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Function estimation

Consider a function
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Introduction: Gaussian processes

Function estimation

Consider a function , observed incompletely , and with noise/error
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Introduction: Gaussian processes

Gaussian processes (GPs): Probabilistic function estimators

GPs provide an optimal function estimate under the assumption of an
infinite-dimensional normal distribution
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Gaussian processes (GPs): Probabilistic function estimators

GPs provide an optimal function estimate under the assumption of an
infinite-dimensional normal distribution
and quantify uncertainty in the form of a joint probability distribution
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Application areas

Examples:

® Time series

Geospatial fields (e.g., kriging)

® Emulation of computer experiments

(Nonlinear) regression and classification

Machine learning

Bayesian black-box optimization
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GPs: Well suited for big data

® Gap-fill noisy data with UQ
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GPs: Well suited for big data

® More data — learn more fine-scale features
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GPs: Well suited for big data

e Highly flexible



BUT: GPs are not scalable

For n data points, need to work with n x n covariance matrix:

Y= ( K(xi,x;) )i,jzl,...,n

® K is a positive-definite kernel or covariance function

® Xi,...,X, are input values (e.g., covariate values or spatial locations)
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BUT: GPs are not scalable

For n data points, need to work with n x n covariance matrix:

2 = (K(xi,) )iJ:l,...,n
® K is a positive-definite kernel or covariance function
® Xi,...,Xp are input values (e.g., covariate values or spatial locations)

Direct inference has O(n3) time and O(n?) memory complexity

— cubic
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BUT: GPs are not scalable

For n data points, need to work with n x n covariance matrix:

2 = (K(xi,) )i,j:l,...,n
® K is a positive-definite kernel or covariance function
® Xi,...,Xp are input values (e.g., covariate values or spatial locations)

Direct inference has O(n3) time and O(n?) memory complexity

— cubic
Q- — linear
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Want methods/approximations that scale linearly in n
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Introduction: Gaussian processes

Existing approaches for computational feasibility

Existing approaches include:

® Low-rank X (e.g., Higdon, 1998; Wikle and Cressie, 1999;
Quinonero-Candela and Rasmussen, 2005; Banerjee et al., 2008;
Cressie and Johannesson, 2008)

® Sparse X (e.g., Furrer et al., 2006; Kaufman et al., 2008)

® Sparse »-1 (e.g., Rue and Held, 2005; Lindgren et al., 2011; Nychka
et al., 2015)

® Sparse Cholesky factor of £ 71 (Vecchia, 1988; Stein et al., 2004)
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Vecchia approximation
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Vecchia approximation

Vecchia approximation

Assume y = (y1,...,yn) ~ N(0,X). Density function can be factorized as

p(y) = [ [ pUilynn);
i=1
where h(i) = {1,...,i — 1} are the previously ordered indices.
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Vecchia approximation

Vecchia approximation

Assume y = (y1,...,yn) ~ N(0,X). Density function can be factorized as

n

p(y) = [ [ pUilynn);

i=1
where h(i) = {1,...,i — 1} are the previously ordered indices.

This factorization motivates the Vecchia (1988) approximation:
n
p(y) = [ [ pUilyan);
i=1

where g(i) C h(i) is the conditioning set of size |g(i)] < m.
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Vecchia approximation

Vecchia approximation

Assume y = (y1,...,¥n) ~ N(0,X). Density function can be factorized as

n

p(y) = [ [ pUilynn);

i=1
where h(i) = {1,...,i — 1} are the previously ordered indices.

This factorization motivates the Vecchia (1988) approximation:
n
p(y) = [ [ pUilyan);
i=1

where q(i) C h(i) is the conditioning set of size |g(i)| < m.

