a
Directed Acyclic Computation Graph

" o™
+

(7) <- load [4.771)
(8) <= mul (7), (3)
(9) <- add (6), (5)
(10) <- add (9), (8)
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Computation Tree can also be represented by a
Directed Acyclic Computation Graph

(8) <= mul (7), (3)
(9) <= add (6), (5)
(10) <- add (9), (8)

CONENNCY)

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.



Computation Tree can also be represented by a
Directed Acyclic Computation Graph

(9) <- add , (9)
(10) <- add (9), (8)

CONENNCY)
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Computation Tree can also be represented by a
Directed Acyclic Computation Graph

CONENNCY)
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Computation Tree can also be represented by a
Directed Acyclic Computation Graph

(10)

CONENNCY)
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Accuracy & Complexity of Found Equations
(evolution over time)
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Accuracy & Complexity of Found Equations
(evolution over time)
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1) Computation can take a long time for complex equations.
2) It is much more time consuming to find symbolic forms of

equations than to compute their constant coefficients.
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Use Symbolic Regression to find Laws in Physics

A B C

20 : - Detected Invariance:

L*(m+m)w >+ mLw?+
m,L Lo o, cos(@, —0,) -
19.6L (m +m,)cos 0, —
19.6m,Lcos 6,

-20

V 34 345 35 355 36 36.5 37
Time (s)

Fig. 1. Mining physical systems. We captured the angles and angular velocities  these variables. Without any prior knowledge about physics or geometry, the
of a chaotic double-pendulum (A) over time using motion tracking (B), then we  algorithm found the conservation law (C), which turns out to be the double
automatically searched for equations that describe a single natural law relating  pendulum’s Hamiltonian. Actual pendulum, data, and results are shown.
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Symbolic Regression can find equations
(more general relations than functions)

Function Equation

y = f(xpxz"“’xn) » y — f(xl,xz,-..,xn)

More general equation:  F(x[, X, ==+, x,,y) = C

Example: x2+y2 — 1



Avoid finding trivial relations, such as

sin*(3.1x) + cos*(3.1x) = 1 x; +4.56 — x,x,/x, = 4.56
sin®(3.2x) + cos*(3.2x) = 1

Idea: use derivatives to find non-trivial relations

We define a potential equation to be nontrivial if it can predict
differential relationships between two or more variables.
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Use partial derivatives between pairs of variables

Consider equation f(x,y) = C, where x = x(¢) and y = y(¢) are both time-series data.

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.




Use partial derivatives between pairs of variables

Consider equation f(x,y) = C, where x = x(¢) and y = y(¢) are both time-series data.

dffoy _ox dxldt  Ax

Then = ~ ~ :
doffox oy dyldt Ay
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Use partial derivatives between pairs of variables

Consider equation f(x,y) = C, where x = x(¢) and y = y(¢) are both time-series data.

offdy ox _dx/dt Ax

Then = ~ ~ .
doffox dy dyldt Ay
compute measure
using using
function f experimental data
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Use partial derivatives between pairs of variables

Consider equation f(x, y) = C, where x = x(f) and y = y(¢) are both time-series data.

dffdy _ ox N dx/dt _ Ax

Then = ~ ~ .
doffox oy dyldt Ay
compute measure
using using
function f experimental data

We can now compare Ax/Ay values from the experimental data with dx/dy .

Compute values from the candidate function f(x,y) to see how well they match:

1 & Ax.  Ox;
——Z log( 1+ e
Ni=1 '

Instead of squared-error, mean error, correlation, etc., we can use the
mean-log-error for numerical reasons (which is robust against outliers).
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Find multiple equations using Pareto-front

Pareto-front: optimal tradeoff between & of the equation.

Predictive Ability Over Time Accuracy/Complexity Pareto Front
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Find multiple equations using Pareto-front

Pareto-front: optimal tradeoff between & of the equation.

Predictive Ability Over Time Accuracy/Complexity Pareto Front
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Find multiple equations using Pareto-front

Pareto-front: optimal tradeoff between & of the equation.

Predictive Ability Over Time Accuracy/Complexity Pareto Front
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Find multiple equations using Pareto-front

Pareto-front: optimal tradeoff between & of the equation.
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Find multiple equations using Pareto-front

Pareto-front: optimal tradeoff between & of the equation.

Predictive Ability Over Time Accuracy/Complexity Pareto Front

0.2 - 0
_ —-02F o
B -04; H g e,
@ A° - b
& I P 3’ 04 .
o 1 S
. . =08 | >-06]
Linear Oscillator: 3 L 3
2 2 < 08 /" < .08}
x"+0.3v 2 (1} b
% . o -1 !
2 a4t g °
¢ a2 .
2 *
12 - P— ..' " " PRSP - " - PRSP -1 , . X . |
10 10 10 10 %5 -20 -15 -10 -5 0
Time [seconds) Parsimony [-nodes]

Paper: Supporting Online Material for “Distilling Free-Form Natural Laws from Experimental Data,” by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.



Find multiple equations using Pareto-front

Pareto-front: optimal tradeoff between & of the equation.
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Find multiple equations using Pareto-front

Pareto-front: optimal tradeoff between & of the equation.
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Find multiple equations using Pareto-front

Pareto-front: optimal tradeoff between & of the equation.
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Find multiple equations using Pareto-front

Pareto-front: optimal tradeoff between & of the equation.
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Impact of noise

Noise can make symbolic regression significantly more difficult. In particular, noise makes
approximating the gradient (numerical derivatives) more difficult because derivatives can
be highly sensitive to noise.

0
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Noise [%]

Fig. S5. The mean predictive ability on a withheld test set of the best law equations detected
versus the amount of normally distributed noise in the data set for the simulated double linear
oscillator. Error bars show the standard error. The percent noise is the ratio of the standard
deviation of the noise and the standard deviation of the original signal.

Predictive Ability [-log-error]
/
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Impact of noise

We can use Loess smoothing - a non-parametric fitting method - to remove high
frequency noise from data. Loess smoothing updates each sample in the dataset by fitting
a small order polynomial to the sample and its nearest neighbors.
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Impact of noise

We can use Loess smoothing - a non-parametric fitting method - to remove high
frequency noise from data. Loess smoothing updates each sample in the dataset by fitting
a small order polynomial to the sample and its nearest neighbors.

Other methods, such as filtering and convolution, also reduce high-frequency noise,
but do not readily produce estimates of the signal derivative. Using Loess
smoothing, we can obtain the numerical derivatives directly from the smoothing

procedure by evaluating the symbolic derivatives of the local polynomial fits at each
data sample.
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Impact of noise

We can use Loess smoothing - a non-parametric fitting method - to remove high
frequency noise from data. Loess smoothing updates each sample in the dataset by fitting
a small order polynomial to the sample and its nearest neighbors.

