Scalable Gaussian-Process Approximations for Big Data

Matthias Katzfuss

Department of Statistics
Texas A&M University
Outline

1 Introduction: Gaussian processes

2 Vecchia approximation

3 Extensions and applications
 - Gaussian noise
 - Generalized GPs
 - Scaled Vecchia for computer-model emulation

4 Conclusions
Outline

1 Introduction: Gaussian processes

2 Vecchia approximation

3 Extensions and applications
 - Gaussian noise
 - Generalized GPs
 - Scaled Vecchia for computer-model emulation

4 Conclusions
Consider a function, observed incompletely, and with noise/error
Consider a function, observed incompletely, and with noise/error.
Consider a function, observed incompletely, and with noise/error.
Gaussian processes (GPs): Probabilistic function estimators

GPs provide an optimal function estimate under the assumption of an infinite-dimensional normal distribution and quantify uncertainty in the form of a joint probability distribution.
GPs provide an optimal function estimate under the assumption of an infinite-dimensional normal distribution and quantify uncertainty in the form of a joint probability distribution.
GPs provide an optimal function estimate under the assumption of an infinite-dimensional normal distribution and quantify uncertainty in the form of a joint probability distribution.
Application areas

Examples:

- Time series
- Geospatial fields (e.g., kriging)
- Emulation of computer experiments
- (Nonlinear) regression and classification
- Machine learning
- Bayesian black-box optimization
GPs: Well suited for big data

- Gap-fill noisy data with UQ
- More data \rightarrow learn more fine-scale features
- Highly flexible

Matthias Katzfuss (Texas A&M)
GPs: Well suited for big data

- Gap-fill noisy data with UQ
- More data \rightarrow learn more fine-scale features
- Highly flexible
GPs: Well suited for big data

- Gap-fill noisy data with UQ
- More data → learn more fine-scale features
- Highly flexible
BUT: GPs are not scalable

For \(n \) data points, need to work with \(n \times n \) covariance matrix:

\[
\Sigma = \begin{pmatrix} K(x_i, x_j) \end{pmatrix}_{i,j=1,\ldots,n}
\]

- \(K \) is a positive-definite kernel or covariance function
- \(x_1, \ldots, x_n \) are input values (e.g., covariate values or spatial locations)

Direct inference has \(\mathcal{O}(n^3) \) time and \(\mathcal{O}(n^2) \) memory complexity

Want methods/approximations that scale linearly in \(n \)
BUT: GPs are not scalable

For \(n \) data points, need to work with \(n \times n \) covariance matrix:

\[\Sigma = \left(K(x_i, x_j) \right)_{i,j=1,...,n} \]

- \(K \) is a positive-definite kernel or covariance function
- \(x_1, \ldots, x_n \) are input values (e.g., covariate values or spatial locations)

Direct inference has \(\mathcal{O}(n^3) \) time and \(\mathcal{O}(n^2) \) memory complexity

Want methods/approximations that scale linearly in \(n \)
BUT: GPs are not scalable

For n data points, need to work with $n \times n$ covariance matrix:

$$
\Sigma = \left(K(x_i, x_j) \right)_{i,j=1,...,n}
$$

- K is a positive-definite kernel or covariance function
- x_1, \ldots, x_n are input values (e.g., covariate values or spatial locations)

Direct inference has $O(n^3)$ time and $O(n^2)$ memory complexity

Want methods/approximations that scale linearly in n
Existing approaches for computational feasibility

Existing approaches include:

- Low-rank Σ (e.g., Higdon, 1998; Wikle and Cressie, 1999; Quiñonero-Candela and Rasmussen, 2005; Banerjee et al., 2008; Cressie and Johannesson, 2008)

- Sparse Σ (e.g., Furrer et al., 2006; Kaufman et al., 2008)

- Sparse Σ^{-1} (e.g., Rue and Held, 2005; Lindgren et al., 2011; Nychka et al., 2015)

- Sparse Cholesky factor of Σ^{-1} (Vecchia, 1988; Stein et al., 2004)
Outline

1 Introduction: Gaussian processes

2 Vecchia approximation

3 Extensions and applications
 - Gaussian noise
 - Generalized GPs
 - Scaled Vecchia for computer-model emulation

4 Conclusions
Vecchia approximation

Assume \(y = (y_1, \ldots, y_n) \sim \mathcal{N}(0, \Sigma) \). Density function can be factorized as

\[
p(y) = \prod_{i=1}^{n} p(y_i | y_{h(i)}),
\]

where \(h(i) = \{1, \ldots, i - 1\} \) are the previously ordered indices.

