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Once we searched Google. Now it searches us

I Google’s Street View mapping project scooped up
passwords, e-mail and other personal information from
people. Google says this was done unintentionally . . .

I Google used secret code to bypass Safari’s antitracking
security setting

I Google tracks your Android phone even if you turn off
location services, stopped using apps and removed your
SIM card from your device. Android users cannot opt out.

I Google sells this info to third parties. Eg., if you are near a
specific store, that store can send you targeted advertising.

I Android was created to extract our personal information.



Facebook is a serial violator of privacy

I Without users’ consent, Facebook has been sharing their
data with more than 150 businesses, including Amazon,
Microsoft, Netflix, Spotify, ...

I Facebook pretended to apply Europe’s new privacy laws to
all its users outside the US and then secretly switched all
non-European users to the spineless US privacy law.

I Apps are sharing sensitive data with Facebook without
informing users; and even when users are not logged in
through Facebook, or do not have a Facebook account.

I Facebook wants banks to hand over their customers’
sensitive financial data to offer better service to its users
– give us your data, we give you our users.

The combined data from all the different apps paint a detailed
and intimate picture of people’s activities, interests, behaviors.



Companies claim they care about privacy ...

The privacy of our customers’ personal information is very
important to us ... but not as important as our profits!

Zuckerberg voted down a shareholder proposal for more
accountability and transparency regarding privacy.
Google’s Page and Brin have voted down a similar proposal.

Happily retweeted by Facebook’s Chief AI Scientist ...



Surveillance Capitalism in a nutshell

Surveillance capitalism: is a new economic system, which
pursues the exploitation and control of human nature, thereby
threatening our social fabric.

S. Zuboff: By providing free services that billions
of people cheerfully use, it enables companies
like Google, Facebook, Amazon, ... not only to
monitor the behavior of those users in astonishing
detail - often without their explicit consent.

Our means of social participation have been
conflated with the means through which
surveillance capitalists collect their data and seek
to modify our behavior.

... with disastrous consequences for democracy
and freedom!



Privacy in times of a pandemic

Trusting Google and Facebook with privacy is like trusting
Exxon and BP with environmental regulations.



Privacy-preserving machine learning

Privacy-preserving machine learning aims to protect data
security, privacy and confidentiality, while still permitting useful
conclusions from the data or its use for model development.

Privacy-preserving machine learning plays a key role in
democratizing data science and AI

Privacy-preserving techniques:
I Homomorphic encryption
I Federated learning/On-device learning
I Anonymization
I Differential privacy
I Synthetic data
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Privacy-preserving techniques

The path to privacy is paved with NP-hard problems!



Anonymization: k -anonymity

Intuition: The information for each person contained in the
dataset cannot be distinguished from at least k − 1 individuals
whose information also appear in the dataset. [Sweeney, 2002].
Definition: Let X denote the input data. An algorithm A(X ) is
k -anonymous if the preimage A−1(Y) of any point Y under A
has cardinality at least k .

k = 2

The privacy guarantees offered by k -anonymity are limited, but
its simplicity has made it quite popular and a standard method
in the arsenal of privacy enhancing technologies.
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Differential privacy [Dwork et al. 2006]

Intuition: An algorithm satisfies differential privacy (DP) if by
looking at the output, one cannot tell whether any individual’s
data was included in the original dataset or not.

Definition: [Dwork et al. 2006] A randomized functionM gives
ε-differential privacy if for all databases D1 and D2 differing on
at most one element, and all measurable S ⊆ range(M),

P[M(D1) ∈ S] ≤ eε · P[M(D2) ∈ S],

where the probability is with respect to the randomness ofM.

The lower the value ε, the more indistinguishable the results,
and therefore the more each individual’s data is protected.



Differential privacy and noise

Almost all existing mechanisms to implement DP are based on
adding noise to the data or the data queries.

Laplacian mechanism: Lap(σ) ∼ exp(−|x |/σ)
adding Laplacian noise Lap(σ) with σ ∼ 1/ε to data queries

The lower the value ε, the more noisy the data are.

Challenge: how to choose “privacy budget” ε in practice.
Typical value for ε in practice: ε ≤ 4.

DP used in connection with releasing the Census 2020 data



Synthetic Data

Synthetic data are generated (typically via some randomized
algorithm) from existing data such that they maintain the
statistical properties of the original data set, but do so without
risk of exposing sensitive information.

Intrinsic conflict between privacy and utility: Synthetic data
should be different from the original data, but still very similar.

Extreme cases:
Synthetic data = original data: Perfect utility, zero privacy
Synthetic data = random data: Perfect privacy, zero utility.

