
Anxiao (Andrew) Jiang

Deep Learning for Symbolic Regression

Computer Science and Engineering Department

Texas A&M University

Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.

“In 1601, Johannes Kepler got access to the world’s best data tables on planetary orbits.

And after 4 years and about 40 failed attempts to fit the Mars data to various ovoid shapes,
he launched a scientific revolution by discovering that Mars’ orbit was an ellipse.

This was an example of symbolic regression: discovering a symbolic expression that
accurately matches a given dataset.”

Can you see what function it is?

Can you see what function it is?

y = x1 ⋅ 1

1 − x2
2

25

Can you see what function it is?

y = x1 ⋅ 1

1 − x2
2

25

t′ = t ⋅ 1

1 − v2

c2

Einstein’s equation for

theory of special relativity

Can you see what function it is?

Can you see what function it is?

y = 8πx1(x2 + x3x4)

Can you see what function it is?

y = 8πx1(x2 + x3x4) Gμν = 8πG(Tμν + ρΛgμν)

Einstein’s equation for

general theory of relativity

Can you see what function it is?

Can you see what function it is?

y = 4π2

9.8(x1 + x2)
⋅ x3

3

Can you see what function it is?

y = 4π2

9.8(x1 + x2)
⋅ x3

3

Kepler’s third law

on planetary movement

P2 = 4π2

G(m1 + m2)
⋅ a3

Symbolic Regression

y = f (x1, x2, ⋯, xn)

Symbolic Regression

y = f (x1, x2, ⋯, xn)

function f : Accurate & Simple

Symbolic Regression is different from

Linear

regression

Polynomial
regression

Fourier

transform

Wavelet

transform

Nonlinear
regression

because it needs to find both the symbolic form of the function
as well as its coefficients.

Symbolic Regression is different from

Neural Networks

because it needs to find a simple form for the function.

Why is Symbolic Regression hard?

When the length of the function increases, the
number of functions increases exponentially.

Consider functions of just ONE variable

Set of operations : + , × , sin,
Set of variables : x

Set of constants : 1, − 1

Consider functions of just ONE variable

Set of operations : + , × , sin,
Set of variables : x

Set of constants : 1, − 1

One operation: x + 1, x − 1, − 1 × x, x × x, sin x, x

Consider functions of just ONE variable

Set of operations : + , × , sin,
Set of variables : x

Set of constants : 1, − 1

One operation: x + 1, x − 1, − 1 × x, x × x, sin x, x

Two operations: x + x + 1, x + x − 1, x × x + 1, x × x − 1, sin x + 1, sin x − 1, − sin x, x + 1,

x − 1, − x, sin x, sin x, sin sin x, x ⋯

Consider functions of just ONE variable

Set of operations : + , × , sin,
Set of variables : x

Set of constants : 1, − 1

One operation: x + 1, x − 1, − 1 × x, x × x, sin x, x

Two operations: x + x + 1, x + x − 1, x × x + 1, x × x − 1, sin x + 1, sin x − 1, − sin x, x + 1,

x − 1, − x, sin x, sin x, sin sin x, x ⋯

Three operations: sin(x) + x + 1, sin x + x − 1, sin(x) + sin(x) + 1, sin(x) + x + 1, sin(sin(x)) + 1,

x − 1, sin(x) + 1, sin x − 1, sin x × x, sin x − x, ⋯

When the length of the function increases, the
number of functions increases exponentially.

Symbolic Regression Methods

Evolutionary

Algorithms

Neural Networks Equation

Simplification

Evolutionary Algorithms for Symbolic Regression

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

Evolutionary Algorithms for Symbolic Regression

1. Initial expressions are formed by randomly combining mathematical building blocks such as:

operations: +, − , × , /, , exp, sin, arcsin, etc.

variables: x1, x2, ⋯, xn

constants: 1, − 1, 0, π, e, 1.2, or a constant placeholder

Examples: x1 + 1, x2, x1 + sin(x2), sin(x1) + x2 − 1, sin(x1) + 1, x1
x2 + 1 , ex1

x2 + 1 , ⋯

Evolutionary Algorithms for Symbolic Regression

2. New equations are formed by recombining previous equations and probabilistically varying their subexpressions.

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

Evolutionary Algorithms for Symbolic Regression

2. New equations are formed by recombining previous equations and probabilistically varying their subexpressions.

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

x + x − c3 − y

x + x + x − c4 − y

Evolutionary Algorithms for Symbolic Regression

2. New equations are formed by recombining previous equations and probabilistically varying their subexpressions.

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

x + x + x − c4 − y

x + x + x − sin(c3) − y

Evolutionary Algorithms for Symbolic Regression

2. New equations are formed by recombining previous equations and probabilistically varying their subexpressions.

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

x + x + x − sin(c3) − y y − sin(y) − (x − x)

x + x + x − sin(y) − (x − x)

Evolutionary Algorithms for Symbolic Regression

2. New equations are formed by recombining previous equations and probabilistically varying their subexpressions.

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

x + x + x − sin(y) − (x − x)

(x + x)x − sin(y) − (x − x)

Evolutionary Algorithms for Symbolic Regression

2. New equations are formed by recombining previous equations and probabilistically varying their subexpressions.

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

(x + x)x − sin(y) − (x − x)

(x + x)x − sin(y) − c1

Evolutionary Algorithms for Symbolic Regression

2. New equations are formed by recombining previous equations and probabilistically varying their subexpressions.

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

(x + x)x − sin(y) − c1

(x + x)x − y − c1

Evolutionary Algorithms for Symbolic Regression

2. New equations are formed by recombining previous equations and probabilistically varying their subexpressions.

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

(x + x)x − y − c1

(x + x + x)x − y − c13

Evolutionary Algorithms for Symbolic Regression

2. New equations are formed by recombining previous equations and probabilistically varying their subexpressions.

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

(x + x + x)x − y − c13

(x + y − c3)y + x ⋅ x ⋅ c15

Evolutionary Algorithms for Symbolic Regression

2. New equations are formed by recombining previous equations and probabilistically varying their subexpressions.

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

(x + y − c3)y + x ⋅ x ⋅ c15

(x + y − c4)y + x ⋅ x ⋅ c15

Evolutionary Algorithms for Symbolic Regression

2. New equations are formed by recombining previous equations and probabilistically varying their subexpressions.

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

(x + y − c4)y + x ⋅ x ⋅ c15

(x + y − sin(x))y + x ⋅ x ⋅ c15

(y + sin(x))y

Evolutionary Algorithms for Symbolic Regression

2. New equations are formed by recombining previous equations and probabilistically varying their subexpressions.

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

(x + y − sin(x))y + x ⋅ x ⋅ c15

(x + y − x)y + x ⋅ x ⋅ c15

Evolutionary Algorithms for Symbolic Regression

2. New equations are formed by recombining previous equations and probabilistically varying their subexpressions.

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

(x + y − x)y + x ⋅ x ⋅ c16

(x + y − x)y + x ⋅ x ⋅ c15

Evolutionary Algorithms for Symbolic Regression

2. New equations are formed by recombining previous equations and probabilistically varying their subexpressions.

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

y ⋅ y + c3 ⋅ x ⋅ x

(x + y − x)y + x ⋅ x ⋅ c16

Evolutionary Algorithms for Symbolic Regression

3. The algorithm retains equations that model the experimental data better than others
and abandons unpromising solutions.

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

Evolutionary Algorithms for Symbolic Regression

4. After equations reach a desired level of accuracy, the algorithm terminates, returning a set of equations that
are most likely to correspond to the intrinsic mechanisms underlying the observed system.

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

Two Basic Steps in an Evolutionary Algorithm

Mutation Crossover

x + x + x − sin(c3) − y y − sin(y) − (x − x)

x + x + x − sin(y) − (x − x)

x + x + x − c4 − y

x + x + x − sin(c3) − y

−
y

c4

−
+

+
x x

x

−
y

sin

−
+

+
x x

x c3

Two Basic Steps in an Evolutionary Algorithm

Crossover

x + x + x − sin(c3) − y y − sin(y) − (x − x)

x + x + x − sin(y) − (x − x)

x + x + x − c4 − y

x + x + x − sin(c3) − y

−
y

sin

−
+

+
x x

x c3

Mutation

−
−

sin

−
y

y

x x

−
−

sin

−

y

x x+
+

x x
x

Seed the equation search by initializing the algorithm’s initial set of candidate equations
with terms from equations from simpler systems (that were previously studied).

Evolutionary Algorithms for Symbolic Regression:

How to use prior knowledge

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

Computation Tree can also be represented by a

Directed Acyclic Computation Graph

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

(6)
(8)

Computation Tree can also be represented by a

Directed Acyclic Computation Graph

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

(0)
(6)

(8)

Computation Tree can also be represented by a

Directed Acyclic Computation Graph

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

(0)

(1)

(6)
(8)

Computation Tree can also be represented by a

Directed Acyclic Computation Graph

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

(0)

(1) (1)

(2)
(6)

(8)

Computation Tree can also be represented by a

Directed Acyclic Computation Graph

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

(0)

(1) (1)

(2)

(3)

(6)
(8)

Computation Tree can also be represented by a

Directed Acyclic Computation Graph

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

(0)

(1) (1)

(2)

(3)

(4)
(6)

(8)

Computation Tree can also be represented by a

Directed Acyclic Computation Graph

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

(0)

(1) (1)

(2)

(3)

(4)

(5)

(6)
(8)

Computation Tree can also be represented by a

Directed Acyclic Computation Graph

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

(0)

(1) (1)

(2)

(3)

(4)

(5)
(6)

(6)
(8)

Computation Tree can also be represented by a

Directed Acyclic Computation Graph

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

(0)

(1) (1)

(2)

(3)

(4)

(5)
(6)

(7)

(6)
(8)

Computation Tree can also be represented by a

Directed Acyclic Computation Graph

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

(0)

(1) (1)

(2)

(3)

(4)

(5)
(6)

(7)

(8)

(6)
(8)

Computation Tree can also be represented by a

Directed Acyclic Computation Graph

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

(0)

(1) (1)

(2)

(3)

(4)

(5)
(6)

(7)

(8)

(6)

(9)

(8)

Computation Tree can also be represented by a

Directed Acyclic Computation Graph

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

(0)

(1) (1)

(2)

(3)

(4)

(5)
(6)

(7)

(8)

(6)

(9)

(8)

(10)

Accuracy & Complexity of Found Equations

(evolution over time)

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

Accuracy & Complexity of Found Equations

(evolution over time)

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

1) Computation can take a long time for complex equations.

