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Preferences over sets
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(Manski, 1976)

(McFadden, 1974)

* Ranking: distributions over permutations of X.



Agenda

 Choice systems as mathematical objects.

 The independence of irrelevant alternatives (lIA) in discrete choice.

* Tractable choice models that forego lIA. (ICML 2019)
* Tractable rankings models that forego IlIA. (NeurlPS 2020)

 When does data obey [IA? Lower bounds on hypothesis testing. (EC 2019)



Probabilistic discrete choice

 Focuses on a peculiar mathematical space, choice systems.
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» Let P, ¢ denote the probability of choosing x from C'.

* Definition: Conditional choice system (Falmagne, 1978):
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Probabilistic discrete choice

&

 Focuses on a peculiar mathematical space, choice systems. @ @

» Let P, ¢ denote the probability of choosing x from C),

* Definition: Conditional choice system (Falmagne, 1978):

{Pm,C}VCgX,vxEC

e Let w(C) denote the probability of choosing from C C X. Features in
“unconditional choice system”, not part of this talk.



Probabilistic discrete choice

e Consider X = {a,b,c}. Whatis {F..c}vccx vecc?




Probabilistic discrete choice

» Consider X = {a,b,c}. What is {P..c}vocx vaec?
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Independence of Irrelevant Alternatives (l1A)

* Arbitrary choice systems (i.e., McFadden’s universal logit) make no
assumptions about the relationship between distributions on different sets.

e lIA (Luce, 1959): For every x € X, C C A;
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Py,{w,y}UC.

 Conseqguence: the ratio between x and y stays the same, no matter what
“iIrrelevant alternatives” you add to the choice set.



Independence of Irrelevant Alternatives (l1A)

* Arbitrary choice systems (i.e., McFadden’s universal logit) make no
assumptions about the relationship between distributions on different sets.

e lIA (Luce, 1959): For every x € X, C C A;

Fo {zyy _ Lafay}uc
P

Y, T,y }

Py,{w,y}UC.

 Conseqguence: the ratio between x and y stays the same, no matter what
“iIrrelevant alternatives” you add to the choice set.

 Models obeying |[IA admit a ratio representation:

P, c = e VO C X, Vo € C.
ZZGC Yz



Independence of Irrelevant Alternatives (l1A)

 Assuming [IA = Multinomial Logit (MNL) model of discrete choice:

exp (g )

Pro = .
ZzEC eXp(uZ)

 Major workhorse of modern machine learning

e |f u, = 6Tfa:, linear model




Independence of Irrelevant Alternatives (l1A)

 Examples where it (arguably) doesn’t hold:

Dinner
0.5 0.5
Italian Japanese
123RF Stock Photos 05 0.5
www.123rf.com/stock-photos ~ : :
Price As Low As USD 0.21 Per Image.
Money Back Guarantee. Buy Now! . .
ey Btk harmriee. B TO Traditional Japanese  Sushi
Stock Photos
www fotolia.com/Stock-Photos ~ fugu i
More than 20,000,000 Royalty-Free, ramen casual Japanese style
high resolution Photos from $0.19! asian fusion medmw
Japanese hot pot .
- teppan grill
Quality Stock Photos oden » .
www._corbisimages.com/ ¥ kyotocuisine IS & $ & e y
Discover the Best Royalty-Free and -8"8 ’ R unagi
Rights Managed Stock Images. mma [ s .
] % 5 48 sushi
i =& o> regional Japanese
High-End Stock Images @ $ 8
www . offset.com/ ~ tempura dish o& 03 )
Discover Authentic Stock | i’ 03 - "
s (i e: Lj jen ic .”ocw-mages casual sushi Q‘g g . (
By Top Artists. All Royalty-Free. hot pot. - .%% yakitori
d 8. PR ]
) 3% authentic Japanese
Japanese zakaya " cvaki
Search ads T e S
yakinila

. (leong-Mishra-Sheffet 2012, Yin et al. 2014) |
Music Web browsing

(Debreu, 1960) (Benson-Kumar-Tomkins, 2016)



Three perspectives on llA, beyond lIA

1. Random utility model (RUM) with Gumbel noise (Yellot, 1977)
2. Stationary distribution of a Markov chain (Maystre & Grossglauser, 2015)

3. First-order truncation of a Taylor-like expansion of a choice system
(Batsell & Polking,1985; Seshadri et al. 2019)

Setting aside
mixture/nested
models today.

IIA/MNL

Each derivation is its own path to a beyond-llA model of choice.



