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Introduction: Gaussian processes

Function estimation

Consider a function , observed incompletely , and with noise/error
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Introduction: Gaussian processes

Gaussian processes (GPs): Probabilistic function estimators
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GPs provide an optimal function estimate under the assumption of an
infinite-dimensional normal distribution
and quantify uncertainty in the form of a joint probability distribution
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Introduction: Gaussian processes

Application areas

Examples:

• Time series

• Geospatial fields (e.g., kriging)

• Emulation of computer experiments

• (Nonlinear) regression and classification

• Machine learning

• Bayesian black-box optimization
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Introduction: Gaussian processes

GPs: Well suited for big data
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• Gap-fill noisy data with UQ

• More data → learn more fine-scale features

• Highly flexible
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Introduction: Gaussian processes

BUT: GPs are not scalable

For n data points, need to work with n × n covariance matrix:

Σ =
(
K (xi , xj)

)
i ,j=1,...,n

• K is a positive-definite kernel or covariance function

• x1, . . . , xn are input values (e.g., covariate values or spatial locations)

Direct inference has O(n3) time and O(n2) memory complexity

Want methods/approximations that scale linearly in n

Matthias Katzfuss (Texas A&M) GP approximations 8 / 33



Introduction: Gaussian processes

BUT: GPs are not scalable

For n data points, need to work with n × n covariance matrix:

Σ =
(
K (xi , xj)

)
i ,j=1,...,n

• K is a positive-definite kernel or covariance function
• x1, . . . , xn are input values (e.g., covariate values or spatial locations)

Direct inference has O(n3) time and O(n2) memory complexity

0 20 40 60 80 100

0
10

20
30

40
50

n (thousands)

ho
ur

s

cubic

Want methods/approximations that scale linearly in n
Matthias Katzfuss (Texas A&M) GP approximations 8 / 33



Introduction: Gaussian processes

BUT: GPs are not scalable

For n data points, need to work with n × n covariance matrix:

Σ =
(
K (xi , xj)

)
i ,j=1,...,n

• K is a positive-definite kernel or covariance function
• x1, . . . , xn are input values (e.g., covariate values or spatial locations)

Direct inference has O(n3) time and O(n2) memory complexity

0 20 40 60 80 100

0
10

20
30

40
50

n (thousands)

ho
ur

s

cubic
linear

Want methods/approximations that scale linearly in n
Matthias Katzfuss (Texas A&M) GP approximations 8 / 33



Introduction: Gaussian processes

Existing approaches for computational feasibility

Existing approaches include:

• Low-rank Σ (e.g., Higdon, 1998; Wikle and Cressie, 1999;
Quiñonero-Candela and Rasmussen, 2005; Banerjee et al., 2008;
Cressie and Johannesson, 2008)

• Sparse Σ (e.g., Furrer et al., 2006; Kaufman et al., 2008)

• Sparse Σ−1 (e.g., Rue and Held, 2005; Lindgren et al., 2011; Nychka
et al., 2015)

• Sparse Cholesky factor of Σ−1 (Vecchia, 1988; Stein et al., 2004)

Matthias Katzfuss (Texas A&M) GP approximations 9 / 33



Vecchia approximation

Outline

1 Introduction: Gaussian processes

2 Vecchia approximation

3 Extensions and applications
Gaussian noise
Generalized GPs
Scaled Vecchia for computer-model emulation

4 Conclusions

Matthias Katzfuss (Texas A&M) GP approximations 10 / 33



Vecchia approximation

Vecchia approximation

Assume y = (y1, . . . , yn) ∼ N (0,Σ). Density function can be factorized as

p(y) =
n∏

i=1

p(yi |yh(i)),

where h(i) = {1, . . . , i − 1} are the previously ordered indices.

This factorization motivates the Vecchia (1988) approximation:

p̂(y) =
n∏

i=1

p(yi |yq(i)),

where q(i) ⊂ h(i) is the conditioning set of size |q(i)| ≤ m.

Tuning parameter m: Accuracy and computation time both increase with
m, but high accuracy with small m often possible (screening effect).
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Vecchia approximation

Ordering and conditioning

Coordinate
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• Maximum-minimum-distance (maximin) ordering can be much more
accurate than coordinate ordering (Guinness, 2018)

• Conditioning usually on m nearest (previously ordered) neighbors
(NN), but more complicated schemes possible
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Vecchia approximation

Sparse inverse Cholesky

Vecchia approximation: p̂(y) = Nn(y|0, Σ̂) with Σ̂−1 = UU>, where
nonzero entries of U can be computed easily based on the kernel K

U is the optimal sparse triangular matrix under KL divergence (Schäfer,
Katzfuss & Owhadi, 2021):