2) It is much more time consuming to find symbolic forms of

equations than to compute their constant coefficients.

Use Symbolic Regression to find Laws in Physics

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

Symbolic Regression can find equations

(more general relations than functions)

y = f(x1, x2, ⋯, xn) y − f(x1, x2, ⋯, xn) = 0
Function Equation

More general equation: F(x1, x2, ⋯, xn, y) = C
Example: x2 + y2 = 1

Avoid finding trivial relations, such as

sin2(3.1x) + cos2(3.1x) = 1
sin2(3.2x) + cos2(3.2x) = 1

x1 + 4.56 − x2x1/x2 = 4.56

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

Idea: use derivatives to find non-trivial relations

We define a potential equation to be nontrivial if it can predict
differential relationships between two or more variables.

Use partial derivatives between pairs of variables

Consider equation f(x, y) = C, where x = x(t) and y = y(t) are both time-series data.

Then
∂f/∂y
∂f/∂x

= ∂x
∂y

≈ dx/dt
dy/dt

≈ Δx
Δy

.

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

We can now compare Δx/Δy values from the experimental data with ∂x/∂y .

compute

using

function f

measure

using

experimental data

Compute values from the candidate function f(x,y) to see how well they match:

Instead of squared-error, mean error, correlation, etc., we can use the

mean-log-error for numerical reasons (which is robust against outliers).

− 1
N

N

∑
i=1

log (1 + Δxi

Δyi
− ∂xi

∂yi)

Use partial derivatives between pairs of variables

Consider equation f(x, y) = C, where x = x(t) and y = y(t) are both time-series data.

Then
∂f/∂y
∂f/∂x

= ∂x
∂y

≈ dx/dt
dy/dt

≈ Δx
Δy

.

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

We can now compare Δx/Δy values from the experimental data with ∂x/∂y .

compute

using

function f

measure

using

experimental data

Compute values from the candidate function f(x,y) to see how well they match:

Instead of squared-error, mean error, correlation, etc., we can use the

mean-log-error for numerical reasons (which is robust against outliers).

− 1
N

N

∑
i=1

log (1 + Δxi

Δyi
− ∂xi

∂yi)

Use partial derivatives between pairs of variables

Consider equation f(x, y) = C, where x = x(t) and y = y(t) are both time-series data.

Then
∂f/∂y
∂f/∂x

= ∂x
∂y

≈ dx/dt
dy/dt

≈ Δx
Δy

.

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

We can now compare Δx/Δy values from the experimental data with ∂x/∂y .

compute

using

function f

measure

using

experimental data

Compute values from the candidate function f(x,y) to see how well they match:

Instead of squared-error, mean error, correlation, etc., we can use the

mean-log-error for numerical reasons (which is robust against outliers).

− 1
N

N

∑
i=1

log (1 + Δxi

Δyi
− ∂xi

∂yi)

Use partial derivatives between pairs of variables

Consider equation f(x, y) = C, where x = x(t) and y = y(t) are both time-series data.

Then
∂f/∂y
∂f/∂x

= ∂x
∂y

≈ dx/dt
dy/dt

≈ Δx
Δy

.

Paper: Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

We can now compare Δx/Δy values from the experimental data with ∂x/∂y .

compute

using

function f

measure

using

experimental data

Compute values from the candidate function f(x,y) to see how well they match:

Instead of squared-error, mean error, correlation, etc., we can use the

mean-log-error for numerical reasons (which is robust against outliers).

− 1
N

N

∑
i=1

log (1 + Δxi

Δyi
− ∂xi

∂yi)

Find multiple equations using Pareto-front

Pareto-front: optimal tradeoff between accuracy & complexity of the equation.

Paper: Supporting Online Material for “Distilling Free-Form Natural Laws from Experimental Data,” by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

Find multiple equations using Pareto-front

Pareto-front: optimal tradeoff between accuracy & complexity of the equation.

Paper: Supporting Online Material for “Distilling Free-Form Natural Laws from Experimental Data,” by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

Find multiple equations using Pareto-front

Pareto-front: optimal tradeoff between accuracy & complexity of the equation.

Paper: Supporting Online Material for “Distilling Free-Form Natural Laws from Experimental Data,” by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

Find multiple equations using Pareto-front

Pareto-front: optimal tradeoff between accuracy & complexity of the equation.

Paper: Supporting Online Material for “Distilling Free-Form Natural Laws from Experimental Data,” by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

Find multiple equations using Pareto-front

Pareto-front: optimal tradeoff between accuracy & complexity of the equation.

Paper: Supporting Online Material for “Distilling Free-Form Natural Laws from Experimental Data,” by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

Find multiple equations using Pareto-front

Pareto-front: optimal tradeoff between accuracy & complexity of the equation.

Paper: Supporting Online Material for “Distilling Free-Form Natural Laws from Experimental Data,” by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

Find multiple equations using Pareto-front

Pareto-front: optimal tradeoff between accuracy & complexity of the equation.

Paper: Supporting Online Material for “Distilling Free-Form Natural Laws from Experimental Data,” by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

Find multiple equations using Pareto-front

Pareto-front: optimal tradeoff between accuracy & complexity of the equation.

Paper: Supporting Online Material for “Distilling Free-Form Natural Laws from Experimental Data,” by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

Find multiple equations using Pareto-front

Pareto-front: optimal tradeoff between accuracy & complexity of the equation.

Paper: Supporting Online Material for “Distilling Free-Form Natural Laws from Experimental Data,” by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

Paper: Supporting Online Material for “Distilling Free-Form Natural Laws from Experimental Data,” by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

Impact of noise

Noise can make symbolic regression significantly more difficult. In particular, noise makes
approximating the gradient (numerical derivatives) more difficult because derivatives can

be highly sensitive to noise.

Impact of noise

Paper: Supporting Online Material for “Distilling Free-Form Natural Laws from Experimental Data,” by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

We can use Loess smoothing - a non-parametric fitting method - to remove high
frequency noise from data. Loess smoothing updates each sample in the dataset by fitting
a small order polynomial to the sample and its nearest neighbors.

Other methods, such as filtering and convolution, also reduce high-frequency noise,
but do not readily produce estimates of the signal derivative. Using Loess
smoothing, we can obtain the numerical derivatives directly from the smoothing
procedure by evaluating the symbolic derivatives of the local polynomial fits at each
data sample.

We can measure the noise strength (percent noise) as the ratio of the standard
deviation of the random noise to the standard deviation of the exact signal.

Impact of noise

Paper: Supporting Online Material for “Distilling Free-Form Natural Laws from Experimental Data,” by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

We can use Loess smoothing - a non-parametric fitting method - to remove high
frequency noise from data. Loess smoothing updates each sample in the dataset by fitting
a small order polynomial to the sample and its nearest neighbors.

Other methods, such as filtering and convolution, also reduce high-frequency noise,
but do not readily produce estimates of the signal derivative. Using Loess
smoothing, we can obtain the numerical derivatives directly from the smoothing
procedure by evaluating the symbolic derivatives of the local polynomial fits at each
data sample.

We can measure the noise strength (percent noise) as the ratio of the standard
deviation of the random noise to the standard deviation of the exact signal.

Impact of noise

Paper: Supporting Online Material for “Distilling Free-Form Natural Laws from Experimental Data,” by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

We can use Loess smoothing - a non-parametric fitting method - to remove high
frequency noise from data. Loess smoothing updates each sample in the dataset by fitting
a small order polynomial to the sample and its nearest neighbors.

Other methods, such as filtering and convolution, also reduce high-frequency noise,
but do not readily produce estimates of the signal derivative. Using Loess
smoothing, we can obtain the numerical derivatives directly from the smoothing
procedure by evaluating the symbolic derivatives of the local polynomial fits at each
data sample.

We can measure the noise strength (percent noise) as the ratio of the standard
deviation of the random noise to the standard deviation of the exact signal.

Build Up an alphabet for symbolic regression (for future experiments)

Method: extract common subtrees of good equations that are found via symbolic regression.

Paper: Supporting Online Material for “Distilling Free-Form Natural Laws from Experimental Data,” by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, April 3, 2009.

Neural Network for Symbolic Regression

Neural Network for Symbolic Regression:

(1) Neural Network is the function

Neural Network for Symbolic Regression: (1) Neural Network is the function

Paper. Learning Equations for Extrapolation and Control, by Subham S. Sahoo, Christoph H. Lampert, and Georg Martius, 35th ICML, Sweden, PMLR 80, 2018.

A neural network is an acyclic computation graph.

Idea: Let’s use a neural network that “contains” the mystery function’s computation graph.

We train the neural network to get the coefficients in the mystery function.

Neural Network for Symbolic Regression: (1) Neural Network is the function

Paper. Learning Equations for Extrapolation and Control, by Subham S. Sahoo, Christoph H. Lampert, and Georg Martius, 35th ICML, Sweden, PMLR 80, 2018.

A neural network is an acyclic computation graph.

Idea: Let’s use a neural network that “contains” the mystery function’s computation graph.

We train the neural network to get the coefficients in the mystery function.

Neural Network for Symbolic Regression: (1) Neural Network is the function

Paper. Learning Equations for Extrapolation and Control, by Subham S. Sahoo, Christoph H. Lampert, and Georg Martius, 35th ICML, Sweden, PMLR 80, 2018.

x1
x2
x3

y1

y2

Neural Network for Symbolic Regression: (1) Neural Network is the function

Paper. Learning Equations for Extrapolation and Control, by Subham S. Sahoo, Christoph H. Lampert, and Georg Martius, 35th ICML, Sweden, PMLR 80, 2018.

x1
x2
x3

y1

y2

Train the above neural network.

For simplicity, assume after training, red edges have weight 1, other edges have weight 0.

