Communication-Aware and Decentralized Strategic Learning in Networked Multiagent Systems

Ceyhun Eksin

TEXAS A&M UNIVERSITY Wm Michael Barnes '64 Department of Industrial & Systems Engineering

September 6, 2021

netmas.engr.tamu.edu

Networked systems are everywhere

Modeling and designing decentralized decision making

Autonomous robots – teams and collaborations A

- Ranging size and capabilities
 - Scale cm to meters
 - UAVs, terrain locomotion
- Wide variety of objectives
 - Active sensing, containment, surveillance, formation
- Vision:
 - Plan, learn and coordinate in novel environments

DesertRhex - KodLab

Wildcat - Boston **Dynamics**

Swarm of 1K robots 2D shapes

Fundamental challenges in autonomous teams

Vision: Plan, learn and coordinate in novel environments

Common challenge in networked multiagent systems with uncertainty

Actors given partial information reason about information & goals of others

Today's theme: communication-aware game-theoretic algorithms

1.3

3.5

1, 4

#

2, 4

Networked multi-agent systems

1. Bayesian network games

[IEEE SPM 2013, IEEE TSP 2014, OR 2015]

Communication-aware autonomous teams

2. DFP with voluntary communication

[IEEE TAC 2018, IEEE TAC 2018, Aydin & Eksin 2020]

DFP in unknown environments

3. Learning in near-potential games

[Aydin et al 2021]

Networks and uncertain environments

- Graph with N = 8 agents and connections
- Agent 1 has 4 neighbors

n(1) = (2,3,7,8)Time-varying, and random graphs

- Environment θ
- Agent 1 has signal s_1 about environment, e.g.,

 $s_1 = \theta + \epsilon_1$

with noise ϵ_1

Interactive decision-making problem

- Repeated decision-making $a_{1,t}$
- Agents act with respect to objectives (payoff)

 $u_1(a_{1,t}, \boldsymbol{a_{-1,t}}, \boldsymbol{\theta})$

- Payoff depends on actions of others $-1 = N \setminus 1$
- Messages from neighbors $m_{2,t}, m_{3,t}, m_{7,t}, m_{8,t}$
- Information of agent 1

 $I_{1,t+1} = \{I_{1,t}, S_{1,t}, m_{n(1),t}\}$

$$a_{1,t+1} = \arg \max_{a_1} E[u_1(a_1, a_{-1,t+1}, \theta) | I_{1,t+1}]$$

• Strategic reasoning by considering motives of others based on information

Model

Game theory in networked systems

• Game theory is concerned with decision-making of self-interested individuals

- Information of agent 1: $I_{1,t+1} = \{I_{1,t}, s_{1,t}, m_{n(1),t}\}$
 - Strategy of agent 1 $\sigma_{1,t}(I_{1,t})$: Information \rightarrow Action
- Strategy profile of all agents

$$\boldsymbol{\sigma} := \{\sigma_{i,t}\}_{i=1,\dots,N,t=1,\dots,\infty}$$

- Agents have different information $I_{1,t} \neq I_{2,t}$
- Reason about the information of others based on strategy profile σ

Equilibrium behavior

- Space of play $\Omega = \Theta \times (S \times A)^{\mathbb{N}}$
- Prior *P* on $\Theta \times S^{\mathbb{N}}$ induce a distribution on Ω with strategy profile σ History *L*.

Definition (Bayesian-Nash equilibrium)

Strategy profile σ^* and beliefs $P_{\sigma^*}(\cdot|I_{i,t})$ that satisfy

$$E_{\sigma^*}\left[u_i(\sigma_{i,t}^*, \sigma_{-i,t}^*, \theta) \middle| I_{i,t}\right] \ge E_{\sigma^*}\left[u_i(a_i, \sigma_{-i,t}^*, \theta) \middle| I_{i,t}\right] \quad I_{i,t} \in \mathcal{I}_i, \forall i$$

BNE is optimal with respect to strategies of other agents given local information.

Equilibrium behavior – block diagram

Bayesian Network Games (BNG)

Asymptotic learning in BNG

• What happens when individuals act according to BNE (optimal) at each step?

Theorem (w/Molavi, Ribeiro, Jadbabaie, Operations Research 2015)

If agents play a coordination game and message their actions, then they

- a) Consensus: $\lim_{t\to\infty} \sigma_{i,t}^* \sigma_{j,t}^* = 0$ almost surely
- **b)** Information aggregation: $\lim_{t\to\infty} E_{\sigma^*}[\theta|I_{i,t}] = E_{\sigma^*}[\theta|I_{\infty}]$ almost surely
- Reaching consensus in actions implies
 - Ex-ante identical payoffs
 - $E_{\sigma^*}[\theta | I_{i,t}] = E_{\sigma^*}[\theta | I_{j,t}]$
- Not necessarily aggregate information
 - True generically

Bayesian social learning: Borkar & Varaiya 1982 IEEE TAC, Jadbabaie et al 2012 GEB, Jackson & Kalai 1997 GEB

Communication-aware game-theoretic learning algorithms

1.3

3.5

1, 4

2, 4

Networked multi-agent systems

1. Bayesian network games

[IEEE SPM 2013, IEEE TSP 2014, OR 2015]

Communication-aware autonomous teams

2. DFP with voluntary communication

[IEEE TAC 2018, IEEE TAC 2018, Aydin & Eksin 2020]

Persisting uncertainty among teams

3. Learning in Near Potential Games

[Aydin et al 2021]

Task assignment problem

- Communication network of 5 robots
- 5 Targets

Global Objective: Cover all targets with minimum effort

$$u_i(T, others, \theta) = - \begin{cases} 0 & \text{if another pick T} \\ d(\theta_T, x_i)^{-1} & \text{o.w.} \end{cases}$$

