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Executive Summary

►Strategic Intent: Develop solutions to leading edge problems for Lab partners through research 
that brings together data, modeling and analysis to achieve industry leading improvements in 
business performance.

►Cross Industry: Oil/Gas, Retail, Financial Services, Government, Insurance, Airlines, Industrial 
Equipment, Software

►Global footprint: NA, EU, Asia, LA
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Online Learning

No data is available at the beginning of the process. 

Data is generated on-the-fly according to some unknown model 

and the decisions made by the platform.

Objective: Design algorithms that maximize the accumulated 
reward, i.e., achieve low regret.
Regret = optimal accumulated reward of a clairvoyant – collected accumulated reward

Unknown 
Model
𝒇𝒇∗(𝒙𝒙,𝒂𝒂)

Reward
𝒓𝒓𝒕𝒕

Decision
𝒂𝒂𝒕𝒕

Optimize

Observe

Learn
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Feature
𝒙𝒙𝒕𝒕

Receive

generated by nature

generated by nature generated by learner

𝑓𝑓∗ the ground-truth
reward function



Offline Learning

The entire data set (of i.i.d. samples) is available at the beginning.

The decision maker cannot adapt decisions to the new data.

Training data set (i.i.d.)
𝒙𝒙𝟏𝟏,𝒂𝒂𝟏𝟏;𝒓𝒓𝟏𝟏 , 𝒙𝒙𝟐𝟐,𝒂𝒂𝟐𝟐; 𝒓𝒓𝟐𝟐 ,⋯ , (𝒙𝒙𝒏𝒏,𝒂𝒂𝒏𝒏; 𝒓𝒓𝒏𝒏)~𝑫𝑫

Offline Learning 
Algorithms

Predictive functions
�𝒇𝒇 𝒙𝒙,𝒂𝒂
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Objective: Design algorithms that with limited data will generate 
the �𝒇𝒇 so that with high probability �𝒇𝒇 will have low error compared to 
the ground truth 𝒇𝒇∗.
Estimation error = 𝔼𝔼 𝑥𝑥,𝑎𝑎;𝑟𝑟 ∼𝐷𝐷[ℓ(𝑓𝑓 𝑥𝑥, 𝑎𝑎 ,𝑓𝑓∗(𝑥𝑥,𝑎𝑎))]; it is MSE when ℓ is square loss which 

is the average squared difference between the estimated values and the actual value
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The Interplay between Online and Offline Learning

• Reducing Online Learning to Offline Learning
 D. Simchi-Levi and Y. Xu (2020). Bypassing the Monster: A 

Faster and Simpler Optimal Algorithm for Contextual 
Bandits under Realizability.

• Online Learning with Offline Data 
 J. Bu, D. Simchi-Levi, and Y. Xu (2019). Online Pricing with 

Offline Data: Phase Transition and Inverse Square Law.
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Part I: Talk Outline

• Motivation and Research Question

• Technical Hurdles and Our Contribution

• The Algorithm and Theory

• Computational Experiments
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A General Contextual Bandit Model

►For round 𝑡𝑡 = 1,⋯ ,𝑇𝑇
• Nature generates a random context 𝑥𝑥𝑡𝑡 according to a fixed unknown distribution 𝐷𝐷𝑋𝑋
• Learner observes 𝑥𝑥𝑡𝑡 and makes a decision 𝑎𝑎𝑡𝑡 ∈ {1, … ,𝐾𝐾}
• Nature generates a random reward 𝑟𝑟𝑡𝑡(𝑎𝑎𝑡𝑡) ∈ [0,1] according to an unknown distribution 

with conditional mean
𝔼𝔼 𝑟𝑟𝑡𝑡(𝑎𝑎𝑡𝑡) 𝑥𝑥𝑡𝑡 = 𝑥𝑥, 𝑎𝑎𝑡𝑡 = 𝑎𝑎 = 𝑓𝑓∗(𝑥𝑥, 𝑎𝑎)

►We call 𝑓𝑓∗ the ground-truth reward function; 𝑓𝑓∗ ∈ 𝐹𝐹
►Regret: the total reward loss compared with a clairvoyant who knows 𝑓𝑓∗

►In statistical learning, people use a function class 𝐹𝐹 to approximate 𝑓𝑓∗. 
Examples of 𝐹𝐹:

• Linear class / high-dimension linear class / generalized linear models
• Non-parametric class / reproducing kernel Hilbert space (RKHS)
• Regression trees
• Neural networks



Why is the problem important and 
challenging?