Neural Network for Symbolic Regression: (1) Neural Network is the function

Paper. Learning Equations for Extrapolation and Control, by Subham S. Sahoo, Christoph H. Lampert, and Georg Martius, 35th ICML, Sweden, PMLR 80, 2018.

x1
x2
x3

y1

y2

x1x2
x3

x1

x2 + x3

Neural Network for Symbolic Regression: (1) Neural Network is the function

Paper. Learning Equations for Extrapolation and Control, by Subham S. Sahoo, Christoph H. Lampert, and Georg Martius, 35th ICML, Sweden, PMLR 80, 2018.

x1
x2
x3

y1

y2

x1
sin(x2)

cos(x3)

x1(x2 + x3)

x1x2
x3

x1

x2 + x3

Neural Network for Symbolic Regression: (1) Neural Network is the function

Paper. Learning Equations for Extrapolation and Control, by Subham S. Sahoo, Christoph H. Lampert, and Georg Martius, 35th ICML, Sweden, PMLR 80, 2018.

x1
x2
x3

y1

y2

x1x2
x3

x1

x2 + x3

x1
sin(x2)

cos(x3)

x1(x2 + x3)

x1sin(x2)

cos(x3)

cos(x3)

x1(x2 + x3)

Neural Network for Symbolic Regression: (1) Neural Network is the function

Paper. Learning Equations for Extrapolation and Control, by Subham S. Sahoo, Christoph H. Lampert, and Georg Martius, 35th ICML, Sweden, PMLR 80, 2018.

x1
x2
x3

y1

y2

x1(x2 + x3)cos(x3)

sin(sin(x2))x1x2
x3

x1

x2 + x3

x1
sin(x2)

cos(x3)

x1(x2 + x3)

x1sin(x2)

cos(x3)

cos(x3)

x1(x2 + x3)

x1

cos(cos(x3))

Neural Network for Symbolic Regression: (1) Neural Network is the function

Paper. Learning Equations for Extrapolation and Control, by Subham S. Sahoo, Christoph H. Lampert, and Georg Martius, 35th ICML, Sweden, PMLR 80, 2018.

x1
x2
x3

y1

y2

x1(x2 + x3)cos(x3)

x1x2
x3

x1

x2 + x3

x1
sin(x2)

cos(x3)

x1(x2 + x3)

x1sin(x2)

cos(x3)

cos(x3)

x1(x2 + x3)

x1(x2 + x3)cos(x3)

sin(sin(x2))
x1

cos(cos(x3))

x1

cos(cos(x3))

sin(sin(x2))

Neural Network for Symbolic Regression: (1) Neural Network is the function

Paper. Learning Equations for Extrapolation and Control, by Subham S. Sahoo, Christoph H. Lampert, and Georg Martius, 35th ICML, Sweden, PMLR 80, 2018.

x1
x2
x3

y1 = x1
cos(cos(x3))

y2 = sin(sin(x2))
x1(x2 + x3)cos(x3)

x1x2
x3

x1

x2 + x3

x1
sin(x2)

cos(x3)

x1(x2 + x3)

x1sin(x2)

cos(x3)

cos(x3)

x1(x2 + x3)

x1(x2 + x3)cos(x3)

sin(sin(x2))
x1

cos(cos(x3))

x1(x2 + x3)cos(x3)

x1

cos(cos(x3))

sin(sin(x2))

EQL÷

A network for equation learning that can handle divisions as well as techniques to keep training stable.

Neural Network for Symbolic Regression: (1) Neural Network is the function

Paper. Learning Equations for Extrapolation and Control, by Subham S. Sahoo, Christoph H. Lampert, and Georg Martius, 35th ICML, Sweden, PMLR 80, 2018.

Neural Network for Symbolic Regression: (1) Neural Network is the function

Paper. Learning Equations for Extrapolation and Control, by Subham S. Sahoo, Christoph H. Lampert, and Georg Martius, 35th ICML, Sweden, PMLR 80, 2018.

Challenge posed by the division activation function:
Any division a/b creates a pole at b → 0

Such a divergence is a serious problem for gradient based optimization methods.

A few simplification made in the paper:

1. Assume that b>0 in practical systems.

2. Use division only in the output layer.

with an abrupt change in the convexity and diverging function value and its derivative.

Neural Network for Symbolic Regression: (1) Neural Network is the function

Paper. Learning Equations for Extrapolation and Control, by Subham S. Sahoo, Christoph H. Lampert, and Georg Martius, 35th ICML, Sweden, PMLR 80, 2018.

Challenge posed by the division activation function:
Any division a/b creates a pole at b → 0

Such a divergence is a serious problem for gradient based optimization methods.

A few simplification made in the paper:

1. Assume that b>0 in practical systems.

2. Use division only in the output layer.

with an abrupt change in the convexity and diverging function value and its derivative.

Neural Network for Symbolic Regression: (1) Neural Network is the function

Paper. Learning Equations for Extrapolation and Control, by Subham S. Sahoo, Christoph H. Lampert, and Georg Martius, 35th ICML, Sweden, PMLR 80, 2018.

Challenge posed by the division activation function:
Any division a/b creates a pole at b → 0

Such a divergence is a serious problem for gradient based optimization methods.

A few simplification made in the paper:

1. Assume that b>0 in practical systems.

2. Use division only in the output layer.

with an abrupt change in the convexity and diverging function value and its derivative.

The division-activation function is given by hθ(a, b) = {
a
b if b > θ
0 otherwise

, where θ ≥ 0 is a threshold.

Using hθ = 0 as the value went the denominator is below θ
sets the gradient to zero, avoiding misleading parameter updates.

Neural Network for Symbolic Regression: (1) Neural Network is the function

Paper. Learning Equations for Extrapolation and Control, by Subham S. Sahoo, Christoph H. Lampert, and Georg Martius, 35th ICML, Sweden, PMLR 80, 2018.

(forbidden values of b)

The division-activation function is given by hθ(a, b) = {
a
b if b > θ
0 otherwise

, where θ ≥ 0 is a threshold.

Using hθ = 0 as the value went the denominator is below θ
sets the gradient to zero, avoiding misleading parameter updates.

Neural Network for Symbolic Regression: (1) Neural Network is the function

Paper. Learning Equations for Extrapolation and Control, by Subham S. Sahoo, Christoph H. Lampert, and Georg Martius, 35th ICML, Sweden, PMLR 80, 2018.

(forbidden values of b)

Penalty term

To steer the network away from negative values of the denominator, we add a
cost term to the training objective that penalizes “forbidden” inputs to each

division unit:

pθ(b) = max(θ − b,0)

Paper. Learning Equations for Extrapolation and Control, by Subham S. Sahoo, Christoph H. Lampert, and Georg Martius, 35th ICML, Sweden, PMLR 80, 2018.

Penalty Epochs

While the above approach prevents negative values in the denominator at training
time (namely, for training samples), the right equation should not have negative
denominators even for potential extrapolation data (namely, data outside of the
region of training data).

Similarly, we would like to prevent that output values on future data having a very
different magnitude than the observed outputs, as this could be a sign of
overfitting (e.g., learning a polynomial of too high-degree).

To enforce this we introduce particular “penalty epochs”, which are injected at
regular intervals (every 50 epochs) into training process.

Paper. Learning Equations for Extrapolation and Control, by Subham S. Sahoo, Christoph H. Lampert, and Georg Martius, 35th ICML, Sweden, PMLR 80, 2018.

Penalty Epochs

While the above approach prevents negative values in the denominator at training
time (namely, for training samples), the right equation should not have negative
denominators even for potential extrapolation data (namely, data outside of the
region of training data).

Similarly, we would like to prevent that output values on future data having a very
different magnitude than the observed outputs, as this could be a sign of
overfitting (e.g., learning a polynomial of too high-degree).

To enforce this we introduce particular “penalty epochs”, which are injected at
regular intervals (every 50 epochs) into training process.

Paper. Learning Equations for Extrapolation and Control, by Subham S. Sahoo, Christoph H. Lampert, and Georg Martius, 35th ICML, Sweden, PMLR 80, 2018.

Penalty Epochs

While the above approach prevents negative values in the denominator at training
time (namely, for training samples), the right equation should not have negative
denominators even for potential extrapolation data (namely, data outside of the
region of training data).

Similarly, we would like to prevent that output values on future data having a very
different magnitude than the observed outputs, as this could be a sign of
overfitting (e.g., learning a polynomial of too high-degree).

To enforce this we introduce particular “penalty epochs”, which are injected at
regular intervals (every 50 epochs) into training process.

Paper. Learning Equations for Extrapolation and Control, by Subham S. Sahoo, Christoph H. Lampert, and Georg Martius, 35th ICML, Sweden, PMLR 80, 2018.

Penalty Epochs

During a penalty epoch, we randomly sample N input data points in the expected “test range”
(including extrapolation region) without labels and the network is trained using the cost

LPenalty = Pθ + Pbound

where the latter is given by

Pbound =
N

∑
i=1

n

∑
j=1

max(yL
j (xi) − B,0) + max(−yL

j (xi) − B,0)

Basically, the penalty is > 0 if any output by the network is outside the range
[-B,B]. The value B reflects the maximal desired output value.

Paper. Learning Equations for Extrapolation and Control, by Subham S. Sahoo, Christoph H. Lampert, and Georg Martius, 35th ICML, Sweden, PMLR 80, 2018.

Pbound

Curriculum Training (for division activation function)

We let θ decrease with epoch t as θ(t) = 1
t + 1

It helps the network learn the equation more accurately in the end. For validation and testing, we use

θ = 10−4

Paper. Learning Equations for Extrapolation and Control, by Subham S. Sahoo, Christoph H. Lampert, and Georg Martius, 35th ICML, Sweden, PMLR 80, 2018.

The division-activation function is given by hθ(a, b) = {
a
b if b > θ
0 otherwise

Network training

The network is fully differentiable, which allows us to train it in an end-to-end
fashion using back propagation. The objective is Lasso-like:

L = 1
N

N

∑
i=1

(f(xi) − yi)2 + λ
L

∑
l=1

|w(l) | + Pθ

MSE loss L1 regularization

to get a

simple function

Cost for small

and negative

denominators in

devision

Paper. Learning Equations for Extrapolation and Control, by Subham S. Sahoo, Christoph H. Lampert, and Georg Martius, 35th ICML, Sweden, PMLR 80, 2018.

Network training

Paper. Learning Equations for Extrapolation and Control, by Subham S. Sahoo, Christoph H. Lampert, and Georg Martius, 35th ICML, Sweden, PMLR 80, 2018.

Neural Network for Symbolic Regression

Neural Network for Symbolic Regression:

(2) Neural Network outputs the function

Neural Network for Symbolic Regression: (2) Neural Network outputs the function

Paper. Deep Symbolic Regression: Discovering Mathematical Expressions from Data via Risk-Seeking Policy Gradients,

By Brenden K. Petersen, Mikel Landajuela Larma, T. Nathan Mundhenk, Claudio Santiago, Sookyung Kim and Joanne T. Kim, at ICLR 2021.

RNN y = x1 ⋅ 1

1 − x2
2

25

Neural Network for Symbolic Regression: (2) Neural Network outputs the function

Paper. Deep Symbolic Regression: Discovering Mathematical Expressions from Data via Risk-Seeking Policy Gradients,

By Brenden K. Petersen, Mikel Landajuela Larma, T. Nathan Mundhenk, Claudio Santiago, Sookyung Kim and Joanne T. Kim, at ICLR 2021.

