Learning preferences with irrelevant alternatives

Joint work with Alex Peysakhovich, Stephen Ragain, and Arjun Seshadri

Johan Ugander, Stanford Texas A&M Institute for Data Science, September 27, 2021

Preferences over sets

- Given a universe set \mathcal{X} , consider a choice set $C \subseteq \mathcal{X}$. What do you choose?
- **Discrete choice**: learning distributions over items, for all sets $C \subseteq \mathcal{X}$.
- Ranking: distributions over permutations of \mathcal{X} .

Agenda

- Choice systems as mathematical objects.
- The independence of irrelevant alternatives (IIA) in discrete choice.

- Tractable choice models that forego IIA. (ICML 2019)
- Tractable rankings models that forego IIA. (NeurIPS 2020)

When does data obey IIA? Lower bounds on hypothesis testing. (EC 2019)

• Focuses on a peculiar mathematical space, choice systems.

 Δ^n

 \mathcal{T}_n

• Focuses on a peculiar mathematical space, choice systems.

• Definition: Conditional choice system (Falmagne, 1978):

$$\{P_{x,C}\}\forall C\subseteq\mathcal{X}, \forall x\in C$$

- Focuses on a peculiar mathematical space, choice systems.
- Let $P_{x,C}$ denote the probability of choosing x from C,

• Definition: Conditional choice system (Falmagne, 1978):

$$\{P_{x,C}\}\forall C\subseteq\mathcal{X}, \forall x\in C$$

• Let w(C) denote the probability of *choosing from* $C \subseteq \mathcal{X}$. Features in "unconditional choice system", not part of this talk.

• Consider $\mathcal{X}=\{a,b,c\}$. What is $\{P_{x,C}\}_{\forall C\subseteq\mathcal{X},\forall x\in C}$?

• Consider $\mathcal{X}=\{a,b,c\}$. What is $\{P_{x,C}\}_{\forall C\subseteq\mathcal{X},\forall x\in C}$?

$$C_1 = \{a_1b_3\}$$
 $C_2 = \{b_1c_3\}$
 $C_3 = \{a_1b_3\}$
 $C_4 = \{a_1b_3\}$
 $C_4 = \{a_1b_3\}$

- Arbitrary choice systems (i.e., McFadden's universal logit) make no assumptions about the relationship between distributions on different sets.
- IIA (Luce, 1959): For every $x \in \mathcal{X}$, $C \subseteq \mathcal{X}$:

$$\frac{P_{x,\{x,y\}}}{P_{y,\{x,y\}}} = \frac{P_{x,\{x,y\}\cup C}}{P_{y,\{x,y\}\cup C}}.$$

 Consequence: the ratio between x and y stays the same, no matter what "irrelevant alternatives" you add to the choice set.

- Arbitrary choice systems (i.e., McFadden's *universal logit*) make no assumptions about the relationship between distributions on different sets.
- IIA (Luce, 1959): For every $x \in \mathcal{X}$, $C \subseteq \mathcal{X}$:

$$\frac{P_{x,\{x,y\}}}{P_{y,\{x,y\}}} = \frac{P_{x,\{x,y\}\cup C}}{P_{y,\{x,y\}\cup C}}.$$

- Consequence: the ratio between x and y stays the same, no matter what "irrelevant alternatives" you add to the choice set.
- Models obeying IIA admit a ratio representation:

$$P_{x,C} = \frac{\gamma_x}{\sum_{z \in C} \gamma_z}, \forall C \subseteq \mathcal{X}, \forall x \in C.$$

Assuming IIA ⇒ Multinomial Logit (MNL) model of discrete choice:

$$P_{x,C} = \frac{\exp(u_x)}{\sum_{z \in C} \exp(u_z)}.$$

- Major workhorse of modern machine learning
- If $u_x = \beta^T f_x$, linear model #/JALM

Examples where it (arguably) doesn't hold:

VS.

Music

(Debreu, 1960)

123RF Stock Photos www.123rf.com/stock-photos • Price As Low As USD 0.21 Per Image Money Back Guarantee. Buy Now! Stock Photos www.fotolia.com/Stock-Photos * More than 20,000,000 Royalty-Free,

Quality Stock Photos

high resolution Photos from \$0.19!

www.corbisimages.com/ Discover the Best Royalty-Free and Rights Managed Stock Images.

High-End Stock Images www.offset.com/ -

Discover Authentic Stock Images By Top Artists. All Royalty-Free.