Combining synthetic data with DP has great promise to mitigate
key weaknesses of DP [Bellovin 2019, Kearns 2020]



Classical way to privatize data

=⇒ Loss of useful information!



Privacy via synthetic data

None of the faces in the right panel are real. But hopefully they
are a faithful representation of the original face dataset

How do we know that the synthetic dataset captures the
nuances of the original dataset?
How do we know that privacy is preserved?



Privacy and health care data

In 2013 the UK National Health Services planned to sell patient
data to drug and insurance firms. Patients could not opt out.

After major complains, the program was modified so that
patients could opt out. Eventually the whole program was
cancelled (for now ...).

Major misconception:
Patients should not have to opt out in the
first place, since medical data are among
the most personal data of an individual.

The legal right of businesses to harvest and sell the information
of individual patients without their permission has been upheld
by the US Supreme Court. [564 U.S. 552 (2011)]
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Privacy and health care data

The intensive care unit is becoming one of
the most data-driven clinical environments.
Data analysis approaches that are tailored
to the specific needs and limitations of the
ICU environments are needed.

But lack of availability and access to sufficient
data is a main road block for medical experts
and AI scientists towards the development of
advanced medical decision support systems

Thus ICU is a prototypical setting where (high-quality) synthetic
data would be tremendously helpful to break through this data
bottleneck, while respecting health data privacy laws.



Privacy and health care data

Challenge: Data are heterogeneous, dynamic, multimodal, ...



Benchmark model: Boolean cube

Let us start with a seemingly simple data model ...

Boolean cube {0,1}p as benchmark model for the dataset X .

X has n rows and p columns.
X might represent an electronic health
record (EHR) with n patients, each patient
is represented by a row x ∈ {0,1}p.

We can also represent categorical data (gender, occupation,
etc.) or numerical data (by splitting them into intervals) on the
Boolean cube via binary or one-hot encoding.



Utility

Accuracy: We measure accuracy by comparing the marginals
of true and synthetic data.
A d-dimensional marginal of the true data has the form

1
n

n∑
i=1

xi(j1) · · · xi(jd )

for some given indices j1, . . . , jd ∈ [p].

EHR: a d-dimensional marginal is the fraction of the patients
whose d given parameters all equal 1.
The one-dimensional marginals encode the means of the
parameters, and the two-dimensional marginals encode the
covariances, e.g., nr. of patients who smoke and have diabetes.



Accurate and private synthetic data

Given data x1, . . . , xn ∈ {0,1}p, our goal is to design a
randomized algorithm that satisfies:

(i) synthetic data: the algorithm outputs a list of vectors
y1, . . . , ym ∈ {0,1}p;

(ii) efficiency: runtime is polynomial in n and p;
(iii) privacy: the algorithm is differentially private;
(iv) accuracy: the low-dimensional marginals of y1, . . . , ym are

close to those of x1, . . . , xn.

[Ullman-Vadhan 2011]: Achieving (i),(iii),(iv) is NP-hard.
Thus we cannot satisfy (i)-(iv) simultaneously.

Why not create synthetic data by adding noise to true data and
use randomized rounding to map noisy data to Boolean cube?
Problem: We need to add a lot of noise to ensure DP.
Hence, resulting data would not be accurate.
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Fighting surveillance capitalism is NP-hard ...

We will circumvent the NP-hardness of the problem in two
different ways:

1. Relax accuracy of low-dimensional marginals from “all
marginals” to “most marginals”. We will show that in this
case we can achieve (i)-(iv).

2. Statistical framework: Ullman-Vadhan is a worst-case
no-go result. We will show that for typical data we can
achieve (i)-(iv).



k-anonymity

k -anonymity: The information for each person contained in the
dataset cannot be distinguished from at least k − 1 individuals
whose information also appear in the dataset.

k-anonymity: a simple idea, how hard can it be?

NP-hard!
I Finding the optimal partition into k-anonymous groups is

NP-hard [Meyerson&Williams, 2004]
I Optimal multivariate microaggregation is NP-hard for k ≥ 3

[Oganian&Domingo-Ferrer 2001,Thaeter&Reischuk 2020]
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k-anonymity and microaggregation

Given a dataset X consisting of n elements (e.g., patients)
each described by p real-valued attributes, i-th element is
represented by a vector xi ∈ Rp.
Microaggregation:

1. Cluster the vectors xi into clusters Cj , each of size ≥ k .
2. All elements xi of a cluster Cj are replaced by a cluster

representative yj , thus giving k -anonymity.
In order to keep the quality of the data in X one would like to
generate as little distortion as possible when replacing
individual attribute vectors xi by cluster representatives yj .
Related to k -means, but more challenging, since in
microaggregation each cluster must have (at least) k elements.
Numerous papers on microaggregation for privacy:
[Domingo-Ferrer&Sanchez, Laszlo&Mukherjee, Monedero, ...]
But no guarantees regarding utility.