This factorization motivates the Vecchia (1988) approximation:

\[
\hat{p}(y) = \prod_{i=1}^{n} p(y_i | y_{q(i)}),
\]

where \(q(i) \subset h(i) \) is the conditioning set of size \(|q(i)| \leq m\).

Tuning parameter \(m \): Accuracy and computation time both increase with \(m \), but high accuracy with small \(m \) often possible (screening effect).
Vecchia approximation

Assume $\mathbf{y} = (y_1, \ldots, y_n) \sim \mathcal{N}(\mathbf{0}, \Sigma)$. Density function can be factorized as

$$p(\mathbf{y}) = \prod_{i=1}^{n} p(y_i | \mathbf{y}_{h(i)}),$$

where $h(i) = \{1, \ldots, i - 1\}$ are the previously ordered indices.

This factorization motivates the Vecchia (1988) approximation:

$$\hat{p}(\mathbf{y}) = \prod_{i=1}^{n} p(y_i | \mathbf{y}_{q(i)}),$$

where $q(i) \subset h(i)$ is the conditioning set of size $|q(i)| \leq m$.

Tuning parameter m: Accuracy and computation time both increase with m, but high accuracy with small m often possible (screening effect).
Vecchia approximation

Assume $\mathbf{y} = (y_1, \ldots, y_n) \sim \mathcal{N}(\mathbf{0}, \Sigma)$. Density function can be factorized as

$$p(\mathbf{y}) = \prod_{i=1}^{n} p(y_i | \mathbf{y}_{h(i)}),$$

where $h(i) = \{1, \ldots, i - 1\}$ are the previously ordered indices.

This factorization motivates the Vecchia (1988) approximation:

$$\hat{p}(\mathbf{y}) = \prod_{i=1}^{n} p(y_i | \mathbf{y}_{q(i)}),$$

where $q(i) \subset h(i)$ is the conditioning set of size $|q(i)| \leq m$.

Tuning parameter m: Accuracy and computation time both increase with m, but high accuracy with small m often possible (screening effect).
• Maximum-minimum-distance (maximin) ordering can be much more accurate than coordinate ordering (Guinness, 2018)

• Conditioning usually on m nearest (previously ordered) neighbors (NN), but more complicated schemes possible
Sparse inverse Cholesky

Vecchia approximation: \(\hat{p}(y) = \mathcal{N}_n(y|0, \hat{\Sigma}) \) with \(\hat{\Sigma}^{-1} = UU^\top \), where nonzero entries of \(U \) can be computed easily based on the kernel \(K \)

\(U \) is the optimal sparse triangular matrix under KL divergence (Schäfer, Katzfuss & Owhadi, 2021):

\[
U = \arg \min_{\hat{U} \in S} KL\left(\mathcal{N}(0, \Sigma) \parallel \mathcal{N}(0, (\hat{U}\hat{U}^\top)^{-1}) \right)
\]

for fixed sparsity \(S = \{ A \in \mathbb{R}^{n \times n} : A_{ji} \neq 0 \Rightarrow i = j \text{ or } j \in q(i) \} \)

- \(U \) is sparse with at most \(m \) off-diagonal nonzeros per column
- Closed-form solution can be computed in \(O(nm^3) \) time
- Computations for the \(n \) columns are embarrassingly parallel
Vecchia approximation: \(\hat{p}(y) = \mathcal{N}_n(y | 0, \hat{\Sigma}) \) with \(\hat{\Sigma}^{-1} = UU^\top \), where nonzero entries of \(U \) can be computed easily based on the kernel \(K \)

\(U \) is the optimal sparse triangular matrix under KL divergence (Schäfer, Katzfuss & Owhadi, 2021):

\[
U = \underset{\hat{U} \in S}{\arg \min} KL \left(\mathcal{N}(0, \Sigma) \bigg\| \mathcal{N}(0, (\hat{U}\hat{U}^\top)^{-1}) \right)
\]

for fixed sparsity \(S = \{ A \in \mathbb{R}^{n \times n} : A_{ji} \neq 0 \Rightarrow i = j \text{ or } j \in q(i) \} \)

- \(U \) is sparse with at most \(m \) off-diagonal nonzeros per column
- Closed-form solution can be computed in \(O(nm^3) \) time
- Computations for the \(n \) columns are embarrassingly parallel
Sparse inverse Cholesky

Vecchia approximation: \(\hat{p}(y) = \mathcal{N}_n(y|0, \hat{\Sigma}) \) with \(\hat{\Sigma}^{-1} = \mathbf{U}\mathbf{U}^\top \), where nonzero entries of \(\mathbf{U} \) can be computed easily based on the kernel \(K \).