►Contextual bandits combine statistical learning and decision 
making under uncertainty 

►Contextual bandits capture two essential features of sequential 
decision making under uncertainty

• Bandit feedback: for each context 𝑥𝑥𝑡𝑡, learner only observes the reward for 
her chosen action 𝑎𝑎𝑡𝑡; no other rewards are observed

• Learner faces a trade-off between exploration and exploitation

• Heterogeneity: the effectiveness of each action depends on the context
• The context space is huge --- Not clear how to learn across contexts for general 

function class



Literature on Contextual Bandits

►Algorithms:
• Upper Confidence Bounds (Filippi et al. 2010, Rigollet and Zeevi 2010, Abbasi-

Yadkori et al. 2011, Chu et al. 2011, Li et al. 2017, …)
• Thompson Samplings (Agrawal and Goyal 2013, Russo et al. 2018, …)
• Exponential Weighting (Auer et al. 2002, McMahan and Streeter 2009, 

Beygelzimer et al. 2011, …)
• Oracle-based (Dudik et al. 2011, Agarwal et al. 2014, Foster et al. 2018, Foster 

and Rakhlin 2020, …)
• Many Others …

►Applications:
• Recommender systems (Li et al. 2010, Agarwal et al. 2016, ...)
• Ride-hailing platforms (Chen et al. 2019, …)
• Dynamic pricing (Ferreira et al. 2018…)
• Healthcare (Tewari and Murphy 2017, Bastani and Bayati 2020, …)
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Relevance to Operations

►Product recommendation:
• 𝐾𝐾 products
• 𝑇𝑇 customers arriving in a sequential manner. Each customer has a feature 𝑥𝑥𝑡𝑡 describing gender, 

age, shopping history, device type, etc.

• The task it to recommend a product 𝑎𝑎𝑡𝑡 (based on 𝑥𝑥𝑡𝑡) that generates revenue as high as possible
• The revenue distribution is unknown, with its conditional mean 𝑓𝑓∗(𝑥𝑥𝑡𝑡, 𝑎𝑎𝑡𝑡) to be learned

►Personalized medicine:
• 𝐾𝐾 treatments / dose levels
• 𝑇𝑇 patients arriving in a sequential manner. Each patient has a feature 𝑥𝑥𝑡𝑡 describing her 

demographics, diagnosis, genes, etc.

• The task is to pick a personalized treatment (or dose level) 𝑎𝑎𝑡𝑡 (based on 𝑥𝑥𝑡𝑡) that is as effective 
as possible

• The efficacy is random and unknown, with the efficacy rate 𝑓𝑓∗(𝑥𝑥𝑡𝑡,𝑎𝑎𝑡𝑡) to be learned
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The Challenge

►We are interested in contextual bandits with a general function class 𝐹𝐹
►Realizability assumption: 

𝑓𝑓∗ ∈ 𝐹𝐹

►Statistical challenge: How can we achieve the optimal regret for any 
general function class?

►Computational challenge: How can we make the algorithm computationally 
efficient?

►Classical contextual bandits approaches fail to simultaneously address the 
above two challenges in practice, as they typically

• Become statistically suboptimal for general 𝐹𝐹 (e.g., UCB variants and Thompson Sampling)
• Become computationally intractable for large 𝐹𝐹 (e.g., Exponential weighting, Elimination-

based methods)



Research Question

► Observation: Given a general function class 𝐹𝐹, the statistical and computational aspects of “offline 
regression” are  well-studied in ML.

► Specifically, given i.i.d. offline data, advances in ML enable us to find a predictor 𝑓𝑓 such that
• (statistically) 𝑓𝑓 achieves low estimation error: support vector machines, random forests, boosting, neural net …

• (computationally) 𝑓𝑓 can be efficiently computed: gradient descent methods 

► Can we reduce general contextual bandits to general offline regression?