Tuning parameter m: Accuracy and computation time both increase with
m, but high accuracy with small m often possible (screening effect).
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Ordering and conditioning

Coordinate Maximin
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® Maximum-minimum-distance (maximin) ordering can be much more
accurate than coordinate ordering (Guinness, 2018)

e Conditioning usually on m nearest (previously ordered) neighbors
(NN), but more complicated schemes possible
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Vecchia approximation

Sparse inverse Cholesky

Vecchia approximation: p(y) = Nx(y|0, %) with £ = UUT, where
nonzero entries of U can be computed easily based on the kernel K
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Vecchia approximation

Sparse inverse Cholesky

Vecchia approximation: p(y) = Nx(y|0, %) with £ = UUT, where
nonzero entries of U can be computed easily based on the kernel K

U is the optimal sparse triangular matrix under KL divergence (Schafer,
Katzfuss & Owhadi, 2021):

Uzar(gj:ginKL( (0,%)||7(0,(00T)™) )

for fixed sparsity S = {A € R™": A;j #0=i=jorjecq(i)}
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Vecchia approximation

Sparse inverse Cholesky

Vecchia approximation: p(y) = Nx(y|0, %) with £ = UUT, where
nonzero entries of U can be computed easily based on the kernel K

U is the optimal sparse triangular matrix under KL divergence (Schafer,
Katzfuss & Owhadi, 2021):

U = argmin KL (/\/(0, 3) H N(0, (UUT)_I) )
Ues
for fixed sparsity S = {A € R™": A;j #0=i=jorjecq(i)}
® U is sparse with at most m off-diagonal nonzeros per column

e Closed-form solution can be computed in O(nm3) time

® Computations for the n columns are embarrassingly parallel
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Vecchia approximation

Vecchia illustration in noiseless case

Exact GP
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Vecchia approximation

Vecchia illustration in noiseless case

Exact GP vs. Vecchia with m =4

Matthias Katzfuss (Texas A&M) GP approximations _



Theory

For n x n Matérn-type covariance matrix under in-fill asymptotics
(under maximin ordering and regularity conditions in d dimensions):

® c-accurate approximation can be computed in O(nlogzd(g)) time,
which is best known complexity (Schafer, Katzfuss & Owhadi, 2021)

® This implies consistent estimation and prediction for m = O(Iogd n)
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Vecchia approximation

General Vecchia framework (Katzfuss and Guinness, 2021)

Many popular existing GP approximations can be viewed as Vecchia
approximations:

® Low-rank approaches (e.g., Quifionero-Candela and Rasmussen, 2005;
Banerjee et al., 2008; Finley et al., 2009)

Full-scale approximation or PIC (e.g., Snelson and Ghahramani, 2007;
Sang et al., 2011)

Multi-resolution approximation (e.g., Katzfuss, 2017; Katzfuss and
Gong, 2020)

® Nearest-neighbor GP (e.g., Datta et al., 2016; Finley et al., 2019)
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Vecchia approximation

Vecchia prediction (Katzfuss et al., 2020a)

For prediction of yP = (yf,... ,y,’;)T at unobserved locations,
apply Vecchia to
(y17 s 7yn7y1P7 s aylfp)—r

Important: allow y,-P to condition on previously ordered prediction
variables, {yJ-P j < i}
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Extensions and applications
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GP with Gaussian noise: > = K + diag

Standard Vecchia approximation: applied to data directly (i.e., to X)
Exact GP
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GP with Gaussian noise: > = K + diag

Standard Vecchia approximation: applied to data directly (i.e., to X)
Exact GP vs. (standard) Vecchia with m = 4

Works well for data without noise
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GP with Gaussian noise: > = K + diag

Standard Vecchia approximation: applied to data directly (i.e., to X)
Exact GP vs. (standard) Vecchia with m = 4

Works very poorly if data are noisy
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GP with Gaussian noise: > = K + diag

Latent Vecchia: applied to the latent GP (i.e., to K)

Works well even if data are noisy (m = 4)
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Computational challenges

® | atent inference requires Cholesky of posterior precision, which can
be very dense and expensive (Katzfuss and Guinness, 2021)
® We use incomplete Cholesky (Schafer, Katzfuss & Owhadi, 2021)
e Comparison for Matérn1.5 at 10* random locations on [0, 1]
® Naive: standard Vecchia (cheap)
® Exact: exact latent Vecchia (expensive)
® |C, nonzeros(LL"): latent + incomplete Cholesky (cheap)
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Extensions and applications

m Generalized GPs
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Extensions and applications

Non-Gaussian spatial data: Generalized GP

Conditional on GP, data are non-Gaussian (from exponential family):
binary, categorical, counts, right-skewed, ...