We present “Deep Symbolic Regression” (DSR), a gradient-based approach for symbolic
regression based on reinforcement learning.

In DSR, a recurrent network (RNN) emits a distribution over mathematical expressions.

Expressions are sampled from the distribution, instantiated, and evaluated based on their
fitness to the dataset.

This fitness is used as the reward signal to train the RNN using a risk-seeking policy gradient
algorithm.

As training proceeds, the RNN adjusts the likelihood of an expression relative to its reward,
assigning higher probabilities to better expressions.

DSR is autoregressive, meaning each token is conditioned on the previously sampled token.

DSR exploits the hierarchical nature of trees by providing the parent and sibling as inputs to the RNN.

Neural Network for Symbolic Regression: (2) Neural Network outputs the function

Paper. Deep Symbolic Regression: Discovering Mathematical Expressions from Data via Risk-Seeking Policy Gradients,

By Brenden K. Petersen, Mikel Landajuela Larma, T. Nathan Mundhenk, Claudio Santiago, Sookyung Kim and Joanne T. Kim, at ICLR 2021.

We present “Deep Symbolic Regression” (DSR), a gradient-based approach for symbolic
regression based on reinforcement learning.

In DSR, a recurrent network (RNN) emits a distribution over mathematical expressions.

Expressions are sampled from the distribution, instantiated, and evaluated based on their
fitness to the dataset.

This fitness is used as the reward signal to train the RNN using a risk-seeking policy gradient
algorithm.

As training proceeds, the RNN adjusts the likelihood of an expression relative to its reward,
assigning higher probabilities to better expressions.

DSR is autoregressive, meaning each token is conditioned on the previously sampled token.

DSR exploits the hierarchical nature of trees by providing the parent and sibling as inputs to the RNN.

Neural Network for Symbolic Regression: (2) Neural Network outputs the function

Paper. Deep Symbolic Regression: Discovering Mathematical Expressions from Data via Risk-Seeking Policy Gradients,

By Brenden K. Petersen, Mikel Landajuela Larma, T. Nathan Mundhenk, Claudio Santiago, Sookyung Kim and Joanne T. Kim, at ICLR 2021.

We present “Deep Symbolic Regression” (DSR), a gradient-based approach for symbolic
regression based on reinforcement learning.

In DSR, a recurrent network (RNN) emits a distribution over mathematical expressions.

Expressions are sampled from the distribution, instantiated, and evaluated based on their
fitness to the dataset.

This fitness is used as the reward signal to train the RNN using a risk-seeking policy gradient
algorithm.

As training proceeds, the RNN adjusts the likelihood of an expression relative to its reward,
assigning higher probabilities to better expressions.

DSR is autoregressive, meaning each token is conditioned on the previously sampled token.

DSR exploits the hierarchical nature of trees by providing the parent and sibling as inputs to the RNN.

Neural Network for Symbolic Regression: (2) Neural Network outputs the function

Paper. Deep Symbolic Regression: Discovering Mathematical Expressions from Data via Risk-Seeking Policy Gradients,

By Brenden K. Petersen, Mikel Landajuela Larma, T. Nathan Mundhenk, Claudio Santiago, Sookyung Kim and Joanne T. Kim, at ICLR 2021.

We present “Deep Symbolic Regression” (DSR), a gradient-based approach for symbolic
regression based on reinforcement learning.

In DSR, a recurrent network (RNN) emits a distribution over mathematical expressions.

Expressions are sampled from the distribution, instantiated, and evaluated based on their
fitness to the dataset.

This fitness is used as the reward signal to train the RNN using a risk-seeking policy gradient
algorithm.

As training proceeds, the RNN adjusts the likelihood of an expression relative to its reward,
assigning higher probabilities to better expressions.

DSR is autoregressive, meaning each token is conditioned on the previously sampled token.

DSR exploits the hierarchical nature of trees by providing the parent and sibling as inputs to the RNN.

Neural Network for Symbolic Regression: (2) Neural Network outputs the function

Paper. Deep Symbolic Regression: Discovering Mathematical Expressions from Data via Risk-Seeking Policy Gradients,

By Brenden K. Petersen, Mikel Landajuela Larma, T. Nathan Mundhenk, Claudio Santiago, Sookyung Kim and Joanne T. Kim, at ICLR 2021.

We present “Deep Symbolic Regression” (DSR), a gradient-based approach for symbolic
regression based on reinforcement learning.

In DSR, a recurrent network (RNN) emits a distribution over mathematical expressions.

Expressions are sampled from the distribution, instantiated, and evaluated based on their
fitness to the dataset.

This fitness is used as the reward signal to train the RNN using a risk-seeking policy gradient
algorithm.

As training proceeds, the RNN adjusts the likelihood of an expression relative to its reward,
assigning higher probabilities to better expressions.

DSR is autoregressive, meaning each token is conditioned on the previously sampled token.

DSR exploits the hierarchical nature of trees by providing the parent and sibling as inputs to the RNN.

Neural Network for Symbolic Regression: (2) Neural Network outputs the function

Paper. Deep Symbolic Regression: Discovering Mathematical Expressions from Data via Risk-Seeking Policy Gradients,

By Brenden K. Petersen, Mikel Landajuela Larma, T. Nathan Mundhenk, Claudio Santiago, Sookyung Kim and Joanne T. Kim, at ICLR 2021.

We present “Deep Symbolic Regression” (DSR), a gradient-based approach for symbolic
regression based on reinforcement learning.

In DSR, a recurrent network (RNN) emits a distribution over mathematical expressions.

Expressions are sampled from the distribution, instantiated, and evaluated based on their
fitness to the dataset.

This fitness is used as the reward signal to train the RNN using a risk-seeking policy gradient
algorithm.

As training proceeds, the RNN adjusts the likelihood of an expression relative to its reward,
assigning higher probabilities to better expressions.

DSR is autoregressive, meaning each token is conditioned on the previously sampled token.

DSR exploits the hierarchical nature of trees by providing the parent and sibling as inputs to the RNN.

Neural Network for Symbolic Regression: (2) Neural Network outputs the function

Paper. Deep Symbolic Regression: Discovering Mathematical Expressions from Data via Risk-Seeking Policy Gradients,

By Brenden K. Petersen, Mikel Landajuela Larma, T. Nathan Mundhenk, Claudio Santiago, Sookyung Kim and Joanne T. Kim, at ICLR 2021.

Neural Network for Symbolic Regression: (2) Neural Network outputs the function

Paper. Deep Symbolic Regression: Discovering Mathematical Expressions from Data via Risk-Seeking Policy Gradients,

By Brenden K. Petersen, Mikel Landajuela Larma, T. Nathan Mundhenk, Claudio Santiago, Sookyung Kim and Joanne T. Kim, at ICLR 2021.

RNN

expanded

in time

Neural Network for Symbolic Regression: (2) Neural Network outputs the function

Paper. Deep Symbolic Regression: Discovering Mathematical Expressions from Data via Risk-Seeking Policy Gradients,

By Brenden K. Petersen, Mikel Landajuela Larma, T. Nathan Mundhenk, Claudio Santiago, Sookyung Kim and Joanne T. Kim, at ICLR 2021.

? ÷ ?

Neural Network for Symbolic Regression: (2) Neural Network outputs the function

Paper. Deep Symbolic Regression: Discovering Mathematical Expressions from Data via Risk-Seeking Policy Gradients,

By Brenden K. Petersen, Mikel Landajuela Larma, T. Nathan Mundhenk, Claudio Santiago, Sookyung Kim and Joanne T. Kim, at ICLR 2021.

sin(?) ÷ ?

Neural Network for Symbolic Regression: (2) Neural Network outputs the function

Paper. Deep Symbolic Regression: Discovering Mathematical Expressions from Data via Risk-Seeking Policy Gradients,

By Brenden K. Petersen, Mikel Landajuela Larma, T. Nathan Mundhenk, Claudio Santiago, Sookyung Kim and Joanne T. Kim, at ICLR 2021.

sin(? × ?) ÷ ?

Neural Network for Symbolic Regression: (2) Neural Network outputs the function

Paper. Deep Symbolic Regression: Discovering Mathematical Expressions from Data via Risk-Seeking Policy Gradients,

By Brenden K. Petersen, Mikel Landajuela Larma, T. Nathan Mundhenk, Claudio Santiago, Sookyung Kim and Joanne T. Kim, at ICLR 2021.

sin(c×?) ÷ ?

Neural Network for Symbolic Regression: (2) Neural Network outputs the function

Paper. Deep Symbolic Regression: Discovering Mathematical Expressions from Data via Risk-Seeking Policy Gradients,

By Brenden K. Petersen, Mikel Landajuela Larma, T. Nathan Mundhenk, Claudio Santiago, Sookyung Kim and Joanne T. Kim, at ICLR 2021.

sin(cx) ÷ ?

Neural Network for Symbolic Regression: (2) Neural Network outputs the function

Paper. Deep Symbolic Regression: Discovering Mathematical Expressions from Data via Risk-Seeking Policy Gradients,

By Brenden K. Petersen, Mikel Landajuela Larma, T. Nathan Mundhenk, Claudio Santiago, Sookyung Kim and Joanne T. Kim, at ICLR 2021.

sin(cx) ÷ log?

Neural Network for Symbolic Regression: (2) Neural Network outputs the function

Paper. Deep Symbolic Regression: Discovering Mathematical Expressions from Data via Risk-Seeking Policy Gradients,

By Brenden K. Petersen, Mikel Landajuela Larma, T. Nathan Mundhenk, Claudio Santiago, Sookyung Kim and Joanne T. Kim, at ICLR 2021.

sin(cx) ÷ log y

Constraining the search space

It is straightforward to apply a priori constraints to reduce the search space. Here are some
plausible constraints:

1) the children of an operator should not all be constants.

2) The child of a unary operator should not be the inverse of that operator, e.g., log(exp(x))
is not allowed.

We apply these constraints concurrently with autoregressive sampling by zeroing out the
probabilities of selecting tokens that violate a constraint.

Paper. Deep Symbolic Regression: Discovering Mathematical Expressions from Data via Risk-Seeking Policy Gradients,

By Brenden K. Petersen, Mikel Landajuela Larma, T. Nathan Mundhenk, Claudio Santiago, Sookyung Kim and Joanne T. Kim, at ICLR 2021.

A standard fitness measure in symbolic regression is normalized root-mean-square
error (NRMSE), the root-mean-square error normalized by the standard deviation of
the target values, σy .