► Given 𝐹𝐹, and an offline regression oracle, e.g., a least-squares regression oracle

arg min
𝑓𝑓∈𝐹𝐹

�
𝑡𝑡=1

𝑛𝑛
𝑓𝑓 𝑥𝑥𝑡𝑡 ,𝑎𝑎𝑡𝑡 − 𝑟𝑟𝑡𝑡(𝑎𝑎𝑡𝑡) 2

or its regularized counterparts (e.g., Ridge and Lasso), 

Challenge: Design a contextual bandit algorithm such that
• (statistically) it achieves the optimal regret whenever the offline regression oracle attains the optimal 

estimation error

• (computationally) it requires no more computation than calling the offline regression oracle

► An open problem mentioned in Agarwal et al. (2012), Foster et al. (2018), Foster and Rakhlin (2020)



Talk Outline

• Motivation and Research Question

• Technical Hurdles and Our Contribution

• The Algorithm and Theory

• Computational Experiments
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Why is the research question so challenging?

►Two key challenges for reducing contextual bandits to offline 
regression

• 1. Statistical difficulties associated with confidence bounds
• 2. Statistical difficulties associated with analyzing dependent actions

15



1. Stat. difficulties with confidence bounds

►Many classical contextual bandits algorithms, e.g., UCB and 
Thompson Sampling, only work with certain parametric models

►This is because they usually rely on effective confidence 
bounds constructed for each (𝑥𝑥,𝑎𝑎) pair

►While this is possible for a simple class 𝐹𝐹, like the linear class, it 
is impossible for a general 𝐹𝐹

►Foster et al. (2018) propose a computationally efficient 
confidence-bounds-based algorithm using an offline regression 
oracle

• The algorithm only has statistical guarantees under some strong 
distributional assumptions

16



2. Stat. difficulties with analyzing 
dependent actions

►Translating offline estimation error guarantees to contextual bandits is 
a challenge

►This is because the data collected in the learning process is not i.i.d
• The action distribution in later rounds depend on the data in previous rounds

►Recently, Foster and Rakhin (2020) develop an optimal and efficient 
algorithm for contextual bandits assuming access to an online 
regression oracle

►The online regression oracle provides statistical guarantees for an 
arbitrary data sequence possibly generated by an (adaptive) adversary

►Computationally efficient algorithms for the required online regression 
oracle are only known for specific function classes

• Lack of efficient algorithms for many natural function classes, e.g., sparse 
linear class, Hölder classes, neural networks, … 17



Our Contribution

►We provide the first optimal and efficient black-box reduction
from general contextual bandits to offline regression

• The algorithm is simpler and faster than existing approaches to general 
contextual bandits

• The design of the algorithm builds on Abe and Long (1999), Agrawal et al. 
(2014), Foster and Rakhlin (2020)

• The analysis of the algorithm is highly non-trivial and reveals surprising 
connections between several historical approaches to contextual bandits

• Any advances in offline regression immediately translate to contextual 
bandits, statistically and computationally



Our Contribution

►Our algorithm’s computational complexity is much better than 
existing algorithms for complicated 𝐹𝐹

FALCON’s computational complexity is equivalent to solving a few offline regression problems



What Does “Monster” Refer To?

►In the contextual bandit literature, “monster” refers to algorithms that 
require huge amount of computation

►Dudik M, Hsu D, Kale S, Karampatziakis N, Langford J, Reyzin L, Zhang T 
(2011) Efficient optimal learning for contextual bandits.

• These authors refer to their paper as the “Monster Paper”
• Optimal regret but requires “a monster amount of computation”

►Agarwal A, Hsu D, Kale S, Langford J, Li L, Schapire R (2014) Taming the 
Monster: A fast and simple algorithm for contextual bandits. 

• Optimal regret with reduced computational cost
• Requires using the offline classification oracle

►This paper: Bypassing the Monster 
• Under a weak “realizability” assumption: 𝑓𝑓∗ ∈ 𝐹𝐹
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Talk Outline

• Motivation and Research Question

• Technical Hurdles and Our Contribution

• The Algorithm and Theory

• Computational Experiments
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The algorithm

►Three components
• An epoch schedule (to exponentially save computation)
• Greedy calls to the offline regression oracle (to obtain reward predictor)
• A sampling rule (=randomized algorithm over actions) determined by the 

predictor and an epoch-varying learning rate (to make decisions)
• The sampling rule is introduced by Abe and Long (1999) and adopted in Foster 

and Rakhlin (2020)

►The algorithm is fast and we call it FALCON (FAst Least-squares-
regression-oracle for CONtextual bandits)

22

Falcon, the fastest animal on earth
Source: Kirstin Fawcett, fakuto.com 



Component 1: Epoch Schedule

►An epoch schedule 𝜏𝜏1, 𝜏𝜏2, …

►The algorithm only calls the regression oracle at the start of 
each epoch.