Other methods, such as filtering and convolution, also reduce high-frequency noise,
but do not readily produce estimates of the signal derivative. Using Loess
smoothing, we can obtain the numerical derivatives directly from the smoothing

procedure by evaluating the symbolic derivatives of the local polynomial fits at each
data sample.

We can measure the noise strength (percent noise) as the ratio of the standard
deviation of the random noise to the standard deviation of the exact signal.
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Build Up an alphabet for symbolic regression (for future experiments)

Method: extract common subtrees of good equations that are found via symbolic regression.

Term Complexity Frequency Systems
kx, 1 23578 4
kx, 1 21.6514 4
kv, 1 21.5596 4
kv, 1 19.1743 4 kx,
k cos(8,) 2 6.51376 2 ¢ kx
k cos(6,) 2 6.14679 2 - :
X kv
kvy? 3 5.50459 s X kv
> v
kv? 3 4.49541 4 S 1 2 k cos(8,) kw2
(x;—x,) 3 422018 2 5 . vy
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kx,+kv, 3 0.733945 3
kx, +kx, 3 0.642202 2
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Fig. S6. The occurrence of common terms among the pareto fronts of the linear oscillator,
double linear oscillator, pendulum, and double pendulum sorted by frequency of appearance.
Several terms re-emerge between these systems revealing a common physical language for
kinetic and potential energy, trigonometry, sum of forces.
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Neural Network for Symbolic Regression




Neural Network for Symbolic Regression:
(1) Neural Network is the function
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Neural Network for Symbolic Regression: (1) Neural Network is the function

A neural network is an acyclic computation graph.

Paper. Learning Equations for Extrapolation and Control, by Subham S. Sahoo, Christoph H. Lampert, and Georg Martius, 35th ICML, Sweden, PMLR 80, 2018.



Neural Network for Symbolic Regression: (1) Neural Network is the function

A neural network is an acyclic computation graph.

|Idea: Let’s use a neural network that “contains” the mystery function’s computation graph.
We train the neural network to get the coefficients in the mystery function.

Paper. Learning Equations for Extrapolation and Control, by Subham S. Sahoo, Christoph H. Lampert, and Georg Martius, 35th ICML, Sweden, PMLR 80, 2018.
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Train the above neural network.
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For simplicity, assume after training, red edges have weight 1, other edges have weight 0.
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A network for equation learning that can handle divisions as well as techniques to keep training stable.
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Figure 1. Network architecture of the proposed improved Equation Learner EQL™ for 3 layers (L = 3) and one neuron per type
(u = 3,v = 1). The new division operations are places in the final layer, see Martius & Lampert (2016) for the original model.

Challenge posed by the division activation function:

Any division a/b creates a pole at b — (0 with an abrupt change in the convexity and diverging function value and its derivative.
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Figure 1. Network architecture of the proposed improved Equation Learner EQL™ for 3 layers (L = 3) and one neuron per type
(u = 3,v = 1). The new division operations are places in the final layer, see Martius & Lampert (2016) for the original model.

Challenge posed by the division activation function:

Any division a/b creates a pole at b — (0 with an abrupt change in the convexity and diverging function value and its derivative.

Such a divergence is a serious problem for gradient based optimization methods.
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Figure 1. Network architecture of the proposed improved Equation Learner EQL™ for 3 layers (L = 3) and one neuron per type
(u = 3,v = 1). The new division operations are places in the final layer, see Martius & Lampert (2016) for the original model.

Challenge posed by the division activation function:

Any division a/b creates a pole at b — (0 with an abrupt change in the convexity and diverging function value and its derivative.
Such a divergence is a serious problem for gradient based optimization methods.

A few simplification made in the paper:
1. Assume that b>0 in practical systems.
2. Use division only in the output layer.

Paper. Learning Equations for Extrapolation and Control, by Subham S. Sahoo, Christoph H. Lampert, and Georg Martius, 35th ICML, Sweden, PMLR 80, 2018.



Neural Network for Symbolic Regression: (1) Neural Network is the function

The division-activation function is given by  49%q.p) = { » T6>6  \where @ >0 is athreshold.
0 otherwise
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Figure 2. Regularized division function h° (a, b) and the associated
penalty term p? (b). The penalty is linearly increasing for function
values b < 6 outside the desired input values.
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Neural Network for Symbolic Regression: (1) Neural Network is the function

The division-activation function is given by 94, p) = { » ito >0 , Where @ > 0 is a threshold.
0 otherwise
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Figure 2. Regularized division function h° (a, b) and the associated
penalty term p? (b). The penalty is linearly increasing for function
values b < 6 outside the desired input values.

Using 49 = ( as the value went the denominator is below @ (forbidden values of b)
sets the gradient to zero, avoiding misleading parameter updates.
Paper. Learning Equations for Extrapolation and Control, by Subham S. Sahoo, Christoph H. Lampert, and Georg Martius, 35th ICML, Sweden, PMLR 80, 2018.



Penalty term

To steer the network away from negative values of the denominator, we add a
cost term to the training objective that penalizes “forbidden” inputs to each

division unit:

pP(b) = max(0 — b,0)
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Figure 2. Regularized division function h° (a, b) and the associated

(] . . . . .
penalty term p° (b). The penalty is linearly increasing for function
values b < 6 outside the desired input values.
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Penalty Epochs

While the above approach prevents negative values in the denominator at training
time (namely, for training samples), the right equation should not have negative

denominators even for potential extrapolation data (hamely, data outside of the
region of training data).
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Penalty Epochs

While the above approach prevents negative values in the denominator at training
time (namely, for training samples), the right equation should not have negative
denominators even for potential extrapolation data (hamely, data outside of the
region of training data).

Similarly, we would like to prevent that output values on future data having a very

different magnitude than the observed outputs, as this could be a sign of
overfitting (e.g., learning a polynomial of too high-degree).
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Penalty Epochs

While the above approach prevents negative values in the denominator at training
time (namely, for training samples), the right equation should not have negative
denominators even for potential extrapolation data (hamely, data outside of the
region of training data).

Similarly, we would like to prevent that output values on future data having a very
different magnitude than the observed outputs, as this could be a sign of
overfitting (e.g., learning a polynomial of too high-degree).

To enforce this we introduce particular “penalty epochs”, which are injected at
regular intervals (every 50 epochs) into training process.

Paper. Learning Equations for Extrapolation and Control, by Subham S. Sahoo, Christoph H. Lampert, and Georg Martius, 35th ICML, Sweden, PMLR 80, 2018.



Penalty Epochs

During a penalty epoch, we randomly sample N input data points in the expected “test range”
(including extrapolation region) without labels and the network is trained using the cost

g Penalty _ po , pbound

where the latter is given by

N n
pROUNd = %" 3" max(y(x) — B.0) + max(=y/(x) — B.0)
i=1 j=1

Basically, the penalty pbound s > 0 if any output by the network is outside the range
[-B,B]. The value B reflects the maximal desired output value.