That is, given a dataset (X,y) of size n and candidate expression f,

NRMSE = 1
σy

1
n

n

∑
i=1

(yi − f(Xi))2

Reward function:

R(τ) = 1
1 + NRMSE

Reward function for reinforcement learning

Paper. Deep Symbolic Regression: Discovering Mathematical Expressions from Data via Risk-Seeking Policy Gradients,

By Brenden K. Petersen, Mikel Landajuela Larma, T. Nathan Mundhenk, Claudio Santiago, Sookyung Kim and Joanne T. Kim, at ICLR 2021.

Constant optimization

If the Library L includes constant token, sampled expressions may include several
constant placeholders. These can be viewed as parameters β
of the symbolic expression, which we optimize by maximizing the reward function

β* = arg max
β

R(τ; β)
using a nonlinear optimization (nonlinear regression) algorithm, e.g., BFGS.

We perform this inner optimization loop for each sampled expression (namely, after a whole
symbolic function is generated by the RNN) as part of the reward computation before
performing each training step.

Paper. Deep Symbolic Regression: Discovering Mathematical Expressions from Data via Risk-Seeking Policy Gradients,

By Brenden K. Petersen, Mikel Landajuela Larma, T. Nathan Mundhenk, Claudio Santiago, Sookyung Kim and Joanne T. Kim, at ICLR 2021.

Training the RNN using Policy Gradients

Now that we have a distribution over mathematical expressions p(τ |θ), where τ is a function and θ
is the RNN’s weights, we first consider the standard policy gradient objective to maximize

Jstd (θ) = Eτ∼(τ|θ) R(τ)

RNN y = x1 ⋅ 1

1 − x2
2

25

Paper. Deep Symbolic Regression: Discovering Mathematical Expressions from Data via Risk-Seeking Policy Gradients,

By Brenden K. Petersen, Mikel Landajuela Larma, T. Nathan Mundhenk, Claudio Santiago, Sookyung Kim and Joanne T. Kim, at ICLR 2021.

Training the RNN using Policy Gradients

RNN y = x1 ⋅ 1

1 − x2
2

25

The standard REINFORCE policy gradient can be used to maximize this expectation via gradient ascent:

▽θ Jstd(θ) = ▽θ Eτ∼(τ|θ) R(τ) = Eτ∼p(τ|θ) R(τ) ▽θ log p(τ |θ)

Paper. Deep Symbolic Regression: Discovering Mathematical Expressions from Data via Risk-Seeking Policy Gradients,

By Brenden K. Petersen, Mikel Landajuela Larma, T. Nathan Mundhenk, Claudio Santiago, Sookyung Kim and Joanne T. Kim, at ICLR 2021.

Training the RNN using Policy Gradients

RNN y = x1 ⋅ 1

1 − x2
2

25

This result allows one to estimate the expectation using samples from the distribution. Specifically, an unbiased
estimate can be obtained by computing the sample mean over a batch of N sampled expressions

▽θ Jstd(θ) ≈ 1
N

N

∑
i=1

R(τi) ▽θ log p(τi |θ)

This is an unbiased gradient estimate, but in practice it has high variance. To reduce variance, it is common to
subtract a baseline function b from the reward. As long as the baseline is not a function of the current batch of
expressions, the gradient estimate is still unbiased. Common choices of baseline functions are a moving
average of rewards or an estimate of the value function.

Paper. Deep Symbolic Regression: Discovering Mathematical Expressions from Data via Risk-Seeking Policy Gradients,

By Brenden K. Petersen, Mikel Landajuela Larma, T. Nathan Mundhenk, Claudio Santiago, Sookyung Kim and Joanne T. Kim, at ICLR 2021.

Risk-seeking policy gradient

We want to maximize the expected reward of the (one or a few) best expressions, not the average reward
of all output expressions. (This is especially important when there are too many output expressions.)

Ideally, the RNN should always output the unique correct symbolic expression.

But in practice, the RNN can output a set of candidate symbolic expressions.

Idea: instead of maximizing the expected reward of all output expressions (and hoping they will
eventually all converge to the correct expressions), let’s focus only on the best few output
expressions and maximize their expected reward, and dismiss the other less-optimal
expressions.

That is, we propose an alternative objective that focuses on learning only on “maximizing
best-case performance”.

Paper. Deep Symbolic Regression: Discovering Mathematical Expressions from Data via Risk-Seeking Policy Gradients,

By Brenden K. Petersen, Mikel Landajuela Larma, T. Nathan Mundhenk, Claudio Santiago, Sookyung Kim and Joanne T. Kim, at ICLR 2021.

Risk-seeking policy gradient

We want to maximize the expected reward of the (one or a few) best expressions, not the average reward
of all output expressions. (This is especially important when there are too many output expressions.)

Ideally, the RNN should always output the unique correct symbolic expression.

But in practice, the RNN can output a set of candidate symbolic expressions.

Idea: instead of maximizing the expected reward of all output expressions (and hoping they will
eventually all converge to the correct expressions), let’s focus only on the best few output
expressions and maximize their expected reward, and dismiss the other less-optimal
expressions.

That is, we propose an alternative objective that focuses on learning only on “maximizing
best-case performance”.

Paper. Deep Symbolic Regression: Discovering Mathematical Expressions from Data via Risk-Seeking Policy Gradients,

By Brenden K. Petersen, Mikel Landajuela Larma, T. Nathan Mundhenk, Claudio Santiago, Sookyung Kim and Joanne T. Kim, at ICLR 2021.

Risk-seeking policy gradient

We want to maximize the expected reward of the (one or a few) best expressions, not the average reward
of all output expressions. (This is especially important when there are too many output expressions.)

Ideally, the RNN should always output the unique correct symbolic expression.

But in practice, the RNN can output a set of candidate symbolic expressions.

Idea: instead of maximizing the expected reward of all output expressions (and hoping they will
eventually all converge to the correct expressions), let’s focus only on the best few output
expressions and maximize their expected reward, and dismiss the other less-optimal
expressions.

That is, we propose an alternative objective that focuses on learning only on “maximizing
best-case performance”.

Paper. Deep Symbolic Regression: Discovering Mathematical Expressions from Data via Risk-Seeking Policy Gradients,

By Brenden K. Petersen, Mikel Landajuela Larma, T. Nathan Mundhenk, Claudio Santiago, Sookyung Kim and Joanne T. Kim, at ICLR 2021.

Risk-seeking policy gradient

We want to maximize the expected reward of the (one or a few) best expressions, not the average reward
of all output expressions. (This is especially important when there are too many output expressions.)

Ideally, the RNN should always output the unique correct symbolic expression.

But in practice, the RNN can output a set of candidate symbolic expressions.

Idea: instead of maximizing the expected reward of all output expressions (and hoping they will
eventually all converge to the correct expressions), let’s focus only on the best few output
expressions and maximize their expected reward, and dismiss the other less-optimal
expressions.

That is, we propose an alternative objective that focuses on learning only on “maximizing
best-case performance”.

Paper. Deep Symbolic Regression: Discovering Mathematical Expressions from Data via Risk-Seeking Policy Gradients,

By Brenden K. Petersen, Mikel Landajuela Larma, T. Nathan Mundhenk, Claudio Santiago, Sookyung Kim and Joanne T. Kim, at ICLR 2021.

Risk-seeking policy gradient

We first define Rϵ(θ) as the (1 − ϵ)-quantile of the distribution of the rewards under the current policy.

We then propose a new learning objective Jrisk (θ; ϵ) parameterized by ϵ :

:

Jrisk(θ; ϵ) = Eτ∼p(τ|θ) [R(τ) |R(τ) ≥ Rϵ(θ)]

This objective aims to increase the reward of the top ϵ fraction of samples from the distribution,
without regard for samples below that threshold. It aims to increase best-case performance at
the expense of lower average-case performance.

Paper. Deep Symbolic Regression: Discovering Mathematical Expressions from Data via Risk-Seeking Policy Gradients,

By Brenden K. Petersen, Mikel Landajuela Larma, T. Nathan Mundhenk, Claudio Santiago, Sookyung Kim and Joanne T. Kim, at ICLR 2021.

Risk-seeking policy gradient

▽θ Jrisk(θ; ϵ) = Eτ∼p(τ|θ)[(R(τ) − Rϵ(θ)) ▽θ log p(τ |θ) | R(τ) ≥ Rϵ(θ)]

Monte Carlo estimate of the gradient from a batch of N samples:

▽θ Jrisk(θ; ϵ) ≈ 1
ϵN

N

∑
i=1

[R(τ(i)) − R̃ϵ(θ)] ⋅ 1R(τ(i))≥R̃ϵ(θ) ▽θ log p(τ(i) |θ)

Paper. Deep Symbolic Regression: Discovering Mathematical Expressions from Data via Risk-Seeking Policy Gradients,

By Brenden K. Petersen, Mikel Landajuela Larma, T. Nathan Mundhenk, Claudio Santiago, Sookyung Kim and Joanne T. Kim, at ICLR 2021.

Evaluating DSR

Nguyen symbolic regression benchmark: a set of 12 commonly used benchmark expressions.

Paper. Deep Symbolic Regression: Discovering Mathematical Expressions from Data via Risk-Seeking Policy Gradients,

By Brenden K. Petersen, Mikel Landajuela Larma, T. Nathan Mundhenk, Claudio Santiago, Sookyung Kim and Joanne T. Kim, at ICLR 2021.

Performance of DSR with Noisy data

Add Gaussian noise to y, where the noise has mean 0 and standard deviation
proportional to the root-mean-square error of y.

Paper. Deep Symbolic Regression: Discovering Mathematical Expressions from Data via Risk-Seeking Policy Gradients,

By Brenden K. Petersen, Mikel Landajuela Larma, T. Nathan Mundhenk, Claudio Santiago, Sookyung Kim and Joanne T. Kim, at ICLR 2021.

Paper. Deep Symbolic Regression: Discovering Mathematical Expressions from Data via Risk-Seeking Policy Gradients,

By Brenden K. Petersen, Mikel Landajuela Larma, T. Nathan Mundhenk, Claudio Santiago, Sookyung Kim and Joanne T. Kim, at ICLR 2021.

Comparison of Running Time

Without early stopping, Genetic Programming is faster, as it does not require neural
network training.

Considering early stopping, Deep Symbolic Regression can be faster when it has a high
recovery rate and as a result can trigger early stopping more often.

Equation Simplification for Symbolic Regression

Equation Simplification for Symbolic Regression

Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.

Name of the algorithm: AI Feynman

Benchmark equations: 100 equations from “Feynman Lectures on Physics”, which have 1 to 9 independent variables.