Example: Binary classification using logistic GGP:
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Extensions and applications

Non-Gaussian spatial data: Generalized GP

Conditional on GP, data are non-Gaussian (from exponential family):
binary, categorical, counts, right-skewed, ...

Example: Binary classification using logistic GGP:
® Take GP function
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Extensions and applications

Non-Gaussian spatial data: Generalized GP

Conditional on GP, data are non-Gaussian (from exponential family):
binary, categorical, counts, right-skewed, ...

Example: Binary classification using logistic GGP:
® Take GP function
® Transform into probability using logistic link, then draw from
Bernoulli distribution
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Laplace for non-Gaussian data

For generalized GP, posterior is intractable — 2nd-order Taylor expansion
of log-posterior at the mode (Laplace approximation).
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Laplace for non-Gaussian data

For generalized GP, posterior is intractable — 2nd-order Taylor expansion
of log-posterior at the mode (Laplace approximation).

Newton-Raphson: lterative GP prediction using Gaussian pseudo-data

o ™ A
S ¢ s esmm s e . ce mos o S

0.8
1

0.6

0.2

0.0
%

Matthias Katzfuss (Texas A&M) GP approximations _



Laplace for non-Gaussian data

For generalized GP, posterior is intractable — 2nd-order Taylor expansion
of log-posterior at the mode (Laplace approximation).

Newton-Raphson: Iterative GP prediction using Gaussian pseudo-data
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But still O(n®) — infeasible for large n
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Vecchia-Laplace (Zilber & Katzfuss, 2021)

Given pseudo-data with Gaussian noise, can approximate using Vecchia
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Vecchia-Laplace (Zilber & Katzfuss, 2021)

Given pseudo-data with Gaussian noise, can approximate using Vecchia

Comparison of MSE relative to Laplace:
v =0.5 (Logistic) v =0.5 (Poisson) v =0.5 (Gamma)

1.20

wn

=

“

w w

a @

S o =

=

“

0

<

P

o

=

- T T T T T T

0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30
Conditioning Set Size Conditioning Set Size Conditioning Set Size
‘—e— VL —+— Laplace —4— Low Rank‘

Matthias Katzfuss (Texas A&M) GP approximations _



Vecchia-Laplace (Zilber & Katzfuss, 2021)

Given pseudo-data with Gaussian noise, can approximate using Vecchia

Comparison of MSE relative to Laplace:
v =0.5 (Logistic) v =0.5 (Poisson) v =0.5 (Gamma)
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Can also be used for analysis of point patterns (log-Gaussian Cox process)
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Extensions and applications

Scaled Vecchia (Katzfuss et al., 2020b)

ARD kernel: different relevance for each input dimension
= Carry out maximin ordering and NN conditioning in scaled space
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Extensions and applications

Comparison for Matérn GP in 10 input dimensions

—— SVecchia
Vecchia
LowRank

o - o
S - —— SVecchia S -
< - - Vecchia <
@ LowRank 9
=} =}
~— ~—
—— .
T T T T T
10 20 30 40 50
m

Known parameters

Matthias Katzfuss (Texas A&M)

GP approximations

1 1 1 1 1
10 20 30 40 50

Estimated parameters



Extensions and applications

Comparison for satellite-drag computer model

Data and (H-)IaGP results from Sun et al. (2019)
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8 input dimensions, n = 2 million runs, 6 chemical species
SVecchia took 13-14min (2 orders of magnitude faster than H-laGP)
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Conclusions

Conclusions

® Vecchia framework for GP approximations:

® Highly accurate

® Can lead to almost universal GP toolbox

® (Can guarantee linear scalability, plus parallel computations and
mini-batching

® R packages GPvecchia (K et al) and GpGp (Guinness & K) on CRAN

® Supported by NSF DMS-1654083, DMS-1953005, CCF-1934904, TAMUS
NLO, and TAMIDS.
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