Challenges of k-anonymity

I Real-world datasets are high-dimensional and very sparse
I Need to find k − 1 neighbors for each data point: How to

do this computationally efficiently?
I How to control utility? Existing methods provide no utility

guarantees.
I Projection to low dimensions: may lose all information, and

how to control utility in projected space?
I How to protect against linkage attacks?

We will address these issues by first solving a completely
different problem
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Covariance Loss

A fundamental question from probability:

How much information is lost when we take conditional expectation?

Given a random variable X and a sigma-algebra F ,
consider the conditional expectation Y = E[X |F ]
Law of total expectation: Y gives unbiased estimate of mean:

EX = EY

Law of total variance:

Var(X )− Var(Y ) = EX 2 − EY 2 = E(X − Y )2

=⇒: taking conditional expectation underestimates variance.

How much variance is lost?



Covariance Loss

If X is bounded, say |X | ≤ 1, we can decompose the interval
[−1,1] into k subintervals of length 2/k each, take Fi to be the
preimage of each interval under X , and let F = σ(F1, . . . ,Fk )
be the sigma-algebra generated by these events.

Since X and Y takes values in the same subinterval a.s., we
have |X − Y | ≤ 2/k a.s. Thus, the law of total variance gives

Var(X )− Var(Y ) ≤ 4
k2 .



Covariance Loss

Generalize this to high dimensions: X ∈ Rp is a random vector
and Y = E[X |F ], the law of total expectation holds unchanged.
Let ΣX = E(X − EX )(X − EX )T be the covariance matrix of X .
The law of total variance becomes the law of total covariance:

ΣX − ΣY = EXX T − EYY T = E(X − Y )(X − Y )T

In particular: ΣX � ΣY .

Heuristically, the simpler the sigma-algebra F is, the more
variance gets lost.
I What is the best sigma-algebra F with a given complexity?
I How small can the covariance loss be?

We face the curse of dimensionality:
The unit Euclidean ball in Rp cannot be partitioned into k
subsets of small diameter, unless k is exponentially large in p.



Covariance Loss - Beating the curse of dimensionality

Theorem (Covariance loss, [BSV, 2021])
Let X be a random vector in Rp such that ‖X‖2 ≤ 1 a.s. Then,
for every k ≥ 3, there exists a partition of the sample space into
at most k sets such that for the sigma-algebra F generated by
this partition, the conditional expectation Y = E[X |F ] satisfies

‖ΣX − ΣY‖2 ≤ C

√
log log k

log k
.

The rate is optimal up to a
√

log log k factor.
The partition can be made with exactly k sets, all of which have
the same probability 1/k.
Moreover, the result extends (magically?) to higher moments:

‖EX⊗d − EY⊗d‖2 ≤ 4d‖EX⊗2 − EY⊗2‖2 = 4d‖ΣX − ΣY‖2.



From covariance loss to microaggregation

True data are x1, . . . , xn ∈ Rp. Let X (i) = xi be the random
variable on the sample space [n] equipped with uniform
probability distribution. Obtain a partition [n] = I1 ∪ · · · ∪ Im from
the Covariance Loss Theorem and assume for simplicity that all
sets Ij have the same cardinality |Ij | = n/k .
The conditional expectation Y = E[X |F ] on the sigma-algebra
F = σ(I1, . . . , Im) generated by this partition takes values

yj =
k
n

∑
i∈Ij

xi , j = 1, . . . , k .

with probability 1/k each.
Thus, the synthetic data y1, . . . , yk are obtained by taking local
averages, or by microaggregation of the input data x1, . . . , xn.
Crucial: synthetic data is obviously (n/k)-anonymous.
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What about accuracy of the synthetic data?

Law of total expectation EX = EY ⇒ 1
n
∑n

i=1 xi = 1
k
∑k

j=1 yj .
Thus one-dim. marginals are preserved exactly.
Marginals of higher dimension: assume ‖xi‖2 ≤ 1 for all i .
Then Covariance Loss Theorem yields

‖1
n

n∑
i=1

x⊗d
i − 1

k

k∑
j=1

y⊗d
j ‖2 . 4d

√
log log k

log k
.

Thus, if k � 1 and d = O(1), the synthetic data is accurate in
the sense of the L2-average of marginals.