• When 𝜏𝜏𝑚𝑚 = 2𝑚𝑚, it only makes 𝑂𝑂(log𝑇𝑇) calls to the oracle over 𝑇𝑇 rounds
• When 𝑇𝑇 is known, the oracle calls can be reduced to 𝑂𝑂(log log𝑇𝑇) (which is 

not a trivial property and is useful in clinical trials)

►This implies that the oracle is called less and less frequently as 
the algorithm proceeds

23

T𝜏𝜏𝑚𝑚𝜏𝜏1

…

𝜏𝜏2 𝜏𝜏𝑚𝑚−1



Component 2: Oracle Calls

►Before the start of each epoch 𝑚𝑚, solves

min
𝑓𝑓∈𝐹𝐹

�
𝑡𝑡=1

𝜏𝜏𝑚𝑚−1
𝑓𝑓 𝑥𝑥𝑡𝑡 ,𝑎𝑎𝑡𝑡 − 𝑟𝑟𝑡𝑡(𝑥𝑥𝑡𝑡 ,𝑎𝑎𝑡𝑡) 2

via the least square oracle, and obtains a predictor 𝑓𝑓𝑚𝑚
►We can replace the least squares oracle by any other offline 

regression oracles (e.g., regularized oracles like Ridge and 
Lasso)

►What to do next for making decisions?
►If we directly follow the predictor to choose greedy actions, then 

the algorithm does not explore at all, and may perform poor
• We address the exploration-exploitation dilemma via sampling

24



Component 3: Sampling Rule

►For each epoch 𝑚𝑚, we have a learning rate 𝛾𝛾𝑚𝑚 ≍ 𝜏𝜏𝑚𝑚−1

►At round 𝑡𝑡, we do the following

25

The greedy action

The probability of selecting each non-
greedy action is inversely proportional
to the predicted gap between this 
action and the greedy action, as well as 
the learning rate 𝛾𝛾𝑚𝑚. This corresponds 
to “exploration”

The probability of selecting 
the greedy action is the 
highest. This corresponds to 
“exploitation”

The learning rate balances
between exploration and 
exploitation. The algorithm 
explores more at the beginning 
and gradually exploits more. 



Statistical Guarantees: Finite Function Class

►Theorem: FALCON guarantees expected regret of
�𝑂𝑂 𝐾𝐾𝑇𝑇log|𝐹𝐹|

through 𝑂𝑂(log𝑇𝑇) calls to the least-squares regression oracle. The 
number of oracle calls can be reduced to 𝑂𝑂(log log𝑇𝑇) if 𝑇𝑇 is known in 
advance.

►Combined with a Ω 𝐾𝐾𝑇𝑇log|𝐹𝐹| lower bound (Agrawal et al. 2012), we 
know that our regret is minimax optimal.
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Statistical Guarantees: General Function Class

►Input (offline guarantee): Given 𝑛𝑛 i.i.d. samples 𝑥𝑥𝑖𝑖 , 𝑎𝑎𝑖𝑖; 𝑟𝑟𝑖𝑖 ~𝐷𝐷, and an offline 
regression oracle that returns an estimator 𝑓𝑓 such that ∀ possible 𝐷𝐷,

𝔼𝔼 𝑥𝑥,𝑎𝑎;𝑟𝑟 ∼𝐷𝐷 𝑓𝑓 𝑥𝑥, 𝑎𝑎 − 𝑓𝑓∗ 𝑥𝑥, 𝑎𝑎
2
≤ 𝑬𝑬𝒓𝒓(𝒏𝒏;𝑭𝑭)

where the estimation error guarantee 𝑬𝑬𝒓𝒓(𝒏𝒏;𝑭𝑭) depends on the number of 
samples 𝑛𝑛 and the complexity of 𝐹𝐹

►Theorem: Given an offline regression oracle with estimation error 𝐸𝐸𝑟𝑟(𝑛𝑛;𝐹𝐹) for 
𝑛𝑛 samples,  FALCON guarantees expected regret of

�𝑂𝑂 𝐾𝐾𝐸𝐸𝑟𝑟 𝑇𝑇;𝐹𝐹 𝑇𝑇

through 𝑂𝑂(log𝑇𝑇) calls to the offline regression oracle. The number of oracle 
calls can be reduced to 𝑂𝑂(log log𝑇𝑇) if 𝑇𝑇 is known

• Plugging in the rate-optimal 𝐸𝐸𝑟𝑟(𝑛𝑛;𝐹𝐹) ensures that the regret is optimal in terms of 
𝑇𝑇, which matches the regret lower bound proved in Foster and Rakhlin (2020).