Paper. Learning Equations for Extrapolation and Control, by Subham S. Sahoo, Christoph H. Lampert, and Georg Martius, 35th ICML, Sweden, PMLR 80, 2018.



Curriculum Training (for division activation function)

The division-activation function is given by  ;9(4, p) = {; itb>6

0 otherwise
_ 1

We let @ decrease with epoch t as 0(r) = F

r+1

It helps the network learn the equation more accurately in the end. For validation and testing, we use

0=10""

Paper. Learning Equations for Extrapolation and Control, by Subham S. Sahoo, Christoph H. Lampert, and Georg Martius, 35th ICML, Sweden, PMLR 80, 2018.



Network training
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The network is fully differentiable, which allows us to train it in an end-to-end
fashion using back propagation. The objective is Lasso-like:

1 N L
L=— 2 (o) =y +4 ), [wO| + P’
i=1 =1

Cost for small

MSE loss L1 regularization and n_egatlve_
to get a denominators in
simple function devision
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Network training

Phase 1 Phase 2 Phase 3
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Figure 3. Regularization phases: there is no regularization in the
first phase (¢ < t1) where the weights can move freely, followed
by a normal L; phase ({1 < t < t2) where many weights go
to zero, followed by a phase (t2 < t) that fixes the Lo norm by
keeping small weights at zero and allowing all other weights to

go to their correct value. Figure adapted from Martius & Lampert
(2016).
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Neural Network for Symbolic Regression:
(2) Neural Network outputs the function
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Neural Network for Symbolic Regression: (2) Neural Network outputs the function
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We present “Deep Symbolic Regression” (DSR), a gradient-based approach for symbolic
regression based on reinforcement learning.
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We present “Deep Symbolic Regression” (DSR), a gradient-based approach for symbolic
regression based on reinforcement learning.

In DSR, a recurrent network (RNN) emits a distribution over mathematical expressions.
Expressions are sampled from the distribution, instantiated, and evaluated based on their
fitness to the dataset.
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This fitness is used as the reward signal to train the RNN using a risk-seeking policy gradient
algorithm.

Paper. Deep Symbolic Regression: Discovering Mathematical Expressions from Data via Risk-Seeking Policy Gradients,
By Brenden K. Petersen, Mikel Landajuela Larma, T. Nathan Mundhenk, Claudio Santiago, Sookyung Kim and Joanne T. Kim, at ICLR 2021.




Neural Network for Symbolic Regression: (2) Neural Network outputs the function

We present “Deep Symbolic Regression” (DSR), a gradient-based approach for symbolic
regression based on reinforcement learning.

In DSR, a recurrent network (RNN) emits a distribution over mathematical expressions.
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fitness to the dataset.
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algorithm.

As training proceeds, the RNN adjusts the likelihood of an expression relative to its reward,
assigning higher probabilities to better expressions.
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fitness to the dataset.

This fitness is used as the reward signal to train the RNN using a risk-seeking policy gradient
algorithm.
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Neural Network for Symbolic Regression: (2) Neural Network outputs the function

We present “Deep Symbolic Regression” (DSR), a gradient-based approach for symbolic
regression based on reinforcement learning.

In DSR, a recurrent network (RNN) emits a distribution over mathematical expressions.
Expressions are sampled from the distribution, instantiated, and evaluated based on their

fitness to the dataset.

This fitness is used as the reward signal to train the RNN using a risk-seeking policy gradient
algorithm.

As training proceeds, the RNN adjusts the likelihood of an expression relative to its reward,
assigning higher probabilities to better expressions.

DSR is autoregressive, meaning each token is conditioned on the previously sampled token.

DSR exploits the hierarchical nature of trees by providing the parent and sibling as inputs to the RNN.
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Constraining the search space

It is straightforward to apply a priori constraints to reduce the search space. Here are some
plausible constraints:

1) the children of an operator should not all be constants.

2) The child of a unary operator should not be the inverse of that operator, e.g., log(exp(x))
is not allowed.

We apply these constraints concurrently with autoregressive sampling by zeroing out the
probabilities of selecting tokens that violate a constraint.
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Reward function for reinforcement learning

A standard fithness measure in symbolic regression is normalized root-mean-square
error (NRMSE), the root-mean-square error normalized by the standard deviation of
the target values, Gy .

That is, given a dataset (X,y) of size n and candidate expression f,

NRMSE = — 2 f(X)

Reward function:

R(7) =

1 + NRMSE

Paper. Deep Symbolic Regression: Discovering Mathematical Expressions from Data via Risk-Seeking Policy Gradients,
By Brenden K. Petersen, Mikel Landajuela Larma, T. Nathan Mundhenk, Claudio Santiago, Sookyung Kim and Joanne T. Kim, at ICLR 2021.




Constant optimization

If the Library L includes constant token, sampled expressions may include several
constant placeholders. These can be viewed as parameters ﬁ

of the symbolic expression, which we optimize by maximizing the reward function

p* = argmax R(t; f)
p

using a nonlinear optimization (nonlinear regression) algorithm, e.g., BFGS.

We perform this inner optimization loop for each sampled expression (namely, after a whole
symbolic function is generated by the RNN) as part of the reward computation before

performing each training step.
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Training the RNN using Policy Gradients

X1 | T2 Yy

1| 3] 125

2 1 3] 25 1
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1.2 3.5 1.680 25

Now that we have a distribution over mathematical expressions p(z|6), where 7 is a function and ¢

is the RNN'’s weights, we first consider the standard policy gradient objective to maximize

Jsa (0) = E;r19) R(7)
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Training the RNN using Policy Gradients

Tl | X2 Yy

1| 3] 125

2 | 3| 25 1

0| 3 0 — v, .

1| 2 |1.001 » RNN » Yy =4 2
1 |3.5|1.400 _ 2
1.2 | 3.5 | 1.680 25

The standard REINFORCE policy gradient can be used to maximize this expectation via gradient ascent:

vﬁ Jstd(e) = ve ET~(T|¢9) R(T) = ETNp(T|9) R(T) ve lng(Tl 8)
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Training the RNN using Policy Gradients
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This result allows one to estimate the expectation using samples from the distribution. Specifically, an unbiased
estimate can be obtained by computing the sample mean over a batch of N sampled expressions

I, .
Vo Jd® = D R@) Vglogp('|0)
i=1

This is an unbiased gradient estimate, but in practice it has high variance. To reduce variance, it is common to
subtract a baseline function b from the reward. As long as the baseline is not a function of the current batch of
expressions, the gradient estimate is still unbiased. Common choices of baseline functions are a moving
average of rewards or an estimate of the value function.
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Risk-seeking policy gradient

Ideally, the RNN should always output the unique correct symbolic expression.
But in practice, the RNN can output a set of candidate symbolic expressions.
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But in practice, the RNN can output a set of candidate symbolic expressions.