(1) Random utility models and lIA

 For each i € X, associate a random variable X; = u. + €.

e | et Pq;’c — PT(XZ — maXXj).
jeC
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- Iff €1, ..., €, are independent zero-mean Gumbel, p, . = zexp(ﬂ")( ) . (MNL!)
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(1) Random utility models and lIA

 For each i € X, associate a random variable X; = u. + €.

e | et Pq;’c — PT(XZ — maXXj).
jeC

>

- Iff €1, ..., €, are independent zero-mean Gumbel, p, . = zexp(ﬂ")( ) . (MNL!)
’ . exXp(Y;
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¢ See Falmagne (1978)’s characterization theorem of RUMSs.

 RUMs need not be stochastically transitive! (Makhijani & U, 2019) connects
transitivity to log-likelihood concavity of item-level parameterizations.



(2) Choice systems from Markov chains

* Consider a continuous-time Markov chain defined on X', parameterized by Q.
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(2) Choice systems from Markov chains

* Consider a continuous-time Markov chain defined on X', parameterized by Q.

* Define a chain for each subset ' C X" by restricting the rate matrix, e.g.:

5}

* These stationary distributions define a choice system (Ragain & U, 2016)

 See also: (Maystre & Grossglauser, 2015)
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(3) Truncating choice systems

+ Define item-set utilities u(z|C), Vz € C, such that » u(y|C) = 0.

cC
* Arbitrary universal logit model.: ’

P, o — exp(u(z|C'))

ZyEC’ exp(u(y|C))




(3) Truncating choice systems

+ Define item-set utilities u(z|C), Vz € C, such that » u(y|C) = 0.

cC
* Arbitrary universal logit model.: ’

P, o — exp(u(z|C'))

ZyEC’ exp(u(y|C))

* |tem-set utilities can be uniquely* expanded as (Batsell & Polking, 1985):

u(@|C) = wv(x) + Y o@{yh+ D, vy )+ +o@lC\{z})
1st order lyreCiz 1,2} CC\ |C'|th order
2nd order 3rd order

*with constraints, not shown.
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(3) Truncating choice systems

u(z|C) = v(x) + Y  olyh+ D vy, )+ +o@|C\ {z})
1st order lyreCiz 1,2} SO\ |C'|th order

2nd order 3rd order

. Call p™ order model M ,. Notice that M| C M, C ... C M

/

MNL/IIA

Universal logit




Context-dependent utility model

» For ./ ,, after manipulations, choice probabilities can be written as:

eXp(ZzéC\x uxz)

Prc = .
ZzEC eXp(ZzEC\y uyz)

 Assumes “Pairwise Linear Dependence of Alternatives”

* Negative log likelihood is convex in parameters U



Context-dependent utility model

» For ./ ,, after manipulations, choice probabilities can be written as:

eXp(ZzéC\x uxz)
ZzEC eXp(ZzEC\y uyz) |

P:U,C':

 Assumes “Pairwise Linear Dependence of Alternatives”

* Negative log likelihood is convex in parameters U

 Can be made low-rank (non-convex), essentially a matrix factorization loss:

eXp(ZzEC\x Cztx)
ZZEC eXp(ZzEC\y Czty)

P:U,C':



Structure-dependent convergence rate

* |dentifiability conditions in choice models are combinatorial (Ford 1957).

 Batsell & Polking used least squares (cleverly!), not MLE.

* Under mild regularity conditions, we show

Sllinee(D) - w'|f) < o D

: A2 (L(D))  m

where n is the number of items, m the size of the data,
and D a random dataset generated under the model.

* Here \y(L(D)) is the second smallest eigenvalue of a Laplacian-like matrix.
For pairwise comparisons: Laplacian of comparison graph (Shah et al. 20106).



Broader implications

 Convergence result is for full-rank case; bound still applies when low-rank.

* Analysis also applies to Blade-Chest model (Chen & Joachims, 2016a,b) and
many word2vec-type models (Mikolov et al., 2013).

 For word2vec, the likelihood objective Is typically approximated by
“negative sampling” the choice set, also changes the objective.

 Recent related work:
 Extension to “salient” features (Bower & Balzano, 2020).

 Promoting a particular choice (Tomlinson & Benson, 2020).