27



Examples

►When 𝐹𝐹 is a linear class with dimension 𝑑𝑑
• Least squares estimator ensures 𝐸𝐸𝑟𝑟 𝑛𝑛;𝐹𝐹 = 𝑂𝑂 𝑑𝑑

𝑛𝑛

• FALCON achieves 𝑂𝑂( 𝐾𝐾𝑇𝑇(𝑑𝑑 + log𝑇𝑇)) regret using the least squares regression oracle. While 
the dependence on 𝐾𝐾 is suboptimal, the dependence on 𝑇𝑇 improves over best known algorithm 
by a log𝑇𝑇 factor

►When 𝐹𝐹 is a linear class with sparsity 𝑠𝑠
• LASSO ensures 𝐸𝐸𝑟𝑟 𝑛𝑛;𝐹𝐹 = �𝑂𝑂 slog 𝑑𝑑

𝑛𝑛
(under certain conditions of 𝐷𝐷𝑋𝑋)

• FALCON achieves �𝑂𝑂( 𝐾𝐾𝑠𝑠 𝑇𝑇log𝑑𝑑) regret using LASSO as the offline oracle

►When 𝐹𝐹 is a class of neural network
• There are many methods to find an estimator 𝑓𝑓 that perform extremely well in practice
• Our results can directly transform low estimation error into the best-possible regret bound 

(based on such error), theoretically or empirically 

►Other Examples: generalized linear models, non-parametric classes, …
28



Proof Sketch

►Translating offline estimation error guarantees to contextual bandits is 
a challenge

►Data collected in the online learning process is not i.i.d

►Offline guarantees provide upper bounds on the “distance” between 𝑓𝑓
and 𝑓𝑓∗ for a fixed action distribution

►Initialization. A dual interpretation: our algorithm adaptively maintains 
a distribution over policies in the universal policy space Ψ = 𝐾𝐾 𝑋𝑋

• A policy 𝜋𝜋:𝑋𝑋 ↦ [𝐾𝐾] is a deterministic decision function
• Let 𝜋𝜋𝑓𝑓∗ be the true optimal policy, and 𝜋𝜋�̂�𝑓𝑚𝑚 be the greedy policy

• At epoch 𝑚𝑚, 𝑓𝑓𝑚𝑚 and 𝛾𝛾𝑚𝑚 induce a distribution over policies 𝑄𝑄𝑚𝑚(⋅)
• 𝑄𝑄𝑚𝑚 𝜋𝜋 = ∏𝑥𝑥∈𝑋𝑋 𝑝𝑝𝑚𝑚(𝜋𝜋(𝑥𝑥)|𝑥𝑥), where 𝑝𝑝𝑚𝑚(𝜋𝜋(𝑥𝑥)|𝑥𝑥) is the probability that the sampling 

rule selects action 𝜋𝜋(𝑥𝑥) given context 𝑥𝑥



Proof Sketch

Step 1. Per-round property: At each epoch 𝑚𝑚, given 𝑓𝑓𝑚𝑚 and  𝛾𝛾𝑚𝑚, the distribution 𝑄𝑄𝑚𝑚 ensures 
that

�
𝜋𝜋∈Ψ

𝑄𝑄𝑚𝑚 𝜋𝜋 𝔼𝔼𝐷𝐷𝑋𝑋 𝑓𝑓𝑚𝑚 𝑥𝑥,𝜋𝜋�̂�𝑓𝑚𝑚 𝑥𝑥 − 𝑓𝑓𝑚𝑚 𝑥𝑥,𝜋𝜋 𝑥𝑥 = 𝑂𝑂 𝐾𝐾/𝛾𝛾𝑚𝑚

Step 2. Proof by induction: At each epoch 𝑚𝑚, 𝑄𝑄1, … ,𝑄𝑄𝑚𝑚−1 ensure that for all 𝜋𝜋 ∈ Ψ,