We want to maximize the expected reward of the (one or a few) best expressions, not the average reward
of all output expressions. (This is especially important when there are too many output expressions.)
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But in practice, the RNN can output a set of candidate symbolic expressions.

We want to maximize the expected reward of the (one or a few) best expressions, not the average reward
of all output expressions. (This is especially important when there are too many output expressions.)

Idea: instead of maximizing the expected reward of all output expressions (and hoping they will
eventually all converge to the correct expressions), let’s focus only on the best few output
expressions and maximize their expected reward, and dismiss the other less-optimal

expressions.
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Risk-seeking policy gradient

Ideally, the RNN should always output the unique correct symbolic expression.
But in practice, the RNN can output a set of candidate symbolic expressions.

We want to maximize the expected reward of the (one or a few) best expressions, not the average reward
of all output expressions. (This is especially important when there are too many output expressions.)

Idea: instead of maximizing the expected reward of all output expressions (and hoping they will
eventually all converge to the correct expressions), let’s focus only on the best few output
expressions and maximize their expected reward, and dismiss the other less-optimal

expressions.

That is, we propose an alternative objective that focuses on learning only on “maximizing
best-case performance”.
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Risk-seeking policy gradient

We first define R (6) as the (1 — e)-quantile of the distribution of the rewards under the current policy.

We then propose a new learning objective J,., (6; €) parameterized by e :
‘]rlsk(e; €) — Ef[Np(TlQ) [R(T) |R(T) Z Rg(e)]

This objective aims to increase the reward of the top € fraction of samples from the distribution,

without regard for samples below that threshold. It aims to increase best-case performance at
the expense of lower average-case performance.
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Risk-seeking policy gradient

v& Jrisk(g; €) — Er~p(z'|0)[(R(T) - Re(e)) VH 10gp(T | 9) | R(T) > Re(e)]

Monte Carlo estimate of the gradient from a batch of N samples:

N

1 o |
Vo lugl:e) ~ 2. [RCD) = RO)] - 1roysr0) Vo logpe?10)
i=1
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Evaluating DSR

Nguyen symbolic regression benchmark: a set of 12 commonly used benchmark expressions.

Benchmark Expression DSR

Nguyen-1 z° + 1’ 42 100%
Nguyen-2 *+ 2+ 4z 100%
Nguyen-3 4+t P+t 4o 100%
Nguyen-4 z®+25+zt+23+22+2  100%
Nguyen-5 sin(z?) cos(z) — 1 72%
Nguyen-6 sin(z) + sin(z + =2) 100%
Nguyen-7 log(z + 1) + log(z* + 1) 35%
Nguyen-8 VT 96%
Nguyen-9 sin(z) + sin(y?) 100%
Nguyen-10 2 sin(x) cos(y) 100%
Nguyen-11 xY 100%
Nguyen-12 ot — 2+ 1y —y 0%

Average 83.6%
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Performance of DSR with Noisy data

Add Gaussian noise to y, where the noise has mean 0 and standard deviation
proportional to the root-mean-square error of vy.

80% - — 1x data -- 10x data
R i et EEE
260% - i it LTS T S >
(O] (O]
S s S i WU me S etels Rt A >
S40% - S
(O] (0]
o o
20% 4+ DSR -+ VPG
-+ PQT GP —+ Eureqa
O% 1 1 1 1 1 1
0 0.02 0.04 0.06 0.08 0.1
Noise level

Figure 4: Recovery vs dataset noise
and dataset size across all Nguyen
benchmarks. Error bars represent stan-
dard error.
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Comparison of Running Time

Without early stopping, Genetic Programming is faster, as it does not require neural
network training.

Considering early stopping, Deep Symbolic Regression can be faster when it has a high
recovery rate and as a result can trigger early stopping more often.
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Equation Simplification for Symbolic Regression

Name of the algorithm: Al Feynman

Benchmark equations: 100 equations from “Feynman Lectures on Physics”, which have 1 to 9 independent variables.
Elementary functions: +, -, *, /, sqrt, exp, log, sin, cos, arcsin, tanh.

Feynman Eq. Equation 112.2 P
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1.6.20 f= e"%/\lZ‘rw2 R 1+W/C ...........
.......................................... 1.12.11 F =q(Ef+ Bvsin 6) +
1.6.20b N bl 7= St
e f=e 22 /V2no 1.13.4 K = %m(vz+u2+w2) ...........................................................................................
Crmmmmmmm——————— 1.18.12 t=rFsin®
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1918 s N
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Feynman Eq. Equation
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Bonus equations for testing

Source Equation Goldstein 3.55 K = mkG 141 +22 cos (0 — 6
mké 1 2
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Bonus equations for testing

Jackson 3.45 V, = q

- 1
(r? + d? - 2drcos 0)’

_ 143
Jackson 4.60 V, = E¢cos G(Z_A% _ ,)
Jackson 11.38 (Doppler) @0 o o
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Sampling the Training/Test Equations

For each equation, 100,000 samples are taken.

Each input variable is uniformly sampled between 1 and 5.
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Equation Simplification for Symbolic Regression: Al Feynman Algorithm
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Equation Simplification for Symbolic Regression: Al Feynman Algorithm

S | n
amples Neural Network * fGxp, e x)
(xla "',xn,Y)
~fxg, e x,)

Universal Approximation Theorem

A simpler statement of the “Universal Approximation Theorem” (by lan Goodfellow):
“A feedforward network with a single layer is sufficient to represent any function, but
the layer may be infeasibly large and may fail to learn and generalize correctly.”

Multilayer feedforward networks are universal approximations, by Kurt Hornik, Maxwell Tinchcombe, and Halbert White, in Neural Networks, vol. 2, pp. 359-366, 1989.
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Equation Simplification for Symbolic Regression: Al Feynman Algorithm

S | A
amples Neural Network * fGxp, e x)
(-xla "'axnay)
~fxg, e x,)

We train a feed-forward, fully connected neural network with six hidden layers with softplus log(1 + ¢*)
activation functions, the first three layers having 128 neurons and the last three layers having 64
neurons.

For each mystery function, we generated 100,000 data points, using 80% as the training set and the
remainder 20% as the validation set, training for 100 epochs with learning rate 0.005 and batch size
2048.

We use the RMSE loss function and the Adam optimizer with a weight decay of 0.01.
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Equation Simplification for Symbolic Regression: Al Feynman Algorithm

Discover
rties of Separability,
Samples N prope
P Neural Network fxp, X)) Mystery Symmetry,
(xl’ s X y) Function Compositionality,
~ f(xl’ o.-,-xn) y — f(xl’ ___’xn) EtC

Paper: Al Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.




Equation Simplification for Symbolic Regression: Al Feynman Algorithm

Samples
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y = flx), X C regression
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Equation Simplification for Symbolic Regression: Al Feynman Algorithm

Discover . .