U = arg min
Û∈S

KL
(
N
(
0,Σ

)∥∥∥N (0, (ÛÛ>)−1
) )

for fixed sparsity S = {A ∈ Rn×n : Aji 6= 0⇒ i = j or j ∈ q(i)}

• U is sparse with at most m off-diagonal nonzeros per column

• Closed-form solution can be computed in O(nm3) time

• Computations for the n columns are embarrassingly parallel
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Vecchia approximation

Vecchia illustration in noiseless case

Exact GP vs. Vecchia with m = 4
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Vecchia approximation

Theory

For n × n Matérn-type covariance matrix under in-fill asymptotics
(under maximin ordering and regularity conditions in d dimensions):

• ε-accurate approximation can be computed in O
(
n log2d(nε )

)
time,

which is best known complexity (Schäfer, Katzfuss & Owhadi, 2021)

• This implies consistent estimation and prediction for m = O(logd n)
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Vecchia approximation

General Vecchia framework (Katzfuss and Guinness, 2021)

Many popular existing GP approximations can be viewed as Vecchia
approximations:

• Low-rank approaches (e.g., Quiñonero-Candela and Rasmussen, 2005;
Banerjee et al., 2008; Finley et al., 2009)

• Full-scale approximation or PIC (e.g., Snelson and Ghahramani, 2007;
Sang et al., 2011)

• Multi-resolution approximation (e.g., Katzfuss, 2017; Katzfuss and
Gong, 2020)

• Nearest-neighbor GP (e.g., Datta et al., 2016; Finley et al., 2019)

• . . .
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Vecchia approximation

Vecchia prediction (Katzfuss et al., 2020a)

For prediction of yP = (yP1 , . . . , y
P
nP

)> at unobserved locations,
apply Vecchia to

(y1, . . . , yn, y
P
1 , . . . , y

P
nP

)>

Important: allow yPi to condition on previously ordered prediction
variables, {yPj : j < i}
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Extensions and applications Gaussian noise

GP with Gaussian noise: Σ = K + diag

Standard Vecchia approximation: applied to data directly (i.e., to Σ)

Exact GP vs. (standard) Vecchia with m = 4
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Works well for data without noise
Works very poorly if data are noisy
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Extensions and applications Gaussian noise

GP with Gaussian noise: Σ = K + diag

Latent Vecchia: applied to the latent GP (i.e., to K)
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Works well even if data are noisy (m = 4)
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Extensions and applications Gaussian noise

Computational challenges

• Latent inference requires Cholesky of posterior precision, which can
be very dense and expensive (Katzfuss and Guinness, 2021)
• We use incomplete Cholesky (Schäfer, Katzfuss & Owhadi, 2021)
• Comparison for Matérn1.5 at 104 random locations on [0, 1]2

• Naive: standard Vecchia (cheap)
• Exact: exact latent Vecchia (expensive)
• IC, nonzeros(LL>): latent + incomplete Cholesky (cheap)
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Extensions and applications Generalized GPs

Non-Gaussian spatial data: Generalized GP

Conditional on GP, data are non-Gaussian (from exponential family):
binary, categorical, counts, right-skewed, . . .

Example: Binary classification using logistic GGP:
• Take GP function
• Transform into probability using logistic link, then draw from

Bernoulli distribution
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Extensions and applications Generalized GPs

Laplace for non-Gaussian data

For generalized GP, posterior is intractable → 2nd-order Taylor expansion
of log-posterior at the mode (Laplace approximation).

Newton-Raphson: Iterative GP prediction using Gaussian pseudo-data
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But still O(n3) → infeasible for large n
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Extensions and applications Generalized GPs

Vecchia-Laplace (Zilber & Katzfuss, 2021)

Given pseudo-data with Gaussian noise, can approximate using Vecchia

Comparison of MSE relative to Laplace:

Can also be used for analysis of point patterns (log-Gaussian Cox process)
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Extensions and applications Scaled Vecchia for computer-model emulation
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Extensions and applications Scaled Vecchia for computer-model emulation

Scaled Vecchia (Katzfuss et al., 2020b)

ARD kernel: different relevance for each input dimension
⇒ Carry out maximin ordering and NN conditioning in scaled space
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Extensions and applications Scaled Vecchia for computer-model emulation

Comparison for Matérn GP in 10 input dimensions
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Extensions and applications Scaled Vecchia for computer-model emulation

Comparison for satellite-drag computer model

Data and (H-)laGP results from Sun et al. (2019)
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8 input dimensions, n = 2 million runs, 6 chemical species
SVecchia took 13–14min (2 orders of magnitude faster than H-laGP)
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Conclusions

Conclusions

• Vecchia framework for GP approximations:
• Highly accurate
• Can lead to almost universal GP toolbox
• Can guarantee linear scalability, plus parallel computations and

mini-batching

• R packages GPvecchia (K et al) and GpGp (Guinness & K) on CRAN

• Supported by NSF DMS–1654083, DMS–1953005, CCF–1934904, TAMUS
NLO, and TAMIDS.
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