𝔼𝔼𝐷𝐷𝑋𝑋 𝑓𝑓∗ 𝑥𝑥,𝜋𝜋𝑓𝑓∗ 𝑥𝑥 − 𝑓𝑓∗(𝑥𝑥,𝜋𝜋(𝑥𝑥)) ≤ 2𝔼𝔼𝐷𝐷𝑋𝑋 𝑓𝑓𝑚𝑚 𝑥𝑥,𝜋𝜋�̂�𝑓𝑚𝑚 𝑥𝑥 − 𝑓𝑓𝑚𝑚 𝑥𝑥,𝜋𝜋 𝑥𝑥 + 𝑂𝑂 𝐾𝐾/𝛾𝛾𝑚𝑚

Step 3. Putting together: At each epoch 𝑚𝑚, our per-round expected regret is

Estimated per-round expected regret of 𝜋𝜋

True per-round expected regret of 𝜋𝜋

Our algorithm’s (per-round) 
expected regret if 𝑓𝑓𝑚𝑚 were 
ground-truth

�
𝜋𝜋∈Ψ

𝑄𝑄𝑚𝑚 𝜋𝜋 𝔼𝔼𝐷𝐷𝑋𝑋 𝑓𝑓∗ 𝑥𝑥,𝜋𝜋𝑓𝑓∗ 𝑥𝑥 − 𝑓𝑓∗(𝑥𝑥,𝜋𝜋(𝑥𝑥))

≤ 2�
𝜋𝜋∈Ψ

𝑄𝑄𝑚𝑚 𝜋𝜋 𝔼𝔼𝐷𝐷𝑋𝑋 𝑓𝑓𝑚𝑚 𝑥𝑥,𝜋𝜋�̂�𝑓𝑚𝑚 𝑥𝑥 − 𝑓𝑓𝑚𝑚 𝑥𝑥,𝜋𝜋 𝑥𝑥 + 𝑂𝑂 𝐾𝐾/𝛾𝛾𝑚𝑚

= 𝑂𝑂 𝐾𝐾/𝛾𝛾𝑚𝑚

by step 2

by step 1

This bound is 
directly guaranteed 
by the sampling rule

We choose {𝛾𝛾𝑚𝑚} such that Step 2 holds and Step 3 leads to the optimal accumulated regret



A closer look at Step 2

Step 2. Proof by induction: At each epoch 𝑚𝑚, 𝑄𝑄1, … ,𝑄𝑄𝑚𝑚−1 ensure that for all 𝜋𝜋 ∈ Ψ,
𝔼𝔼𝐷𝐷𝑋𝑋 𝑓𝑓∗ 𝑥𝑥,𝜋𝜋𝑓𝑓∗ 𝑥𝑥 − 𝑓𝑓∗(𝑥𝑥,𝜋𝜋(𝑥𝑥)) ≤ 2𝔼𝔼𝐷𝐷𝑋𝑋 𝑓𝑓𝑚𝑚 𝑥𝑥,𝜋𝜋�̂�𝑓𝑚𝑚 𝑥𝑥 − 𝑓𝑓𝑚𝑚 𝑥𝑥,𝜋𝜋 𝑥𝑥 + 𝑂𝑂 𝐾𝐾/𝛾𝛾𝑚𝑚

► It connects 𝑓𝑓𝑚𝑚 and 𝑓𝑓∗ without specifying an action distribution
• It connects the “estimated world” and the “true world”

► It holds for non-iid and dependent decision process (of {𝑎𝑎𝑡𝑡})
• The induction argument shows how exploration in early rounds benefit exploitation in later 

rounds

► It utilizes the iid properties of {𝑥𝑥𝑡𝑡}

► It establishes a bridge from offline estimation guarantees to online decision 
making guarantees

• The analysis is general and does not rely on any refined property of 𝐹𝐹

Estimated per-round expected regret of 𝜋𝜋True per-round expected regret of 𝜋𝜋



A Few Observations

► The Statistical Guarantees hold even if the MSE Loss Function is 
replaced by Strongly Convex Loss Function

• Generalized Linear Model: Logistics Loss Function

► Comparing FALCON to SquareCB (Foster and Rakhlin, 2020)
• FALCON assumes iid contexts; SquareCB allows for general contexts
• Computational Efficient Algorithms:

• SquareCB requires computationally efficient algorithms for online regression 
oracle. This is only known for specific function classes. 