Samples properties of Separability, Slmpllfy
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Example: f= (x; —x)(5 + x5, —x,+3) = fi=x,—x and f, = x5 + xyx, —x, + 3
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Equation Simplification for Symbolic Regression: Al Feynman Algorithm

Discover . .

Samples properties of Separability, Slmpllfy
Neural Network fOxq, ooy x) Mystery . Symr_r;_etry,rt fFunctucl;n lf
(Xpy 5 X0 Y) Function ompositionality, or symbolic
~ f(xl, “‘,xn) y = flxp, X Etc. regression

Example: f= (x; — )5 + x50, — X, +3) = fi=x; —x, and f, = x3 + x50, — x4 + 3

Example: f= (x; —x)* + (55— x)* =  f=zi+z5 With z,=x —x), 2, =% —x,
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Equation Simplification for Symbolic Regression: Al Feynman Algorithm

Discover . .

Samples properties of Separability, Slmpllfy
Neural Network fOxq, ooy x) Mystery . Symr_r;_etry,rt fFunctucl;n lf
(Xpy 5 X0 Y) Function ompositionality, or symbolic
~ f(xl, “‘,xn) y = flxp, X Etc. regression

Example: f= (x; — )5 + x50, — X, +3) = fi=x; —x, and f, = x3 + x50, — x4 + 3
Example: f=(x; —x)* + (5 —x)* — f=zt4+2z With zy=x —x, =x—x
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Equation Simplification for Symbolic Regression: Al Feynman Algorithm

Discover o
Samples properties of Separability, Slmpllfy
Neural Network flxy, -, x,) Mystery Symmetry, Function f
(xl’ L X, y) Function Compositionality, for symbolic
~ flxg, -, x,) Vv = f(x,- Etc. regression
Example: f = (x; — x)(x5 + x3%y — X, + 3)

-  fi=x —x,andf, =x32+x3x4—x4+3
Example: f = (x; — x))* + (x3 — x,)°

- f= le + Z22 with =X —
Example: f = (x;/x,)* + (x3/x,)?

X9y B = X3 — Xy

Example: f=x /(7 +x3)x;  —  f=glh(x;,x),x3) With h(x;,x) =x7+x3 and  g(h,x;) = xy\/hx
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Functions in practice often have these simplifying properties:

1. Units: f and the variables upon which it depends have known physical units.

Paper: Al Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.




Functions in practice often have these simplifying properties:

1. Units: f and the variables upon which it depends have known physical units.

2. Low-order polynomial: f (or part of f) is a polynomial of low degree.
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Functions in practice often have these simplifying properties:

1. Units: f and the variables upon which it depends have known physical units.

2. Low-order polynomial: f (or part of f) is a polynomial of low degree.

3. Compositionality: f is a composition of a small set of elementary functions, each
typically taking no more than two arguments.
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4. Smoothness: f is continuous and perhaps even analytic in its domain.
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Functions in practice often have these simplifying properties:
1. Units: f and the variables upon which it depends have known physical units.
2. Low-order polynomial: f (or part of f) is a polynomial of low degree.

3. Compositionality: f is a composition of a small set of elementary functions, each
typically taking no more than two arguments.

4. Smoothness: f is continuous and perhaps even analytic in its domain.

5. Symmetry: f exhibits translational, rotational, or scaling symmetry with respect to
some of its variables.
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Functions in practice often have these simplifying properties:
1. Units: f and the variables upon which it depends have known physical units.
2. Low-order polynomial: f (or part of f) is a polynomial of low degree.

3. Compositionality: f is a composition of a small set of elementary functions, each
typically taking no more than two arguments.

4. Smoothness: f is continuous and perhaps even analytic in its domain.

5. Symmetry: f exhibits translational, rotational, or scaling symmetry with respect to
some of its variables.

6. Separability: f can be written as a sum or product of two parts with no variables
in common.
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Functions in practice often have these simplifying properties:

1. Units: f and the variables upon which it depends have known physical units.

Property 1 enables dimensional analysis, which often transforms the problem into a
simpler one with fewer independent variables.
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Dimensional analysis

Often the problem can be simplified by requiring the units of the two sides of an equation to match.

Fundamental Units: Meter, second, kilogram, kelvin, volt

Table 3. Unit table used for our automated dimensional analysis.

Variables Units m s kg T v
a,g Acceleration 1 -2 0 0 0
h,h,L,J, Angular momentum 2 -1 1 0 0
A Area 2 0 0 0 0
ko Boltzmann constant 2 -2 1 -1 0
C Capacitance 2 -2 1 0 -2
4,91, 92 Charge 2 -2 1 0 -1
j Current density 0 -3 1 0 -1
I 1o Current Intensity 2 -3 1 0 -1
P, Po Density =5 0 1 0 0
6,61,0, 0,n Dimensionless 0 0 0 0 0
9_ ke, % B a Dimensionless 0 0 0 0 0
Py No, 8, f 1 Dimensionless 0 0 0 0 0
no 8, f, 1, 21,25 Dimensionless 0 0 0 0 0
D Diffusion coefficient 2 =1 0 0 0
Uarift Drift velocity 0 -1 1 0 0
constant
Pd Electric dipole 3 =2 1 0 -1
moment
Ef Electric field -1 0 0 0 1
€ Electric permitivity 1 -2 1 0 -2
E K U Energy 2 -2 1 0 0
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Functions in practice often have these simplifying properties:
1. Units: f and the variables upon which it depends have known physical units.

2. Low-order polynomial: f (or part of f) is a polynomial of low degree.

Property 2 enables polynomial fitting, which quickly solves the problem by solving a
system of linear equations to determine the polynomial coefficients.
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Polynomial Fit

m
Many functions in practice are low-order polynomials, e.g., the kinetic energy K = ?(vf + vy2 + vzz)

Gmm,
(X1 = x)% + (v = »)? + (7 — )?

or have parts that are, e.g., the denominator of the gravitational force F =

We use a module to test if a mystery can be solved by a low-order polynomial.

It uses standard techniques for polynomial fitting, and declares success if the best-fitting polynomial
gives root mean square error (RMSE) less than a threshold.
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Brute Force Search

When the problem is small enough, simply try all simple (short) symbolic expressions,
and declares success when the maximum fitting error is below a threshold.

How to enumerate all simple (short) symbolic expressions: use computation
tree, or its string representation.

A string representation: reverse Polish notation
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String Representation for Function: Reverse Polish notation

Table 1. Functions optionally included in brute-force search. The
following three subsets are tried in turn: “+—*/><~SPLICER", “+—*/> 0~"
and “+—*/><~REPLICANTS0".