\(\mathbf{U} \) is the optimal sparse triangular matrix under KL divergence (Schäfer, Katzfuss & Owhadi, 2021):

\[
\mathbf{U} = \arg \min_{\hat{\mathbf{U}} \in S} \text{KL} \left(\mathcal{N}(\mathbf{0}, \Sigma) \parallel \mathcal{N}(\mathbf{0}, (\hat{\mathbf{U}}\hat{\mathbf{U}}^\top)^{-1}) \right)
\]

for fixed sparsity \(S = \{ \mathbf{A} \in \mathbb{R}^{n \times n} : A_{ji} \neq 0 \Rightarrow i = j \text{ or } j \in q(i) \} \)

- \(\mathbf{U} \) is sparse with at most \(m \) off-diagonal nonzeros per column
- Closed-form solution can be computed in \(O(nm^3) \) time
- Computations for the \(n \) columns are embarrassingly parallel
Vecchia illustration in noiseless case

Exact GP vs. Vecchia with $m = 4$
Vecchia illustration in noiseless case

Exact GP vs. Vecchia with $m = 4$
Theory

For $n \times n$ Matérn-type covariance matrix under in-fill asymptotics (under maximin ordering and regularity conditions in d dimensions):

- ϵ-accurate approximation can be computed in $O(n \log^{2d}(\frac{n}{\epsilon}))$ time, which is best known complexity (Schäfer, Katzfuss & Owhadi, 2021)
- This implies consistent estimation and prediction for $m = O(\log^d n)$
Many popular existing GP approximations can be viewed as Vecchia approximations:

- Low-rank approaches (e.g., Quiñonero-Candela and Rasmussen, 2005; Banerjee et al., 2008; Finley et al., 2009)
- Full-scale approximation or PIC (e.g., Snelson and Ghahramani, 2007; Sang et al., 2011)
- Multi-resolution approximation (e.g., Katzfuss, 2017; Katzfuss and Gong, 2020)
- Nearest-neighbor GP (e.g., Datta et al., 2016; Finley et al., 2019)
- ...
Vecchia prediction (Katzfuss et al., 2020a)

For prediction of $\mathbf{y}^P = (y_1^P, \ldots, y_{nP}^P)^\top$ at unobserved locations, apply Vecchia to
\[
(y_1, \ldots, y_n, y_1^P, \ldots, y_{nP}^P)^\top
\]

Important: allow y_i^P to condition on previously ordered prediction variables, $\{y_j^P : j < i\}$
Outline

1 Introduction: Gaussian processes

2 Vecchia approximation

3 Extensions and applications
 - Gaussian noise
 - Generalized GPs
 - Scaled Vecchia for computer-model emulation

4 Conclusions
Outline

1 Introduction: Gaussian processes

2 Vecchia approximation

3 Extensions and applications
 - Gaussian noise
 - Generalized GPs
 - Scaled Vecchia for computer-model emulation

4 Conclusions
GP with Gaussian noise: $\Sigma = K + \text{diag}$

Standard Vecchia approximation: applied to data directly (i.e., to Σ)

Exact GP vs. (standard) Vecchia with $m = 4$

Works well for data without noise
Works very poorly if data are noisy
GP with Gaussian noise: $\Sigma = K + \text{diag}$

Standard Vecchia approximation: applied to data directly (i.e., to Σ)

Exact GP vs. (standard) Vecchia with $m = 4$

Works well for data without noise

Works very poorly if data are noisy
GP with Gaussian noise: $\Sigma = K + \text{diag}$

Standard Vecchia approximation: applied to data directly (i.e., to Σ)

Exact GP vs. (standard) Vecchia with $m = 4$

Works well for data without noise

Works very poorly if data are noisy
GP with Gaussian noise: $\Sigma = K + \text{diag}$

Latent Vecchia: applied to the latent GP (i.e., to K)

Works well even if data are noisy ($m = 4$)
Computational challenges

- Latent inference requires Cholesky of posterior precision, which can be very dense and expensive (Katzfuss and Guinness, 2021)
- We use incomplete Cholesky (Schäfer, Katzfuss & Owhadi, 2021)
- Comparison for Matérn1.5 at 10^4 random locations on $[0, 1]^2$
 - Naive: standard Vecchia (cheap)
 - Exact: exact latent Vecchia (expensive)
 - IC, nonzeros(LL^\top): latent + incomplete Cholesky (cheap)
Outline

1 Introduction: Gaussian processes

2 Vecchia approximation

3 Extensions and applications
 - Gaussian noise
 - Generalized GPs
 - Scaled Vecchia for computer-model emulation

4 Conclusions
Non-Gaussian spatial data: Generalized GP

Conditional on GP, data are non-Gaussian (from exponential family): binary, categorical, counts, right-skewed, . . .