Elementary functions: +, -, *, /, sqrt, exp, log, sin, cos, arcsin, tanh.

Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.

Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.

Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.

Bonus equations for testing

Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.

Bonus equations for testing

Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.

For each equation, 100,000 samples are taken.

Each input variable is uniformly sampled between 1 and 5.

Sampling the Training/Test Equations

Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.

Equation Simplification for Symbolic Regression: AI Feynman Algorithm

Neural Network(x1, ⋯, xn, y)
Samples ̂f(x1, ⋯, xn)

≈ f(x1, ⋯, xn)

Discover

properties of

Mystery

Function

y = f(x1, ⋯, xn){Separability,

Symmetry,

Compositionality,

Etc.

Simplify

Function f

for symbolic

regression

Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.

Equation Simplification for Symbolic Regression: AI Feynman Algorithm

Neural Network(x1, ⋯, xn, y)
Samples ̂f(x1, ⋯, xn)

≈ f(x1, ⋯, xn)

Discover

properties of

Mystery

Function

y = f(x1, ⋯, xn){Separability,

Symmetry,

Compositionality,

Etc.

Simplify

Function f

for symbolic

regression

Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.

Universal Approximation Theorem

Multilayer feedforward networks are universal approximations, by Kurt Hornik, Maxwell Tinchcombe, and Halbert White, in Neural Networks, vol. 2, pp. 359-366, 1989.

A simpler statement of the “Universal Approximation Theorem” (by Ian Goodfellow):

“A feedforward network with a single layer is sufficient to represent any function, but

the layer may be infeasibly large and may fail to learn and generalize correctly.”

Equation Simplification for Symbolic Regression: AI Feynman Algorithm

Neural Network(x1, ⋯, xn, y)
Samples ̂f(x1, ⋯, xn)

≈ f(x1, ⋯, xn)

Discover

properties of

Mystery

Function

y = f(x1, ⋯, xn){Separability,

Symmetry,

Compositionality,

Etc.

Simplify

Function f

for symbolic

regression

Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.

We train a feed-forward, fully connected neural network with six hidden layers with softplus
activation functions, the first three layers having 128 neurons and the last three layers having 64

neurons.

For each mystery function, we generated 100,000 data points, using 80% as the training set and the
remainder 20% as the validation set, training for 100 epochs with learning rate 0.005 and batch size

2048.

We use the RMSE loss function and the Adam optimizer with a weight decay of 0.01.

log(1 + ex)

Equation Simplification for Symbolic Regression: AI Feynman Algorithm

Neural Network(x1, ⋯, xn, y)
Samples ̂f(x1, ⋯, xn)

≈ f(x1, ⋯, xn)

Discover

properties of

Mystery

Function

y = f(x1, ⋯, xn){Separability,

Symmetry,

Compositionality,

Etc.

Simplify

Function f

for symbolic

regression

Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.

Equation Simplification for Symbolic Regression: AI Feynman Algorithm

Neural Network(x1, ⋯, xn, y)
Samples ̂f(x1, ⋯, xn)

≈ f(x1, ⋯, xn)

Discover

properties of

Mystery

Function

y = f(x1, ⋯, xn){Separability,

Symmetry,

Compositionality,

Etc.

Simplify

Function f

for symbolic

regression

Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.

Example: f = (x1 − x2)(x2
3 + x3x4 − x4 + 3) → f1 = x1 − x2 and f2 = x2

3 + x3x4 − x4 + 3

Example: f = (x1 − x2)2 + (x3 − x4)2 → f = z2
1 + z2

2 with z1 = x1 − x2, z2 = x3 − x4

Example: f = (x1/x2)2 + (x3/x4)2 → f = z2
1 + z2

2 with z1 = x1/x2, z2 = x3/x4

Example: f = x3 (x2
1 + x2

2)x3 → f = g(h(x1, x2), x3) with h(x1, x2) = x2
1 + x2

2 and g(h, x3) = x3 hx3

Equation Simplification for Symbolic Regression: AI Feynman Algorithm

Neural Network(x1, ⋯, xn, y)
Samples ̂f(x1, ⋯, xn)

≈ f(x1, ⋯, xn)

Discover

properties of

Mystery

Function

y = f(x1, ⋯, xn){Separability,

Symmetry,

Compositionality,

Etc.

Simplify

Function f

for symbolic

regression

Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.

Example: f = (x1 − x2)(x2
3 + x3x4 − x4 + 3) → f1 = x1 − x2 and f2 = x2

3 + x3x4 − x4 + 3

Example: f = (x1 − x2)2 + (x3 − x4)2 → f = z2
1 + z2

2 with z1 = x1 − x2, z2 = x3 − x4

Example: f = (x1/x2)2 + (x3/x4)2 → f = z2
1 + z2

2 with z1 = x1/x2, z2 = x3/x4

Example: f = x3 (x2
1 + x2

2)x3 → f = g(h(x1, x2), x3) with h(x1, x2) = x2
1 + x2

2 and g(h, x3) = x3 hx3

Equation Simplification for Symbolic Regression: AI Feynman Algorithm

Neural Network(x1, ⋯, xn, y)
Samples ̂f(x1, ⋯, xn)

≈ f(x1, ⋯, xn)

Discover

properties of

Mystery

Function

y = f(x1, ⋯, xn){Separability,

Symmetry,

Compositionality,

Etc.

Simplify

Function f

for symbolic

regression

Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.

Example: f = (x1 − x2)(x2
3 + x3x4 − x4 + 3) → f1 = x1 − x2 and f2 = x2

3 + x3x4 − x4 + 3

Example: f = (x1 − x2)2 + (x3 − x4)2 → f = z2
1 + z2

2 with z1 = x1 − x2, z2 = x3 − x4

Example: f = (x1/x2)2 + (x3/x4)2 → f = z2
1 + z2

2 with z1 = x1/x2, z2 = x3/x4

Example: f = x3 (x2
1 + x2

2)x3 → f = g(h(x1, x2), x3) with h(x1, x2) = x2
1 + x2

2 and g(h, x3) = x3 hx3

Equation Simplification for Symbolic Regression: AI Feynman Algorithm

Neural Network(x1, ⋯, xn, y)
Samples ̂f(x1, ⋯, xn)

≈ f(x1, ⋯, xn)

Discover

properties of

Mystery

Function

y = f(x1, ⋯, xn){Separability,

Symmetry,

Compositionality,

Etc.

Simplify

Function f

for symbolic

regression

Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.

Example: f = (x1 − x2)(x2
3 + x3x4 − x4 + 3) → f1 = x1 − x2 and f2 = x2

3 + x3x4 − x4 + 3

Example: f = (x1 − x2)2 + (x3 − x4)2 → f = z2
1 + z2

2 with z1 = x1 − x2, z2 = x3 − x4

Example: f = (x1/x2)2 + (x3/x4)2 → f = z2
1 + z2

2 with z1 = x1/x2, z2 = x3/x4

Example: f = x3 (x2
1 + x2

2)x3 → f = g(h(x1, x2), x3) with h(x1, x2) = x2
1 + x2

2 and g(h, x3) = x3 hx3

Equation Simplification for Symbolic Regression: AI Feynman Algorithm

Neural Network(x1, ⋯, xn, y)
Samples ̂f(x1, ⋯, xn)

≈ f(x1, ⋯, xn)

Discover

properties of

Mystery

Function

y = f(x1, ⋯, xn){Separability,

Symmetry,

Compositionality,

Etc.

Simplify

Function f

for symbolic

regression

Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.

Example: f = (x1 − x2)(x2
3 + x3x4 − x4 + 3) → f1 = x1 − x2 and f2 = x2

3 + x3x4 − x4 + 3

Example: f = (x1 − x2)2 + (x3 − x4)2 → f = z2
1 + z2

2 with z1 = x1 − x2, z2 = x3 − x4

Example: f = (x1/x2)2 + (x3/x4)2 → f = z2
1 + z2

2 with z1 = x1/x2, z2 = x3/x4

Example: f = x3 (x2
1 + x2

2)x3 → f = g(h(x1, x2), x3) with h(x1, x2) = x2
1 + x2

2 and g(h, x3) = x3 hx3

Functions in practice often have these simplifying properties:

1. Units: f and the variables upon which it depends have known physical units.

2. Low-order polynomial: f (or part of f) is a polynomial of low degree.

3. Compositionality: f is a composition of a small set of elementary functions, each
typically taking no more than two arguments.

4. Smoothness: f is continuous and perhaps even analytic in its domain.

5. Symmetry: f exhibits translational, rotational, or scaling symmetry with respect to
some of its variables.

6. Separability: f can be written as a sum or product of two parts with no variables
in common.

Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.

Functions in practice often have these simplifying properties:

1. Units: f and the variables upon which it depends have known physical units.

2. Low-order polynomial: f (or part of f) is a polynomial of low degree.

3. Compositionality: f is a composition of a small set of elementary functions, each
typically taking no more than two arguments.

4. Smoothness: f is continuous and perhaps even analytic in its domain.

5. Symmetry: f exhibits translational, rotational, or scaling symmetry with respect to
some of its variables.

6. Separability: f can be written as a sum or product of two parts with no variables
in common.

Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.

Functions in practice often have these simplifying properties:

1. Units: f and the variables upon which it depends have known physical units.

2. Low-order polynomial: f (or part of f) is a polynomial of low degree.

3. Compositionality: f is a composition of a small set of elementary functions, each
typically taking no more than two arguments.

4. Smoothness: f is continuous and perhaps even analytic in its domain.

5. Symmetry: f exhibits translational, rotational, or scaling symmetry with respect to
some of its variables.

6. Separability: f can be written as a sum or product of two parts with no variables
in common.

Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.

Functions in practice often have these simplifying properties:

1. Units: f and the variables upon which it depends have known physical units.

2. Low-order polynomial: f (or part of f) is a polynomial of low degree.

3. Compositionality: f is a composition of a small set of elementary functions, each
typically taking no more than two arguments.

4. Smoothness: f is continuous and perhaps even analytic in its domain.

5. Symmetry: f exhibits translational, rotational, or scaling symmetry with respect to
some of its variables.

6. Separability: f can be written as a sum or product of two parts with no variables
in common.

Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.

Functions in practice often have these simplifying properties:

1. Units: f and the variables upon which it depends have known physical units.

2. Low-order polynomial: f (or part of f) is a polynomial of low degree.

3. Compositionality: f is a composition of a small set of elementary functions, each
typically taking no more than two arguments.