Symbol Meaning Arguments

+ Add 2

* Multiply 2

- Subtract 2

) Divide 2

.> o Increment 1
<Decrement ...................................... 1 .........................
e N egate ........................................... 1 .........................
0 0 0

.1 1 0

‘R sqrt 1

‘E exp 1

‘P n 0

.L --------------- mn 1

'| AAAAAAAAAAA o ;
cCos ............................................... 1 .........................
Aabs .............................................. 1 .........................
N .................................................................... arcsm ............................................ 1 .........................
Tarctan ............................................ 1 .........................
S ---------- sin 1
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String Representation for Function: Reverse Polish notation

Table 1. Functions optionally included in brute-force search. The

following three subsets are tried in turn: *+—*/><~SPLICER', “+—*/> 0~* Examples of “reverse Polish notation” (where parentheses are unnecessary):
and “+—*/><~REPLICANTS0".

Symbol Meaning Arguments X + y N xy_l_

+ Add 2

* Multiply 2

- Subtract 2

7 Divide 2

.> Increment 1

arctan

sin
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String Representation for Function: Reverse Polish notation

Table 1. Functions optionally included in brute-force search. The

following three subsets are tried in turn: “+—*/><~SPLICER', "+—%/> 0~" Examples of “reverse Polish notation” (where parentheses are unnecessary):
and “+—*/><~REPLICANTS0".
Symbol Meaning Arguments X + y — xy _|_
+ Add 2
* Multiply 2
= Subtract 2
/ Divide 2
> Increment 1 _2/3 - 0 << 1 > > /

—1 2

-2 3

arctan 1

w -

sin 1
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String Representation for Function: Reverse Polish notation

Table 1. Functions optionally included in brute-force search. The

following three subsets are tried in turn: “+~*/><~SPLICER", “+~*/> 0~" Examples of “reverse Polish notation” (where parentheses are unnecessary):
and “+—*/><~REPLICANTS0".

Symbol Meaning Arguments X + y N xy _|_

+ Add 2

* Multiply 2

- Subtract 2

/ Divide 2

.> Increment 1 _2/3 - O << 1 > > /
<Decrement ...................................... 1 .........................

s N egate ........................................... 1 .........................

0 0 0

1 1 0 mviV 1 —=v2c? — mv*lvw*cc*/—R/
R sqrt 1

E exp 1 my V2 C2

P n 0

L " : v2/c?

| invert 1

- S N 1 —v2/c?

A abs 1

N arcsin 1

T ..................................................... arctan ....................... e 1 . VQ/CQ
S sin 1 .
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String Representation for Function: Reverse Polish notation

Table 1. Functions optionally included in brute-force search. The

following three subsets are tried in turn: “+~*/><~SPLICER", “+~*/> 0~" Examples of “reverse Polish notation” (where parentheses are unnecessary):
and “+—*/><~REPLICANTS0".

Symbol Meaning Arguments X + y N X y +
+ Add 2
* Multiply 2
= Subtract 2
/ Divide 2
.> Increment 1 _2/3 - O << 1 > > /

mvy/ 1 —v2c? S5 mv*lvww*cc*/ =R/

The brute-force algorithm solves the constants in the symbolic
expressions using non-linear regression, and focuses on
enumeration of the remaining part of the symbolic expressions.

arcsin

1
N 1
T arctan 1
s :

sin
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Balance Accuracy & Complexity

Define the winning function to be the one with RMSE (root mean square error) less than a threshold
that has the smallest total description length:

DL = log, N+ 4 logz[max(l,i)]
€d

where €; = 1071 and N is the rank of the string on the list of all strings tried.

The two terms correspond roughly to the number of bits required to store the symbol string and the
prediction errors, if the hyperparameter } s set to equal the number of data points N, .

In experiments, we use | = 4 /Nd to prioritize simpler formulas.
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Test “Translational Symmetry and Generalizations”

We test for translational symmetry using the trained neural network (that approximates the
mystery function f).

We first check if  f(x;, x5, %3, ) = f(x; +a,x, + a,x;,--+) to within a precision threshold.

If that is the case, then we replace x; and x, by x; = x, —x;.
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Test “Translational Symmetry and Generalizations”

We test for translational symmetry using the trained neural network (that approximates the
mystery function f).

We first check if  f(x;, x5, %3, ) = f(x; +a,x, + a,x;,--+) to within a precision threshold.

If that is the case, then we replace x; and x, by x; = x, —x;.

Otherwise, we repeat this test for all pairs of input variables, and also test whether any variable pair can
be replaced by its sum, product, or ratio.
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Test “Translational Symmetry and Generalizations”

We test for translational symmetry using the trained neural network (that approximates the
mystery function f).

We first check if  f(x;, x5, %3, ) = f(x; +a,x, + a,x;,--+) to within a precision threshold.

If that is the case, then we replace x; and x, by x; = x, —x;.

Otherwise, we repeat this test for all pairs of input variables, and also test whether any variable pair can
be replaced by its sum, product, or ratio.

If any of these simplifying properties is found, the resulting transformed mystery (with one fewer

input variable) is interactively passed into a fresh instantiation of the full Al Feynman symbolic
regression algorithm.
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Test “Separability”
We test for “Separability” using the trained neural network.

A function is separable if it can be split into two parts with no variables in common.
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Test “Separability”

We test for “Separability” using the trained neural network.

A function is separable if it can be split into two parts with no variables in common.

We test for both “Additive Separability” and “Multiplicative Separability”, corresponding to these
two parts being added and multiplied, respectively.

For example, to test whether a function of two variables is multiplicatively separable, i.e., of the form

Sx,x) = gxh(x,)

for some univariate functions g and h, we first select two constants c1 and c2; for numerical

robustness, we choose c_{I} to be the means of all the values of x_{i} in the mystery dataset, for 1=1,2.
We then compute the quantity

1 S, e)f (e, xp)
P TP

Asep(xl’ x2) =

For each data point. This is a measure of non-separability, since it vanishes if f is multiplicatively separable.
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Test “Separability”

We test for “Separability” using the trained neural network.

A function is separable if it can be split into two parts with no variables in common.

We test for both “Additive Separability” and “Multiplicative Separability”, corresponding to these
two parts being added and multiplied, respectively.

For example, to test whether a function of two variables is multiplicatively separable, i.e., of the form

Jx, ) = glxh(x,)

for some univariate functions g and h, we first select two constants c1 and c2; for numerical

robustness, we choose c_{i} to be the means of all the values of x_{i} in the mystery dataset, for i=1,2.
We then compute the quantity

S, e)f (e, xp)
f;’ms . f(XI, XZ) - f(cl’ C2)

Asep(xl 4 x2) =

for each data point. This is a measure of non-separability, since it vanishes if f is multiplicatively separable.
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Use “Separability” to simplify symbolic regression

If separability is found, we define the two univariate mysteries y’ = f(x;,¢;) and Y’ =f(c|,x)/f(c;, cy).
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Use “Separability” to simplify symbolic regression

If separability is found, we define the two univariate mysteries y’ = f(x;,¢;) and Y’ =f(c|,x)/f(c;, cy).