Privacy

How can we upgrade anonymity to differential privacy?

Microaggregation reduces sensitivity of the synthetic data, but
by itself it is not differentially private.



Microaggregation and privacy
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Accurate, private synthetic data via microaggregation

Given a sequence of points x1, . . . , xn on the cube {0,1}p (true
data), our algorithm comprises the following steps:

1. Spectral projection of data onto leading eigenvectors of the
(noisy) second-moment matrix S = 1

n
∑n

i=1 xixT
i .

(key to computational efficiency)
2. Nearest neighbor partition in projected space
3. Damped microaggregation

(key to addressing instability of microaggregation)
4. Add Laplacian noise (for privacy)
5. Metric projection

(adding noise for privacy may move data outside cube)
6. Bootstrapping and randomized rounding

(To create unlimited number of synthetic data)



Accurate, private synthetic data via microaggregation

Theorem
Let ε ∈ (0,1). There exists an ε-differentially private
randomized algorithm that transforms input data
x1, . . . , xn ∈ {0,1}p into the output data z1, . . . , zm ∈ {0,1}p in
such a way that the synthetic data are oε(1)-accurate for
d-dimensional marginals on average. The algorithm runs in
time polynomial in p, n and linear in m, and is independent of d.

Challenges in 30-page proof:
I Keep track of information loss in projected space
I Right balance of noise (privacy) and accuracy
I Handle sensitivity of microaggregation to DP
I Extension to higher-dim. marginals, when input is only

about two-dim. marginals



Accurate, private synthetic data via microaggregation

Strengths of the algorithm:
No model assumed about data
Not limited to specific queries
Applicable to data living in a convex set, beyond Boolean cube

Drawback: Guarantee only for most marginals



A statistical framework for synthetic data

Recall: Making DP synthetic data that preserve all two-dim.
marginals with accuracy o(1) is NP-hard [Ullman-Vadhan 2011]

This is a worst-case result, for the worst kind of data.
Yet the worst kind of data, for which the problem is NP-hard,
are rarely seen in practice.

Perhaps things are better in the “typical case”?
This suggests: consider a statistical framework



A statistical framework for synthetic data

Assume the true data X is a random sample drawn from some
probability space (Ω,Σ, ν). The probability distribution ν
specifies the population model of the true data.

We assume that we neither know ν, nor that we can sample
according to ν, thereby generating more true data.

Suppose, however, that we can sample from Ω according to
some other, known, probability measure µ.

Example: We may not know the population distribution ν of the
patients in the Boolean cube Ω = {0,1}p, but we can still
sample from the cube according to the uniform measure µ.

Similarly, while we may not know the population distribution ν of
written notes in patient health records, there do exist generative
models µ that generate texts.



A statistical framework for synthetic data

Linear statistics of the data X = (x1, . . . , xn) are sums of the
form 1

n
∑n

i=1 f (xi) for f ∈ F , where F is a set of functions from Ω
to [−1,1]. For instance, linear statistics include marginals.

We would like the synthetic data Y to approximately preserve
all these sums, up to a given additive error δ:

max
f∈F

∣∣∣1
k

k∑
i=1

f (yi)−
1
n

n∑
i=1

f (xi)
∣∣∣ ≤ δ.

In this case we say that the synthetic dataset is δ-accurate.



A statistical framework for synthetic data

Often |Ω| is too large for computations while |F| is reasonable.
E.g., if F encodes all d-dimensional marginals of {0,1}p, |Ω| is
exponential in p, while |F| is polynomial in p.

To circumvent the computational hardness of the problem we
subsample Ω: replace Ω by a much smaller random subset Ω∗

that is sampled according to the distribution µ.
Then we generate synthetic data in Ω∗ by fitting the desired
linear statistics Fof the true data as close as possible.

But is this even possible?

This subsampling idea can only work if the sampling distribution
µ has some “correlation” with the population distribution ν.
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Rènyi condition number

We quantify this correlation using the Rènyi condition number:

κ(ν‖µ) :=

∫ (dν
dµ

)2
dµ =

∫
dν
dµ

dν,

which equals the exponential the Rènyi divergence of order 2.

Conceptually, κ(ν‖µ) is similar to the notion of the condition
number in numerical linear algebra: the smaller, the better.
The best value of κ(ν‖µ) is 1, achieved when ν = µ.



Algorithm

Input: (a) the true data x1, . . . , xn ∈ Ω;
(b) a family F of test functions from Ω to [−1,1];
(c) the reduced space Ω∗ = {z1, . . . , zm}.