4. Smoothness: f is continuous and perhaps even analytic in its domain.

5. Symmetry: f exhibits translational, rotational, or scaling symmetry with respect to
some of its variables.

6. Separability: f can be written as a sum or product of two parts with no variables
in common.

Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.

Functions in practice often have these simplifying properties:

1. Units: f and the variables upon which it depends have known physical units.

2. Low-order polynomial: f (or part of f) is a polynomial of low degree.

3. Compositionality: f is a composition of a small set of elementary functions, each
typically taking no more than two arguments.

4. Smoothness: f is continuous and perhaps even analytic in its domain.

5. Symmetry: f exhibits translational, rotational, or scaling symmetry with respect to
some of its variables.

6. Separability: f can be written as a sum or product of two parts with no variables
in common.

Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.

Functions in practice often have these simplifying properties:

1. Units: f and the variables upon which it depends have known physical units.

Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.

Property 1 enables dimensional analysis, which often transforms the problem into a
simpler one with fewer independent variables.

Dimensional analysis

Often the problem can be simplified by requiring the units of the two sides of an equation to match.
Fundamental Units: Meter, second, kilogram, kelvin, volt

Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.

Functions in practice often have these simplifying properties:

1. Units: f and the variables upon which it depends have known physical units.

2. Low-order polynomial: f (or part of f) is a polynomial of low degree.

Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.

Property 2 enables polynomial fitting, which quickly solves the problem by solving a
system of linear equations to determine the polynomial coefficients.

Polynomial Fit

Many functions in practice are low-order polynomials, e.g., the kinetic energy K = m
2 (v2

x + v2
y + v2

z)

or have parts that are, e.g., the denominator of the gravitational force F = Gm1m2
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

We use a module to test if a mystery can be solved by a low-order polynomial.

It uses standard techniques for polynomial fitting, and declares success if the best-fitting polynomial
gives root mean square error (RMSE) less than a threshold.

Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.

Brute Force Search

When the problem is small enough, simply try all simple (short) symbolic expressions,
and declares success when the maximum fitting error is below a threshold.

How to enumerate all simple (short) symbolic expressions: use computation
tree, or its string representation.

A string representation: reverse Polish notation

Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.

String Representation for Function: Reverse Polish notation

Examples of “reverse Polish notation” (where parentheses are unnecessary):

x + y → xy+

−2/3 → 0 < < 1 > > /

mv/ 1 − v2/c2 → mv * 1vv * cc * / − R/

The brute-force algorithm solves the constants in the symbolic
expressions using non-linear regression, and focuses on
enumeration of the remaining part of the symbolic expressions.

Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.

String Representation for Function: Reverse Polish notation

Examples of “reverse Polish notation” (where parentheses are unnecessary):

x + y → xy+

−2/3 → 0 < < 1 > > /

mv/ 1 − v2/c2 → mv * 1vv * cc * / − R/

The brute-force algorithm solves the constants in the symbolic
expressions using non-linear regression, and focuses on
enumeration of the remaining part of the symbolic expressions.

Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.

String Representation for Function: Reverse Polish notation

Examples of “reverse Polish notation” (where parentheses are unnecessary):

x + y → xy+

−2/3 → 0 < < 1 > > /

The brute-force algorithm solves the constants in the symbolic
expressions using non-linear regression, and focuses on
enumeration of the remaining part of the symbolic expressions.

−1
−2

2
3

Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.

String Representation for Function: Reverse Polish notation

Examples of “reverse Polish notation” (where parentheses are unnecessary):

x + y → xy+

−2/3 → 0 < < 1 > > /

mv/ 1 − v2/c2 → mv * 1vv * cc * / − R/
mv v2 c2

v2/c2

1 − v2/c2

1 − v2/c2

Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.

String Representation for Function: Reverse Polish notation

Examples of “reverse Polish notation” (where parentheses are unnecessary):

x + y → xy+

−2/3 → 0 < < 1 > > /

mv 1 − v2/c2 → mv * 1vv * cc * / − R/

The brute-force algorithm solves the constants in the symbolic
expressions using non-linear regression, and focuses on
enumeration of the remaining part of the symbolic expressions.

Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.

Define the winning function to be the one with RMSE (root mean square error) less than a threshold
that has the smallest total description length:

DL = log2 N + λ log2[max(1, ϵ
ϵd

)]

where ϵd = 10−15 and N is the rank of the string on the list of all strings tried.

The two terms correspond roughly to the number of bits required to store the symbol string and the
prediction errors, if the hyperparameter λ is set to equal the number of data points Nd .

In experiments, we use λ = Nd to prioritize simpler formulas.

Balance Accuracy & Complexity

Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.

Test “Translational Symmetry and Generalizations”
We test for translational symmetry using the trained neural network (that approximates the
mystery function f).

We first check if f(x1, x2, x3, ⋯) = f(x1 + a, x2 + a, x3, ⋯)
If that is the case, then we replace x′ 1 = x2 − x1 .

Otherwise, we repeat this test for all pairs of input variables, and also test whether any variable pair can
be replaced by its sum, product, or ratio.

If any of these simplifying properties is found, the resulting transformed mystery (with one fewer
input variable) is interactively passed into a fresh instantiation of the full AI Feynman symbolic
regression algorithm.

to within a precision threshold.

x1 and x2 by

Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.

Test “Translational Symmetry and Generalizations”
We test for translational symmetry using the trained neural network (that approximates the
mystery function f).

We first check if f(x1, x2, x3, ⋯) = f(x1 + a, x2 + a, x3, ⋯)
If that is the case, then we replace x′ 1 = x2 − x1 .

Otherwise, we repeat this test for all pairs of input variables, and also test whether any variable pair can
be replaced by its sum, product, or ratio.

If any of these simplifying properties is found, the resulting transformed mystery (with one fewer
input variable) is interactively passed into a fresh instantiation of the full AI Feynman symbolic
regression algorithm.

to within a precision threshold.

x1 and x2 by

Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.

Test “Translational Symmetry and Generalizations”
We test for translational symmetry using the trained neural network (that approximates the
mystery function f).

We first check if f(x1, x2, x3, ⋯) = f(x1 + a, x2 + a, x3, ⋯)
If that is the case, then we replace x′ 1 = x2 − x1 .

Otherwise, we repeat this test for all pairs of input variables, and also test whether any variable pair can
be replaced by its sum, product, or ratio.

If any of these simplifying properties is found, the resulting transformed mystery (with one fewer
input variable) is interactively passed into a fresh instantiation of the full AI Feynman symbolic
regression algorithm.

to within a precision threshold.

x1 and x2 by

Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.

Test “Separability”
We test for “Separability” using the trained neural network.

A function is separable if it can be split into two parts with no variables in common.

We test for both “Additive Separability” and “Multiplicative Separability”, corresponding to these
two parts being added and multiplied, respectively.

For example, to test whether a function of two variables is multiplicatively separable, i.e., of the form

f(x1, x2) = g(x1)h(x2)
for some univariate functions g and h, we first select two constants c1 and c2; for numerical
robustness, we choose c_{I} to be the means of all the values of x_{i} in the mystery dataset, for I=1,2.
We then compute the quantity

Δsep(x1, x2) = 1
frms

⋅ f(x1, x2) − f(x1, c2)f(c1, x2)
f(c1, c2)

For each data point. This is a measure of non-separability, since it vanishes if f is multiplicatively separable.

Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.

Test “Separability”
We test for “Separability” using the trained neural network.

A function is separable if it can be split into two parts with no variables in common.

We test for both “Additive Separability” and “Multiplicative Separability”, corresponding to these
two parts being added and multiplied, respectively.

For example, to test whether a function of two variables is multiplicatively separable, i.e., of the form

f(x1, x2) = g(x1)h(x2)
for some univariate functions g and h, we first select two constants c1 and c2; for numerical
robustness, we choose c_{I} to be the means of all the values of x_{i} in the mystery dataset, for I=1,2.
We then compute the quantity

Δsep(x1, x2) = 1
frms

⋅ f(x1, x2) − f(x1, c2)f(c1, x2)
f(c1, c2)

For each data point. This is a measure of non-separability, since it vanishes if f is multiplicatively separable.

Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.

Test “Separability”
We test for “Separability” using the trained neural network.

A function is separable if it can be split into two parts with no variables in common.

We test for both “Additive Separability” and “Multiplicative Separability”, corresponding to these
two parts being added and multiplied, respectively.

For example, to test whether a function of two variables is multiplicatively separable, i.e., of the form

f(x1, x2) = g(x1)h(x2)
for some univariate functions g and h, we first select two constants c1 and c2; for numerical
robustness, we choose c_{i} to be the means of all the values of x_{i} in the mystery dataset, for i=1,2.
We then compute the quantity

Δsep(x1, x2) = 1
frms

⋅ f(x1, x2) − f(x1, c2)f(c1, x2)
f(c1, c2)

for each data point. This is a measure of non-separability, since it vanishes if f is multiplicatively separable.

Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.

If separability is found, we define the two univariate mysteries y′ = f(x1, c2) and y′ ′ = f(c1, x2)/f(c1, c2) .
We pass the first one, y′ = f(x1, c2) back to fresh instantiation of our full AI Feynman symbolic regression algorithm,

and if it gets solved, we redefine y′ ′ = y
y′

⋅ cnum, where cnum represents any multiplicative numerical constant

that appears in y′ .

We then pass y′ ′ back to our algorithm, and if it gets solved, the final solution is y = y′ y′ ′

cnum
.

We test for “additive separability” analogously, simply replacing * and / by + and - above; also, cnum will represent
an additive numerical constant in this case. If we succeed in solving the two parts, then the full solution to the
original mystery is the sum of the two parts minus the numerical constant.

When there are more than two variables, we test all the possible subsets of variables that can lead to
separability and proceed as above for the newly created two mysteries.
Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.

Use “Separability” to simplify symbolic regression

If separability is found, we define the two univariate mysteries y′ = f(x1, c2) and y′ ′ = f(c1, x2)/f(c1, c2) .
We pass the first one, y′ = f(x1, c2) back to fresh instantiation of our full AI Feynman symbolic regression algorithm,

and if it gets solved, we redefine y′ ′ = y
y′

⋅ cnum, where cnum represents any multiplicative numerical constant

that appears in y′ .

We then pass y′ ′ back to our algorithm, and if it gets solved, the final solution is y = y′ y′ ′

cnum
.

We test for “additive separability” analogously, simply replacing * and / by + and - above; also, cnum will represent
an additive numerical constant in this case. If we succeed in solving the two parts, then the full solution to the
original mystery is the sum of the two parts minus the numerical constant.

When there are more than two variables, we test all the possible subsets of variables that can lead to
separability and proceed as above for the newly created two mysteries.
Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.