We pass the first one, y' = f(x;, ¢,) back to fresh instantiation of our full Al Feynman symbolic regression algorithm,

Y o :
and if it gets solved, we redefine Y’ = — * Cpum» Where ¢, represents any multiplicative numerical constant

that appears in y'.
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Use “Separability” to simplify symbolic regression

If separability is found, we define the two univariate mysteries y’ = f(x;,¢;) and Y’ =f(c|,x)/f(c;, cy).

We pass the first one, y' = f(x;, ¢,) back to fresh instantiation of our full Al Feynman symbolic regression algorithm,

Y o :
and if it gets solved, we redefine y" = — * Cpum» Where ¢, represents any multiplicative numerical constant

that appears in y'.

14,11

. yy
We then pass Y back to our algorithm, and if it gets solved, the final solutionis Yy = ——.

Cnmn
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Use “Separability” to simplify symbolic regression

If separability is found, we define the two univariate mysteries y’ = f(x;,¢;) and Y’ =f(c|,x)/f(c;, cy).

We pass the first one, y' = f(x;, ¢,) back to fresh instantiation of our full Al Feynman symbolic regression algorithm,

Y o :
and if it gets solved, we redefine y" = — * Cpum» Where ¢, represents any multiplicative numerical constant

that appears in y'.

" . . . . Y'Y
We then pass Y back to our algorithm, and if it gets solved, the final solutionis Yy =

Cnum

We test for “additive separability” analogously, simply replacing * and / by + and - above; also, Cnum will represent

an additive numerical constant in this case. If we succeed in solving the two parts, then the full solution to the
original mystery is the sum of the two parts minus the numerical constant.
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Use “Separability” to simplify symbolic regression

If separability is found, we define the two univariate mysteries y’ = f(x;,¢;) and Y’ =f(c|,x)/f(c;, cy).

We pass the first one, y' = f(x;, ¢,) back to fresh instantiation of our full Al Feynman symbolic regression algorithm,

Y o :
and if it gets solved, we redefine y" = — * Cpum» Where ¢, represents any multiplicative numerical constant

that appears in y'.

" . . . . Y'Y
We then pass Y back to our algorithm, and if it gets solved, the final solutionis Yy =

Cnum

We test for “additive separability” analogously, simply replacing * and / by + and - above; also, Cnum will represent

an additive numerical constant in this case. If we succeed in solving the two parts, then the full solution to the
original mystery is the sum of the two parts minus the numerical constant.

When there are more than two variables, we test all the possible subsets of variables that can lead to
separability and proceed as above for the newly created two mysteries.
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Extra transformations

Apply the following transformations to variables and y, and try to solve the mystery equation:
square root, raise to the power of 2, log, exp, inverse, sin, cos, tan, arcsin, arccos, and arctan.

Example: if may be hard to discover the symbolic equation for r = \/ X1 —x)* + (3 — )+ (2 — )°
but if we transform r to rA {2}, we can use polynomial regression to solve

= =0+ (0 =)+ (2 — )
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Compare the “Al Feynman Algorithm” to Genetic Programming

Al Feynman is good at finding complex equations compared to Genetic Programming.

For example, the neural network strategy is used six times when solving
Gmm,
(X1 = X)? + (1 — y)* + (7 — 20)°

F =

Without dimensional analysis: three times to discover translational symmetry that replaces

X1 — X2, Y1 — Y2, 1 — Zp,

then use separability to repeatedly simplify the function.
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Gmimo
(z2—21)2+(y2—y1)2+(22—21)?
Dimensional
analysis
Gm? %
E - I E -1
© [
a
(b—1)2+(c—d)%+(e—f)?
Translational
symmetry
a
(b—=1)%+g*+(e—f)?
|
Translational
symmetry
a
(b—1)2+g2+h?
|
Multiplicative
separability
[ S a
(b—1)2+g%+h? |
Polynomial
i
(b—1)%+ g% + h?
I =
Polynomial
fit

An example of how a particular mystery dataset (Newton’s law of gravitation with nine variables) is solved.

Fig. 2. Example: How our Al Feynman algorithm discovered mystery Equation 5.
Given a mystery table with many examples of the gravitational force F together
with the nine independent variables G, my, my, x3,..., Z, this table was recursively
transformed into simpler ones until the correct equation was found. First, dimensional
analysis generated a table of six dimensionless independent variables a=my/m;,...,

f=21/x and the dimensionless dependent variable F = F+ GmZ/x2.Then, a neural net-
work was trained to fit this function, which revealed two translational symmetries
(each eliminating one variable, by defining g = c-d and h = e - f) as well as multi-
plicative separability, enabling the factorization F(a, b, g, h) = G(a) H (b, g, h), thus
splitting the problem into two simpler ones. Both G and H then were solved by
polynomial fitting, the latter after applying one of a series of simple transformations
(in this case, inversion). For many other mysteries, the final step was instead solved
using brute-force symbolic search as described in the text.
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Al Feynman —

y

[-0.570631 -0.553583 -1.677797
0.883785 0.817601 2.518988 .
-1.145615  0.546180 -0.053256
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Fig. 1. Schematic illustration of our Al Feynman algorithm. It is iterative as de-
scribed in the text, with four of the steps capable of generating new mystery data-
sets that get sent to fresh instantiations of the algorithm, which may or may not
return a solution.
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Find Pareto-optimal functions: A more robust approach

A more robust approach: find formulas that are Pareto-optimal, in the sense of having the
best accuracy for a given complexity. It can make the symbolic regression algorithm orders
of magnitude more robust toward noise and bad data.
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Figure 1: Our symbolic regression of data on how kinetic energy depends on mass, velocity and the
speed of light discovers a Pareto-frontier of four formulas that are each the most accurate given their
complexity. Convex corners reveal particularly useful formulas, in this case Einstein’s formula and

the classical approximation mwv?/2.
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Tailin Wu, and Max Tegmark, in 34th Conference on Neural Information Processing Systems (NeurlPS 2020), Vancouver, Canada.




Use more general modality of computation graph to simplify function

Simple symmetry (scaling, etc.)

Additive separability

Compositionality

S

Generalized symmetry

Multiplicative separability

Generalized additivity

:

&

Figure 3: Examples of graph modularity that our algorithm can auto-discover. Lines denote real-
valued variables and ovals denote functions, with larger ones being more complex.
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An example of generalized symmetry

f
x y z

Figure 2: All functions can be represented as tree graphs whose nodes represent a set of basic
functions (middle panel). Using a neural network trained to fit a mystery function (left panel), our
algorithm seeks a decomposition of this function into others with fewer input variables (right panel),
in this case of the form f(z,y, z) = glh(z,y), 2] .
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Tailin Wu, and Max Tegmark, in 34th Conference on Neural Information Processing Systems (NeurlPS 2020), Vancouver, Canada.