1. Add noise: For each test function f ∈ F , generate an
independent Laplacian random variable λ(f ) ∼ Lap(σ).

2. Reweight: Compute a density h∗ on Ω∗ whose linear
statistics are uniformly as close as possible to the linear
statistics of the true data perturbed by Laplacian noise:

h∗ = argmin

{
max
f∈F

∣∣∣ m∑
i=1

f (zi)h(zi)−
1
n

n∑
i=1

f (xi)− λ(f )
∣∣∣} ,

where h∗ is a density.
3. Bootstrap: Create a sequence y1, . . . , yk of k elements

drawn from Ω∗ independently with density h∗.
Output: synthetic data y1, . . . , yk .



Private, accurate, efficient synthetic data

Theorem (Privacy)
Let δ > 0, γ > 0 and set σ = δ/ log(|F|/γ). If

n ≥ 2(εδ)−1|F| log(|F|/γ),

then the algorithm is ε-differentially private.

Theorem (Accuracy)
Let min(n, k) ≥ δ−2 log(|F|/γ) and m ≥ δ−2K |F|/γ. Set
σ = δ/ log(|F|/γ). Assume that the Rènyi condition number
satisfies κ(ν‖µ) ≤ K . Then with probability at least 1− 4γ the
synthetic dataset generated by the algorithm is (8δ)-accurate.
Computational efficiency: Computing h∗ amounts to solving a
linear program with |Ω∗| ≤ m variables, thus complexity of the
algorithm is polynomial in |Ω∗|.



Statistical framework - challenges

I While the proposed method provides a simple and efficient
roadmap to construct private synthetic data that preserve
with high accuracy linear statistics of the original data, we
may require our synthetic data to accurately model other
features of the data that are not (fully) captured by linear
statistics.
How well do linear statistics inform other kinds of data
analysis, e.g., clustering, classification, regression, ...?

I We do not know the population distribution ν, thus we may
not know how to choose a good sampling distribution µ.
Using various generative models seem a natural choice for
certain types of data, such as text and images. Using
those, we may hope to build the sampling distribution µ
that has enough “overlap” with the population distribution ν
(as measured by the Rènyi condition number).



Differential privacy without the noise

I DP is always implemented by adding some form of noise.
I But noise will negatively affect utility and can inject

systematic errors, hence bias, into the data!
I Can we achieve DP in a noisefree way?

Yes, we can!

Private sampling:
Can modify the algorithm presented in the statistical framework
so that DP can be achieved without adding noise but via a
carefully calibrated random sampling strategy.
Details and proofs: rather technical.
Mathematical tools include: Boolean Fourier analysis,
hypercontractivity, duality, and empirical processes.
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Differential privacy without the noise

Lemma (Private sampling)
Let Ω be a finite set. Let f be a mapping that takes a dataset X
as input and returns a probability mass function f (X ) on Ω.
Suppose ε > 0 and k ∈ N are chosen so that

‖f (X1)/f (X2)‖∞ ≤ exp(ε/k)

for all datasets X1 and X2 that differ on a single element. Then
the algorithm that takes X as input and returns a sample of k
points drawn from Ω independently and according to the
distribution f (X ) is ε-differentially private.



Ongoing work: Private sampling and Census 2020

The U.S. Census Bureau plans to use
differential privacy in the release of the
Census 2020 data.
However, initial simulations have shown
that the DP Census data has a strong
negative effect on small communities
and minorities.

Can private sampling help to mitigate the negative effects of
noise-induced DP?



Ongoing work: Synthetic data for the ICU



Further Readings

These papers can be found on the arvix or my homepage:
1. M. Boedihardjo, T. Strohmer, and R. Vershynin. Private

sampling: a noiseless approach for generating differentially
private synthetic data. Preprint, 2021.

2. M. Boedihardjo, T. Strohmer, and R. Vershynin Privacy of
Synthetic Data: A Statistical Framework. Preprint, 2021.

3. M. Boedihardjo, T. Strohmer, and R. Vershynin.
Covariance’s Loss is Privacy’s Gain: Computationally
Efficient, Private and Accurate Synthetic Data. Preprint,
2021.



Conclusion and Outlook

I We have developed several mathematical frameworks for
computationally efficiently creating private and accurate
synthetic data

I Many open challenges: How to extend this beyond linear
statistics? How to handle multimodal synthetic data? ...

I Privacy-preserving synthetic data ecosystems
“democratize" data science research

I Synthetic data are a piece of the puzzle toward fighting
surveillance capitalism

I See my talk “Pandemics, Privacy, and Paradoxes - Why
We Need a New Paradigm for Data Science and AI”,
https://www.youtube.com/watch?v=T5AWRe1aqJs