Example: Binary classification using logistic GGP:

- Take GP function
- Transform into probability using logistic link, then draw from Bernoulli distribution
Non-Gaussian spatial data: Generalized GP

Conditional on GP, data are non-Gaussian (from exponential family): binary, categorical, counts, right-skewed, . . .

Example: Binary classification using logistic GGP:

- Take GP function
- Transform into probability using logistic link, then draw from Bernoulli distribution
Non-Gaussian spatial data: Generalized GP

Conditional on GP, data are non-Gaussian (from exponential family): binary, categorical, counts, right-skewed, …

Example: Binary classification using logistic GGP:
- Take GP function
- Transform into probability using logistic link, then draw from Bernoulli distribution
Laplace for non-Gaussian data

For generalized GP, posterior is intractable \rightarrow 2nd-order Taylor expansion of log-posterior at the mode (Laplace approximation).

Newton-Raphson: Iterative GP prediction using Gaussian pseudo-data

But still $O(n^3) \rightarrow$ infeasible for large n
Laplace for non-Gaussian data

For generalized GP, posterior is intractable → 2nd-order Taylor expansion of log-posterior at the mode (Laplace approximation).

Newton-Raphson: Iterative GP prediction using Gaussian pseudo-data

But still $O(n^3)$ → infeasible for large n
Laplace for non-Gaussian data

For generalized GP, posterior is intractable → 2nd-order Taylor expansion of log-posterior at the mode (Laplace approximation).

Newton-Raphson: Iterative GP prediction using Gaussian pseudo-data

But still $O(n^3) \rightarrow$ infeasible for large n
Vecchia-Laplace (Zilber & Katzfuss, 2021)

Given pseudo-data with Gaussian noise, can approximate using Vecchia

Comparison of MSE relative to Laplace:

Can also be used for analysis of point patterns (log-Gaussian Cox process)
Vecchia-Laplace (Zilber & Katzfuss, 2021)

Given pseudo-data with Gaussian noise, can approximate using Vecchia

Comparison of MSE relative to Laplace:

\(\nu = 0.5 \) (Logistic)

\(\nu = 0.5 \) (Poisson)

\(\nu = 0.5 \) (Gamma)

Can also be used for analysis of point patterns (log-Gaussian Cox process)
Vecchia-Laplace (Zilber & Katzfuss, 2021)

Given pseudo-data with Gaussian noise, can approximate using Vecchia

Comparison of MSE relative to Laplace:

\(\nu = 0.5 \) (Logistic)
\(\nu = 0.5 \) (Poisson)
\(\nu = 0.5 \) (Gamma)

Can also be used for analysis of point patterns (log-Gaussian Cox process)
Outline

1 Introduction: Gaussian processes

2 Vecchia approximation

3 Extensions and applications
 - Gaussian noise
 - Generalized GPs
 - Scaled Vecchia for computer-model emulation

4 Conclusions
Scaled Vecchia (Katzfuss et al., 2020b)

ARD kernel: different relevance for each input dimension
⇒ Carry out maximin ordering and NN conditioning in scaled space
Comparison for Matérn GP in 10 input dimensions

Known parameters

Estimated parameters
Comparison for satellite-drag computer model

Data and (H-)laGP results from Sun et al. (2019)

![Graph showing comparison between SVecchia, Vecchia, laGP, and H-laGP]

8 input dimensions, \(n = 2 \) million runs, 6 chemical species
SVecchia took 13–14min (2 orders of magnitude faster than H-laGP)
Outline

1. Introduction: Gaussian processes
2. Vecchia approximation
3. Extensions and applications
 - Gaussian noise
 - Generalized GPs
 - Scaled Vecchia for computer-model emulation
4. Conclusions
Conclusions

• Vecchia framework for GP approximations:
 • Highly accurate
 • Can lead to almost universal GP toolbox
 • Can guarantee linear scalability, plus parallel computations and mini-batching

• R packages GPvecchia (K et al) and GpGp (Guinness & K) on CRAN

• Supported by NSF DMS–1654083, DMS–1953005, CCF–1934904, TAMUS NLO, and TAMIDS.
Main references