Search ads

(leong-Mishra-Sheffet 2012, Yin et al. 2014)

Web browsing (Benson-Kumar-Tomkins, 2016)

Three perspectives on IIA, beyond IIA

- 1. Random utility model (RUM) with Gumbel noise (Yellot, 1977)
- 2. Stationary distribution of a Markov chain (Maystre & Grossglauser, 2015)
- 3. First-order truncation of a **Taylor-like expansion** of a choice system (Batsell & Polking, 1985; Seshadri et al. 2019)

Each derivation is its own path to a beyond-IIA model of choice.

(1) Random utility models and IIA

- For each $i \in \mathcal{X}$, associate a random variable $X_i = \mu_i + \epsilon_i$.
- Let $P_{i,C} = Pr(X_i = \max_{j \in C} X_j)$.

• Iff $\epsilon_1, \ldots, \epsilon_n$ are independent zero-mean Gumbel, $P_{i,C} = \frac{\exp(\mu_i)}{\sum_{j \in C} \exp(\mu_j)}$. (MNL!)

(1) Random utility models and IIA

- For each $i \in \mathcal{X}$, associate a random variable $X_i = \mu_i + \epsilon_i$.
- Let $P_{i,C} = Pr(X_i = \max_{j \in C} X_j)$.
- Iff $\epsilon_1, \ldots, \epsilon_n$ are independent zero-mean Gumbel, $P_{i,C} = \frac{\exp(\mu_i)}{\sum_{j \in C} \exp(\mu_j)}$. (MNL!)
- See Falmagne (1978)'s characterization theorem of RUMs.
- RUMs need not be stochastically transitive! (Makhijani & U, 2019) connects transitivity to log-likelihood concavity of item-level parameterizations.

(2) Choice systems from Markov chains

• Consider a continuous-time Markov chain defined on \mathcal{X} , parameterized by **Q**.

(2) Choice systems from Markov chains

• Consider a continuous-time Markov chain defined on \mathcal{X} , parameterized by **Q**.

• Define a chain for each subset $C \subseteq \mathcal{X}$ by restricting the rate matrix, e.g.:

- These stationary distributions define a choice system (Ragain & U, 2016)
- See also: (Maystre & Grossglauser, 2015)

- Define item-set utilities $u(x|C), \forall x \in C$, such that $\sum_{y \in C} u(y|C) = 0$.
- Arbitrary universal logit model:

$$P_{x,C} = \frac{\exp(u(x|C))}{\sum_{y \in C} \exp(u(y|C))}.$$

- Define item-set utilities $u(x|C), \forall x \in C$, such that $\sum_{y \in C} u(y|C) = 0$.
- Arbitrary universal logit model:

$$P_{x,C} = \frac{\exp(u(x|C))}{\sum_{y \in C} \exp(u(y|C))}.$$

• Item-set utilities can be uniquely* expanded as (Batsell & Polking, 1985):

$$u(x|C) = \underbrace{v(x)}_{\text{1st order}} + \underbrace{\sum_{\{y\} \in C \setminus x} v(x|\{y\}) + \sum_{\{y,z\} \subseteq C \setminus x} v(x|\{y,z\}) + \ldots + \underbrace{v(x|C \setminus \{x\})}_{|C| \text{th order}}}_{\text{2nd order}}$$

$$\underbrace{\text{2nd order}}_{\text{3rd order}}$$

*with constraints, not shown.

$$u(x|C) = \underbrace{v(x)}_{\text{1st order}} + \underbrace{\sum_{\{y\} \in C \setminus x} v(x|\{y\}) + \sum_{\{y,z\} \subseteq C \setminus x} v(x|\{y,z\}) + \ldots + \underbrace{v(x|C \setminus \{x\})}_{|C| \text{th order}}}_{\text{2nd order}}$$
2nd order
3rd order

• Call p^{th} order model \mathcal{M}_p . Notice that $\mathcal{M}_1 \subset \mathcal{M}_2 \subset \ldots \subset \mathcal{M}_{n-1}$.

$$u(x|C) = \underbrace{v(x)}_{\text{1st order}} + \underbrace{\sum_{\{y\} \in C \setminus x} v(x|\{y\}) + \sum_{\{y,z\} \subseteq C \setminus x} v(x|\{y,z\}) + \ldots + \underbrace{v(x|C \setminus \{x\})}_{|C| \text{th order}}}_{\text{2nd order}}$$

$$\underbrace{v(x|\{y\}) + \sum_{\{y,z\} \subseteq C \setminus x} v(x|\{y,z\}) + \ldots + \underbrace{v(x|C \setminus \{x\})}_{|C| \text{th order}}}_{\text{3rd order}}$$

• Call p^{th} order model \mathcal{M}_p . Notice that $\mathcal{M}_1 \subset \mathcal{M}_2 \subset \ldots \subset \mathcal{M}_{n-1}$. MNL/IIA

Universal logit

Context-dependent utility model

• For \mathcal{M}_2 , after manipulations, choice probabilities can be written as:

$$P_{x,C} = \frac{\exp(\sum_{z \in C \setminus x} u_{xz})}{\sum_{z \in C} \exp(\sum_{z \in C \setminus y} u_{yz})}.$$

- Assumes "Pairwise Linear Dependence of Alternatives"
- ullet Negative log likelihood is **convex** in parameters U!