Use “Separability” to simplify symbolic regression

If separability is found, we define the two univariate mysteries y′ = f(x1, c2) and y′ ′ = f(c1, x2)/f(c1, c2) .
We pass the first one, y′ = f(x1, c2) back to fresh instantiation of our full AI Feynman symbolic regression algorithm,

and if it gets solved, we redefine y′ ′ = y
y′

⋅ cnum, where cnum represents any multiplicative numerical constant

that appears in y′ .

We then pass y′ ′ back to our algorithm, and if it gets solved, the final solution is y = y′ y′ ′

cnum
.

We test for “additive separability” analogously, simply replacing * and / by + and - above; also, cnum will represent
an additive numerical constant in this case. If we succeed in solving the two parts, then the full solution to the
original mystery is the sum of the two parts minus the numerical constant.

When there are more than two variables, we test all the possible subsets of variables that can lead to
separability and proceed as above for the newly created two mysteries.
Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.

Use “Separability” to simplify symbolic regression

If separability is found, we define the two univariate mysteries y′ = f(x1, c2) and y′ ′ = f(c1, x2)/f(c1, c2) .
We pass the first one, y′ = f(x1, c2) back to fresh instantiation of our full AI Feynman symbolic regression algorithm,

and if it gets solved, we redefine y′ ′ = y
y′

⋅ cnum, where cnum represents any multiplicative numerical constant

that appears in y′ .

We then pass y′ ′ back to our algorithm, and if it gets solved, the final solution is y = y′ y′ ′

cnum
.

We test for “additive separability” analogously, simply replacing * and / by + and - above; also, cnum will represent
an additive numerical constant in this case. If we succeed in solving the two parts, then the full solution to the
original mystery is the sum of the two parts minus the numerical constant.

When there are more than two variables, we test all the possible subsets of variables that can lead to
separability and proceed as above for the newly created two mysteries.
Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.

Use “Separability” to simplify symbolic regression

If separability is found, we define the two univariate mysteries y′ = f(x1, c2) and y′ ′ = f(c1, x2)/f(c1, c2) .
We pass the first one, y′ = f(x1, c2) back to fresh instantiation of our full AI Feynman symbolic regression algorithm,

and if it gets solved, we redefine y′ ′ = y
y′

⋅ cnum, where cnum represents any multiplicative numerical constant

that appears in y′ .

We then pass y′ ′ back to our algorithm, and if it gets solved, the final solution is y = y′ y′ ′

cnum
.

We test for “additive separability” analogously, simply replacing * and / by + and - above; also, cnum will represent
an additive numerical constant in this case. If we succeed in solving the two parts, then the full solution to the
original mystery is the sum of the two parts minus the numerical constant.

When there are more than two variables, we test all the possible subsets of variables that can lead to
separability and proceed as above for the newly created two mysteries.
Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.

Use “Separability” to simplify symbolic regression

Extra transformations

Apply the following transformations to variables and y, and try to solve the mystery equation:
square root, raise to the power of 2, log, exp, inverse, sin, cos, tan, arcsin, arccos, and arctan.

Example: if may be hard to discover the symbolic equation for r = (x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

but if we transform r to r^{2}, we can use polynomial regression to solve

r2 = (x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.

AI Feynman is good at finding complex equations compared to Genetic Programming.

For example, the neural network strategy is used six times when solving

F = Gm1m2
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

Without dimensional analysis: three times to discover translational symmetry that replaces
x1 − x2, y1 − y2, z1 − z2,

then use separability to repeatedly simplify the function.

Compare the “AI Feynman Algorithm” to Genetic Programming

Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.

An example of how a particular mystery dataset (Newton’s law of gravitation with nine variables) is solved.

Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.

AI Feynman

Paper: AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science Advances, 6 (16), eaay: 2631, April 15, 2020.

A more robust approach: find formulas that are Pareto-optimal, in the sense of having the
best accuracy for a given complexity. It can make the symbolic regression algorithm orders
of magnitude more robust toward noise and bad data.

Find Pareto-optimal functions: A more robust approach

Paper. AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity, by Silviu-Marian Udrescu, Andrew Tan, Jiahai Feng, Orisvaldo Neto,
Tailin Wu, and Max Tegmark, in 34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Use more general modality of computation graph to simplify function

Paper. AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity, by Silviu-Marian Udrescu, Andrew Tan, Jiahai Feng, Orisvaldo Neto,
Tailin Wu, and Max Tegmark, in 34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

An example of generalized symmetry

Paper. AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity, by Silviu-Marian Udrescu, Andrew Tan, Jiahai Feng, Orisvaldo Neto,
Tailin Wu, and Max Tegmark, in 34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Compositionality: Let us first consider the case of “compositionally”, where f(x) = g(h(x))

and h is a scalar function simpler than f in the sense of being expressible with a smaller graph.

By the chain rule, we have ▽ f(x) = g′ (h(x)) ▽ h(x)

so ̂▽ f = ± ̂▽ h where hats denote unit vectors: ̂▽ f = ▽ f
| ▽ f |

̂▽ h = ▽ h
| ▽ h |

This means that if we can discover a function h whose gradient is proportional to that of f (for
details see the reference paper below), then we can simply replace the variables x in the original
mystery data by the single variable h(x) and recursively apply the AI Feynman algorithm to the new
one-dimensional symbolic regression problem of discovering g(h).

Test “Compositionality”

Paper. AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity, by Silviu-Marian Udrescu, Andrew Tan, Jiahai Feng, Orisvaldo Neto,
Tailin Wu, and Max Tegmark, in 34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Generalized symmetry: Let us now turn to “Generalized Symmetry”, where k of the n
arguments enter only via some scalar function h of them. Specifically, we say that an f has
“Generalized Symmetry” if the n components of the vector x ∈ Rn

can be split into groups of k and n-k components (which we denote by the vectors

x′ ∈ Rk and x′ ′ ∈ Rn−k

such that f(x) = f(x′ , x′ ′) = g[h(x′), x′ ′] for some function g).

▽x′
f(x′ , x′ ′) = g1[h(x′), x′ ′] ▽ h(x′)

So ̂▽x′
f = ± ̂▽ h where denotes the derivative of g with respect to its first argument.

Test “Generalized Symmetry”

By the chain rule, we have

g1

Paper. AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity, by Silviu-Marian Udrescu, Andrew Tan, Jiahai Feng, Orisvaldo Neto,
Tailin Wu, and Max Tegmark, in 34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Generalized Additivity: If f is a function of two variables, then we also test for “Generalized Additivity”
where f(x1, x2) = F[g(x1) + h(x2)]

If we define the function s(x1, x2) = ∂f/∂x1
∂f/∂x2

then s(x1, x2) = g′ (x1)
h′ (x2)

if f satisfies the generalized additivity property. In other words, we simply need to test if s is
of the “multiplicatively separable form”

s(x1, x2) = a(x1)b(x2)
which we already know how to test.

Test “Generalized Additivity”

Paper. AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity, by Silviu-Marian Udrescu, Andrew Tan, Jiahai Feng, Orisvaldo Neto,
Tailin Wu, and Max Tegmark, in 34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Paper. AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity, by Silviu-Marian Udrescu, Andrew Tan, Jiahai Feng, Orisvaldo Neto,
Tailin Wu, and Max Tegmark, in 34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Paper. AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity, by Silviu-Marian Udrescu, Andrew Tan, Jiahai Feng, Orisvaldo Neto,
Tailin Wu, and Max Tegmark, in 34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

The neural network is a fully-connected, feed-forward neural network with 4
hidden layers of 128, 128, 64 and 64 neurons, respectively, all with tanh
activation function.

Network Training

Paper. AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity, by Silviu-Marian Udrescu, Andrew Tan, Jiahai Feng, Orisvaldo Neto,
Tailin Wu, and Max Tegmark, in 34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Leveraging “normalizing flows” to symbolic regress “probability distributions”

An important but more difficult symbolic regression problem is when the unknown function f(x) is a
probability distribution from which we have random samples rather than direct evaluations xi f(xi) .

We tackle this by adding preceding the regression by a step that estimates f(x) .
For this step, we use the popular “normalizing flow” technique, training an invertible neural network
mapping x → x′ = g(x) such that x′ has a multivariate normal distribution n(x′) .
We then obtain our estimator fNN(x) = n[g(x)] |J | where J is the Jacobian of g.

Extension: Symbolic Regression for Probability Distribution

Paper. AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity, by Silviu-Marian Udrescu, Andrew Tan, Jiahai Feng, Orisvaldo Neto,
Tailin Wu, and Max Tegmark, in 34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Extension: Symbolic Regression for Probability Distribution

Paper. AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity, by Silviu-Marian Udrescu, Andrew Tan, Jiahai Feng, Orisvaldo Neto,
Tailin Wu, and Max Tegmark, in 34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Some related papers:

8) AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity, by Silviu-Marian Udrescu, Andrew Tan, Jiahai
Feng, Orisvaldo Neto, Tailin Wu, and Max Tegmark, in 34th Conference on Neural Information Processing Systems (NeurIPS),
Vancouver, Canada, 2020.

3) Function Finding and the Creation of Numerical Constants in Gene Expression Programming, by Candida Ferreira, AICS 2003.

4) Coevolution of Fitness Predictors, by Michael D. Schmidt and Hod Lipson, IEEE Transactions on Evolutionary Computation,
vol. 12, no. 6, pp. 736-749, December 2008.

5) Learning Equations for Extrapolation and Control, by Subham S. Sahoo, Christoph H. Lampert, and Georg Martius, 35th
International Conference on Machine Learning, Stockholm, Sweden, PMLR 80, 2018.

6) Deep Symbolic Regression: Discovering Mathematical Expressions from Data via Risk-Seeking Policy Gradients, by Brenden K.
Petersen, Mikel Landajuela Larma, T. Nathan Mundhenk, Claudio Santiago, Sookyung Kim and Joanne T. Kim, at ICLR 2021.

7) AI Feynman: A physics-inspired method for symbolic regression, by Silviu-Marian Udrescu and Max Tegmark, in Science
Advances, 6 (16), eaay: 2631, April 15, 2020.

1) Distilling Free-Form Natural Laws from Experimental Data, by Michael Schmidt and Hod Lipson, Science, vol. 324, pp. 81-85, 2009.

2) Supporting Online Material for “Distilling Free-Form Natural Laws from Experimental Data,” by Michael Schmidt and Hod Lipson,
Science, vol. 324, pp. 81-85, April 3, 2009.

Questions are welcome!