• Many more functions classes are covered by computational efficient offline 
regression oracles (as required by FALCON)

• FALCON allows occasional updates; SquareCB requires continuous updates
• Important in healthcare applications where rewards are delayed 
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Talk Outline

• Motivation and Research Question

• Technical Hurdles and Our Contribution

• The Algorithm and Theory

• Computational Experiments
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Initial Computational 
Experiments
On real-world datasets for three types of problems: 
 Multiclass Classification, 
 Recommendation,
 Price Optimization.
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►10 multiclass classification data sets from OpenML and 2
learning-to-rank data sets from Microsoft and Yahoo! Public 
Data Set Website.

►Reduction to Online Contextual Bandit Problems.
• 0/1 Loss encoding

Classification & Recommendation Datasets



Retail Applications: Classification

►Multi-class classification is a fundamental task in ML. Online 
multi-class classification can be used for many applications 
from handwriting recognition and face recognition to customer 
group recognition and promotion design. 

►Classify the customer correctly, then we incur 0 loss; otherwise 
we incur a loss of 1.
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Retailer Applications: Recommendation

►A recommendation system seeks to predict the ranking (or rating) 
that a user would give to a product.  

►When a customer arrives, we want to recommend a product that 
she likes most. If we recommend a product she ranked high, then 
we incur smaller loss; otherwise we incur larger loss.
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►For simplicity, we use benchmark contextual bandit algorithms 
implemented in Vowpal Wabbit (v8.8.0), an open-source library 
for online learning algorithms

• Greedy: use only greedy action
• 𝜖𝜖-Greedy: use greedy action with prob (1- 𝜖𝜖) and uniform on all other actions
• Online Cover & Cover NU: heuristic versions of “Taming the Monster,” see 

Agarwal et al. 2014
• Bagging & Bagging Greedy: heuristic versions of Thompson Sampling
• RegCB-elimination: a generalization of “successive elimination,” see Foster

et al. 2018
• RegCB-optimistic: a generalization of UCB, see Foster et al. 2018

Benchmark Algorithms



Stat significant win-loss difference across 
12 datasets

The statistical significance is defined based on approximate Z-test
FALCON 1 uses a linear class with least squares estimator
FALCON 2 uses a linear class with ridge estimator
FALCON 3 uses a regression tree class with gradient boosting estimator



Stat significant win-loss difference across 
12 datasets

The statistical significance is defined based on approximate Z-test
FALCON 1 uses a linear class with least squares estimator
FALCON 2 uses a linear class with ridge estimator
FALCON 3 uses a regression tree class with gradient boosting estimator

Each entry shows the statistically significant win-loss of a raw against a column
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12 datasets

The statistical significance is defined based on approximate Z-test
FALCON 1 uses a linear class with least squares estimator
FALCON 2 uses a linear class with ridge estimator
FALCON 3 uses a regression tree class with gradient boosting estimator



Stat significant win-loss difference across 
12 datasets

The statistical significance is defined based on approximate Z-test
FALCON 1 uses a linear class with least squares estimator
FALCON 2 uses a linear class with ridge estimator
FALCON 3 uses a regression tree class with gradient boosting estimator



Dynamic Pricing

►The public data set for revenue management is retrieved from CPRM, 
Columbia University. 

►200,000 examples of Auto Loans across 134 days

►0/1 response on “apply / not apply”

►144 features
• We selected the five most important features: CarType, Primary_FICO, Term, Competition_Rate, 

OneMonth.

►We use cumulative revenue to evaluate performance of each algorithm in the 
simulation.
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►Here is the revenue performance across algorithms for two 
settings.  

►Below are comparison of different algorithms in Set 1&2:

Linear Classes Across Algorithms



►We consider Linear / Ridge / GradientBoosting regressions for 
these two settings and GBR performs better as it eliminates 
misspecification.

Function Classes in FALCON
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Other Extensions

►Xu and Zeevi (2020) extend our results to contextual bandits 
with infinite actions. They also introduce a new optimism-based 
algorithmic principle.

►Krishnamurthy et al. (2021) extend our results to the setting 
where 𝐹𝐹 is misspecified.

►Wei and Luo (2021) extend our results to non-stationary 
contextual bandits.

►Sen et al. (2021) extend our results to contextual bandits with a 
combinatorial action space.
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Thank you!
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