Context-dependent utility model

• For \mathcal{M}_2 , after manipulations, choice probabilities can be written as:

$$P_{x,C} = \frac{\exp(\sum_{z \in C \setminus x} u_{xz})}{\sum_{z \in C} \exp(\sum_{z \in C \setminus y} u_{yz})}.$$

- Assumes "Pairwise Linear Dependence of Alternatives"
- Negative log likelihood is **convex** in parameters U!
- Can be made low-rank (non-convex), essentially a matrix factorization loss:

$$P_{x,C} = \frac{\exp(\sum_{z \in C \setminus x} c_z^T t_x)}{\sum_{z \in C} \exp(\sum_{z \in C \setminus y} c_z^T t_y)}.$$

Structure-dependent convergence rate

- Identifiability conditions in choice models are combinatorial (Ford 1957).
- Batsell & Polking used least squares (cleverly!), not MLE.
- Under mild regularity conditions, we show

$$\mathbb{E}[||\hat{u}_{MLE}(\mathcal{D}) - u^*||_2^2] \le \frac{c}{\lambda_2(L(\mathcal{D}))} \frac{n(n-1)}{m}.$$

where n is the number of items, m the size of the data, and \mathcal{D} a random dataset generated under the model.

• Here $\lambda_2(L(\mathcal{D}))$ is the second smallest eigenvalue of a **Laplacian-like matrix.** For pairwise comparisons: Laplacian of comparison graph (Shah et al. 2016).

Broader implications

- Convergence result is for full-rank case; bound still applies when low-rank.
- Analysis also applies to Blade-Chest model (Chen & Joachims, 2016a,b) and many word2vec-type models (Mikolov et al., 2013).
 - For word2vec, the likelihood objective is typically approximated by "negative sampling" the choice set, also changes the objective.
- Recent related work:
 - Extension to "salient" features (Bower & Balzano, 2020).
 - Promoting a particular choice (Tomlinson & Benson, 2020).

CDM empirical results

• Predicting transportation choices (Koppelman & Bhat, 2006) with the CDM:

Low-rank factorization of U: embeddings

• "One of these things is not like the other..." triplets (Heikinheimo & Ukkonen, 2013)

Ranking as choice

• Plackett-Luce: distributions over S_n as "repeated MNL choice":

$$\Pr[\pi = 123 \cdots n] = \prod_{i=1}^{n} \frac{\exp(u_i)}{\sum_{j=i}^{n} \exp(u_j)}$$

- See also: Mallows, mixtures of Mallows/PL.
- What happens if we replace MNL with CDM?

Ranking distributions

 Contextual repeated selection (CRS) can represent rich, multi-modal distributions with the same learning efficiency/guarantees as CDM choice.

Ranking MLE from data

• Similar to choice result, expected risk bound, with ℓ rankings of length n:

$$\mathbb{E}\left[\left\|\hat{u}_{\mathit{MLE}}(\mathcal{R}) - u^{\star}\right\|_{2}^{2}\right] \leq \mathbb{E}\left[\min\left\{\frac{c_{B}'n^{3}}{\ell\lambda_{2}(L)}, 4B^{2}n\right\}\right] \leq c_{B}\frac{n^{7}}{\ell}$$

Notice second eigenvalue can be bounded absolutely.

Ranking MLE from data

• Similar to choice result, expected risk bound, with ℓ rankings of length n:

$$\mathbb{E}\left[\left\|\hat{u}_{\textit{MLE}}(\mathcal{R}) - u^\star\right\|_2^2\right] \leq \mathbb{E}\left[\min\left\{\frac{c_B'n^3}{\ell\lambda_2(L)}, 4B^2n\right\}\right] \leq c_B \frac{n^7}{\ell}$$

Notice second eigenvalue can be bounded absolutely.

- Paper also has tail bounds (not just expected risk).
- Paper also sharpens convergence analysis of vanilla MNL, Plackett-Luce (!)

Testing IIA

Why is testing IIA hard?