Test “Compositionality”

Compositionality: Let us first consider the case of “compositionally”, where f(X) = g(h(x)) Compositionality

and h is a scalar function simpler than f in the sense of being expressible with a smaller graph. —

By the chain rule, we have X/ f(x) = g¢'(h(x)) V h(x)

o —

so Vf =+ Vh  Wwherehats denote unit vectors: <7 v/ ~n V h
"= ]

This means that if we can discover a function h whose gradient is proportional to that of f (for
details see the reference paper below), then we can simply replace the variables x in the original

mystery data by the single variable h(x) and recursively apply the Al Feynman algorithm to the new
one-dimensional symbolic regression problem of discovering g(h).
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Test “Generalized Symmetry”

Generalized symmetry

Generalized symmetry: Let us now turn to “Generalized Symmetry”, where k of the n

arguments enter only via some scalar function h of them. Specifically, we say that an f has
“Generalized Symmetry” if the n components of the vector x € R" —
can be split into groups of k and n-k components (which we denote by the vectors

= Rk and x" € Rn—k
suchthat f(x) = f(x,x") = g[h(x'),x”] for some function g).

By the chain rule, we have  \/_, f(x’,x") = g,[h(x),x"]V h(X)

—_—

So Vof=x \Vh where g1denotes the derivative of g with respect to its first argument.
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Test “Generalized Additivity”

Generalized Additivity: If f is a function of two variables, then we also test for “Generalized Additivity”

where f(xl,xz) = F[g(xl) + h(.xz)] Generalized additivity
_ _ of/ ox, g'(x)) —
s(x;,x) = s(x;,x) = -
If we define the function s(x;, x,) ofo%, then  s(xp, x,) )

if f satisfies the generalized additivity property. In other words, we simply need to test if s is
of the “multiplicatively separable form”

s(x;, %) = a(x))b(x,)

which we already know how to test.
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Table 1: Simplification strategies

Name Property Action

Negativity f(x1,22,...) <0 Solve forg = — f
Positivity f(x1,29,...) >0 Solve for g = In f
Additive f(@1y oy Thoy Thp 1y ooy Tp) =

separability 9(z1, ey k) + A(Tga1,y ey Tn) Solve for g & h
Multiplicative f(@1y ey Ty Tt 1y ooy Ty) =

separability 9(z1, oy )M (TEt1,y ooy Thy) Solve for g & h
Simple symmetry  f(x1,zs,...) = g(z1 © z2,...), ® € {+,—,%,/}  Solve for g
Compositionality  f(z1,...,z,) = g(h(z1,...,2,)), hsimplerthan f Find h with Vh « V f
Generalized F(Z1y ooy Ty Tt 1y ooy Tpy) = Find h satisfying
symmetry glh(x1, ey k), Tha1y -- T aa—fi x g—ai’ 1=1,..,k
Generalized f(z1,22) = Flg(z1) + h(z2)] Solve for F', g & h
additivity

Zero-snap f has numerical parameters p Replace p; by 0

Integer snap

f has numerical parameters p

Round p; to integer

Rational snap

f has numerical parameters p

Round p; to fraction

Reoptimize

f has numerical parameters p

Reoptimize p to
minimize inaccuracy
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Table 4: Test equations exhibiting translational symmetry h = x + y (T), scaling symmetry h = x/y
(S), product symmetry h = zy (P), generalized symmetry (G), multiplicative separability (M),
compositionality (C) and generalized additivity (A).

| Equation | Symmetries
1| 6=-541+4925/x TC
2 | x=023+142%7 TS
3 IB = 213.80940889 (1 6—0.54723748542a)
4 | 0=6.87+11\/apfy P
5|V=I[Ri"+R;'+R;'+R; "' Iocoswt (Parallel resistors) PGSM
6 | Ip= & ~ (RLC circuit ) MG
\/R2+ wL——)
7 Vocoswt___ (RLC circuit) MG
\/R2 wL——
8 | Vo= R1 T R + ==-)V1  (Wheatstone bridge) SGMA
9 |v=c i;’j;zvjfg 1/;%;2“3%’; /< (Velocity addition) . AG
_ v1+ve2+vs+tv c+(v2v3v4+v1v3V4+V1V2V4+V1I V2V c . I
10 | v= 1+(v1v2+31v3‘fl-v1v4+1)213:-1)211431l-33v4)/6211)11)21)324/6 (VCIOCIty addltlon) GA
11 | z= (z*+y*Y* (Ls-norm) AC
12 | w=ayz — 2v/1—22/1 —y2 —y/1 — 221 — 22 — 24/1 — y2\/1 — 22 GA
_ zy+/1-a2—y2+x2y2
13 Z= y@—m\/l—yﬂ A
14 | z=yV1—22+2/1— 92 A
15 | 2=y — V1 —22/1 -2 A
16 | r= @ /2)j_cot BT (Incircle) GMAC
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Network Training

Discover
rties of
Samples prope
P Neural Network f(xl, e, X, ) Mystery
(15, x,,y) Function
1 n y (
~ [, y = flr, )

The neural network is a fully-connected, feed-forward neural network with 4
hidden layers of 128, 128, 64 and 64 neurons, respectively, all with tanh
activation function.
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Extension: Symbolic Regression for Probability Distribution

Leveraging “normalizing flows” to symbolic regress “probability distributions”

An important but more difficult symbolic regression problem is when the unknown function f(x) is a
probability distribution from which we have random samples X; rather than direct evaluations f(xl) .

We tackle this by adding preceding the regression by a step that estimates f(X) .

For this step, we use the popular “normalizing flow” technique, training an invertible neural network
mapping x — x’' = g(X) suchthat X' has amultivariate normal distribution n(x’.

We then obtain our estimator  fy\(X) = n[g(X)]|J| whereJis the Jacobian of g.
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Extension: Symbolic Regression for Probability Distribution

Table 5: Probability distributions and number of samples /N required to discover them

Distribution Name Probability distribution N
Laplace distribution le—l=l 102
Beta distribution (o« = 0.5, 8 = 0.5 SO - 104
( B ) * Jall=s)

Beta distribution (o = 5, 3 = 2) 30z4(1 — z) 104
Harmonic oscillator (n = 2, B¢ = 1) %x%‘“’z 10°
Sinc diffraction pattern 1 (snz) 2 104
2D normal distribution (correlated) ﬁe‘ 5 (@ —zy+y®) 103
2D harmonic oscillator (n = 2, m = 1, % =1) 2 4202~y 10°
Hydrogen orbital (n = 1,1 = 0, m = 0) %e‘” 103
Hydrogen orbital (n = 2,1 = 1, m = 0) 7s72e”" cos? § -

Hydrogen orbital (n = 3,1 =1, m = 0) %97"2 (4 — %)2 e~ 7 cos?l | -
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Questions are welcome!