CDM empirical results

* Predicting transportation choices (Koppelman & Bhat, 2006) with the CDM:
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Low-rank factorization of U: embeddings

* “One of these things is not like the other...” triplets (Heikinheimo & Ukkonen, 2013)

CDM Target Vectors, r=2 CDM Context Vectors, r=2



Ranking as choice

 Plackett-Luce: distributions over Sy as “repeated MNL choice”:

n

Prim =123 .. -n| = H Z”e_xpeicugzuj)

[2314] ‘ :,““ ””n“ (1423]

o See also: Mallows, mixtures of Mallows/PL.

[1432]

 What happens if we replace MNL with CDM?

(2341]
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Ranking distributions

modal

multi-

CRS) can represent rich

distributions with the same learning efficiency/guarantees as CDM choice.
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Ranking MLE from data

 Similar to choice result, expected risk bound, with £ rankings of length n:
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* Notice second eigenvalue can be bounded absolutely.



Ranking MLE from data

 Similar to choice result, expected risk bound, with £ rankings of length n:
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* Notice second eigenvalue can be bounded absolutely.

 Paper also has tail bounds (not just expected risk).

* Paper also sharpens convergence analysis of vanilla MNL, Plackett-Luce (!)



Testing 1A



Why is testing lIA hard?

 Anna Karenina Principle of high-dimensional
hypothesis testing: “all nulls are alike; deviations
from the null all deviate in their own way.”

 Applied to llA: there are only a few ways to be
“rational,” there are a many unigue ways that
people can be “irrational.”

* Follows the burst of work on finite-sample
lower bounds on testing:

_

(Paninski 2008; Wei & Wainwright 2016;
Valiant & Valiant 201 7: Daskalakis, Kamath,
Wright 2018; Balakrishnan & Wasserman 2018).




Separation and “orthogonal” perturbations

* Begin with the basic formula for lower bounds on minimax risk (and testing):

* Define separation (TV distance).

« Simplify to testing uniform choice system p,, vs. composite of other
distributions perturbed out of the space of lIA.

Qle




Structure-dependent lower bounds

* |n a strict sense, If data doesn’t contain choices from every
subset, the full implications of lIA can’t be tested.

* |nstead: let C be the set of subsets being compared.

 Example: X ={1,2,3,4}

C = {{1,2},{1,3),{1,4},{2,3},{2.4} {3 4}, {1,2,3,4})
Cl CQ Cg C4 C5 C6 C’?



Structure-dependent lower bounds

* |n a strict sense, If data doesn’t contain choices from every
subset, the full implications of lIA can’t be tested.

* |nstead: let C be the set of subsets being compared.

 Example: X ={1,2,3,4}
C={{1,2},11,3},{1,4},12,3},{2,4},{3,4},11,2,3,4}}

N N N e N e e | e e e e’
Cl CQ Cg C4 C5 C6 C’?

e Consider: bipartite comparison incidence graph G¢ = (X,C, E):



Constructing perturbations

o Starting at uniform, want perturbations out of

lIA space that all still project back onto uniform.

 \Want as many perturbations as possible.




Constructing perturbations

o Starting at uniform, want perturbations out of
lIA space that all still project back onto uniform.

 \Want as many perturbations as possible.
o Sketch of construction:

 Need sets to maintain their frequency,
items to maintain their choice frequency.

e Seek perturbations of parameters that keep overall
item probabilities fixed, set probabilities fixed.

* Seek a cycle decomposition of G- = (X, C, F) into many cycles!



Structure-dependent lower bounds

 Let u(o) and a(o) be properties of some cycle decomposition
o of Ge¢ = (X,C, F). Then for N choices:

Structure of C R N,(S(PgA)
1
8u(o)*a(c)N*5* 2
General > % — i(exp( #(9) acgg) ) — 1)
é

n2n-1

5 nT2 S4 >
All subsets, d = n2"~! > % — %(exp (Clog(n) N79 ) — 1)

All pairs, d = n(n — 1) Zé—i(exp(CN254)—1)

» Ry s 2 0 means lower bound has fallen away.

 No upper bounds, no tests analyzed.



Thank you!
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* Choice systems are beautiful things.

 Doors have recently opened to introduce and analyze tractable models
beyond lIA based on Markov chains, based on truncations.

* Testing llA: we replace ambiguity with rigorous pessimism.

 Papers:

PCMC: Ragain & Ugander, NeurlPS 2016

CDM: Seshadri, Peysakhovich, Ugander, ICML 2019

Testing: Seshadri & Ugander, EC 2019 ‘
Choice models of networks: Overgoor et al. WWW 2019, KDD 2020 -«
Ranking: Seshadri, Ragain, Ugander, NeurlPS 2020 A8, ot A