- Anna Karenina Principle of high-dimensional hypothesis testing: "all nulls are alike; deviations from the null all deviate in their own way."
- Applied to IIA: there are only a few ways to be "rational," there are a many unique ways that people can be "irrational."
- Follows the burst of work on finite-sample lower bounds on testing:

(Paninski 2008; Wei & Wainwright 2016; Valiant & Valiant 2017; Daskalakis, Kamath, Wright 2018; Balakrishnan & Wasserman 2018).

Separation and "orthogonal" perturbations

- Begin with the basic formula for lower bounds on minimax risk (and testing):
 - Define separation (TV distance).
 - Simplify to testing uniform choice system p_0 vs. composite of other distributions perturbed out of the space of IIA.

Structure-dependent lower bounds

- In a strict sense, if data doesn't contain choices from every subset, the full implications of IIA can't be tested.
- Instead: let \mathcal{C} be the set of subsets being compared.
- Example: $X = \{1, 2, 3, 4\}$

$$C = \{\underbrace{\{1,2\}},\underbrace{\{1,3\}},\underbrace{\{1,4\}},\underbrace{\{2,3\}},\underbrace{\{2,4\}},\underbrace{\{3,4\}},\underbrace{\{1,2,3,4\}}\}\}$$

$$C_1 \quad C_2 \quad C_3 \quad C_4 \quad C_5 \quad C_6 \quad C_7$$

Structure-dependent lower bounds

- In a strict sense, if data doesn't contain choices from every subset, the full implications of IIA can't be tested.
- Instead: let \mathcal{C} be the set of subsets being compared.
- Example: $X = \{1, 2, 3, 4\}$

$$C = \{\underbrace{\{1,2\}},\underbrace{\{1,3\}},\underbrace{\{1,4\}},\underbrace{\{2,3\}},\underbrace{\{2,4\}},\underbrace{\{3,4\}},\underbrace{\{1,2,3,4\}}\}_{C_7}\}$$

• Consider: bipartite comparison incidence graph $G_{\mathcal{C}} = (\mathcal{X}, \mathcal{C}, E)$:

Constructing perturbations

- Starting at uniform, want perturbations out of IIA space that all still **project back** onto uniform.
- Want as many perturbations as possible.

Constructing perturbations

• Starting at uniform, want perturbations out of IIA space that all still **project back** onto uniform.

- Want as many perturbations as possible.
- Sketch of construction:
 - Need sets to maintain their frequency,
 items to maintain their choice frequency.
 - Seek perturbations of parameters that keep overall item probabilities fixed, set probabilities fixed.
 - Seek a cycle decomposition of $G_{\mathcal{C}} = (\mathcal{X}, \mathcal{C}, E)$ into many cycles!

Structure-dependent lower bounds

• Let $\mu(\sigma)$ and $\alpha(\sigma)$ be properties of some cycle decomposition σ of $G_{\mathcal{C}}=(\mathcal{X},\mathcal{C},E)$. Then for N choices:

Structure of <i>C</i>	$R_{N,\delta}(\mathcal{P}_{\mathcal{C}}^{\mathrm{IIA}})$
General	$\geq \frac{1}{2} - \frac{1}{4} \left(\exp \left(\frac{8\mu(\sigma)^4 \alpha(\sigma) N^2 \delta^4}{d} \right) - 1 \right)^{\frac{1}{2}}$
All subsets, $d = n2^{n-1}$	$\geq \frac{1}{2} - \frac{1}{4} \left(\exp \left(\frac{c \log(n)^5 N^2 \delta^4}{n 2^{n-1}} \right) - 1 \right)^{\frac{1}{2}}$
All pairs, $d = n(n - 1)$	$\geq \frac{1}{2} - \frac{1}{4} \left(\exp\left(\frac{cN^2\delta^4}{n(n-1)}\right) - 1 \right)^{\frac{1}{2}}$

- $R_{N,\delta} \ge 0$ means lower bound has fallen away.
- No upper bounds, no tests analyzed.

Thank you!

- Choice systems are beautiful things.
- Doors have recently opened to introduce and analyze tractable models beyond IIA based on Markov chains, based on truncations.
- Testing IIA: we replace ambiguity with rigorous pessimism.

Papers:

PCMC: Ragain & Ugander, NeurlPS 2016

CDM: Seshadri, Peysakhovich, Ugander, ICML 2019

Testing: Seshadri & Ugander, EC 2019

Choice models of networks: Overgoor et al. WWW 2019, KDD 2020

Ranking: Seshadri, Ragain, Ugander, NeurlPS 2020