- State θ is the location of targets
- Noisy information about the locations

 $signal = f(\theta_{T1}, noise)$

Arslan, Marden & Shamma 2007 ASME JDSMC Richards, Bellinghem, Tillerson & How 2002 AIAA GNC

Task assignment – local algorithm

- Consider agent 3 with location x_3
- Neighbors $n(3) = \{4, 5\}$

- 1. Initial estimate *congestion* at each target
- 2. Subtract congestion caused by self
- 3. Compute *expected utility* from each T
 - $u_i(T4, estimate, \hat{\theta}) = d(\hat{\theta}_{T4}, x_3)^{-1}$
- 4. Pick target $a_{3,1}$ = T4
- 5. Move in the estimated direction
- 6. Update congestion caused at each target $cong_{i,t}(T4) = \alpha \times cong_{i,t}(T4) + (1 \alpha)$
- 7. Share congestion estimate with n(3)
- 8. Update congestion estimates averaging
- 9. Update location estimates $\hat{\theta}$
- 10. Go to step 2 and repeat

Decentralized Fictitious Play (D-FP) algorithm

Decentralized fictitious play in action

- Common initial estimates
- Gaussian independent signals about target locations

GRITSBot [Pickem et al.,2015]

• Underlying communication network, and constant (successful) communication attempts

Standard fictitious play with inertia

- Agents assume other agents use stationary strategies (even though they are not)
- Empirical frequency of past actions: $f_{j,t} \in \Delta A$, A is the set of finite actions

$$\sigma_{j,t} := f_{j,t} = (1 - \alpha)f_{j,t-1} + \alpha \Phi(a_{j,t})$$

- Fading constant: α (can depend on time, e.g., $\alpha = \frac{1}{t}$)

- Mapping from action to the probability over the action space: $\Phi(a_{j,t}) \in \Delta A$
- Expected utility of agent given the empirical frequencies of other agents $f_{-i,t} = \{f_{j,t}\}_{j \in N \setminus i}$

$$u_{i}(a, f_{-i,t}, \theta) = \sum_{a_{-i}} u_{i}(a, a_{-i}, \theta) f_{-i,t}(a_{-i})$$

Best respond with inertia: $a_{i,t} = \begin{cases} \arg \max u_{i}(a, f_{-i,t}, \theta) & w. prob. \ 1 - \rho \\ a_{i,t-1} & w. prob. \ \rho \end{cases}$

Standard fictitious play with inertia

- Agents assume other agents use stationary strategies (even though they are not)
- Empirical frequency of past actions: $f_{j,t} \in \Delta A$, A is the set of finite actions

$$\sigma_{j,t} := f_{j,t} = (1 - \alpha)f_{j,t-1} + \alpha \Phi(a_{j,t})$$

- Fading constant: α (can depend on time, e.g., $\alpha = \frac{1}{t}$)

- Mapping from action to the probability over the action space: $\Phi(a_{j,t}) \in \Delta A$
- Expected utility of agent given the empirical frequencies of other agents $f_{-i,t} = \{f_{j,t}\}_{j \in N \setminus i}$

$$u_{i}(a, f_{-i,t}, \theta) = \sum_{a_{-i}} u_{i}(a, a_{-i}, \theta) f_{-i,t}(a_{-i})$$
(arg max $u_{i}(a, f_{-i}, \theta)$ w prob $1 - \theta$
State and empirical frequencies are unknown
$$u_{i,t-1}$$

Decentralized-FP with inertia

- Agent *i*'s *belief* of agent *j*'s strategy: $f_{j,t}^i \in \Delta A$
- Agent *i*'s *belief* of others' future actions: $f_{-i,t}^i$
- Agent *i*'s *belief* of the environment state θ : $\hat{\theta}_t^i$

1) Inertial best-response:
$$a_{i,t} = \begin{cases} \arg \max u_i \left(a, f_{-i,t-1}^i, \widehat{\theta}_{t-1}^i\right) & w. prob. \ 1 - \rho \\ a_{i,t-1} & w. prob. \ \rho \end{cases}$$

2) Update local empirical frequency: $f_{i,t} = (1 - \alpha)f_{i,t-1} + \alpha \Phi(a_{i,t})$

3) Share beliefs $\{f_{j,t-1}^i\}_{j \in \mathbb{N}}$ where $f_{i,t} = f_{i,t-1}^i$ with current neighbors

Update agent *i*'s belief on *j*'s frequency: $f_{j,t}^i = \sum_{k \in N} w_{j,k}^i(t) f_{j,t}^k$

- Agent *i*'s weight on *k*'s belief on *j*'s frequency: $w_{j,k}^{i}(t)$

Decentralized-FP with inertia

- Agent *i*'s *belief* of agent *j*'s strategy: $f_{j,t}^i \in \Delta A$
- Agent *i*'s *belief* of others' future actions: $f_{-i,t}^i$
- Agent *i*'s *belief* of the environment state θ : $\hat{\theta}_t^i$

1) Inertial best-response:
$$a_{i,t} = \begin{cases} \arg \max u_i \left(a, f_{-i,t-1}^i, \widehat{\theta}_{t-1}^i\right) & w. prob. \ 1 - \rho \\ a_{i,t-1} & w. prob. \ \rho \end{cases}$$

2) Update local empirical frequency: $f_{i,t} = (1 - \alpha)f_{i,t-1} + \alpha \Phi(a_{i,t})$

Action-based learning in games:

Marden, Arslan & Shamma 2009 IEEE TAC, Monderer & Shapley 1996 JET Distributed convex optimization:

Nedic & Ozdaglar 2009 TAC, Chen & Sayed 2012 TSP - Agent *i* s weight on *k* s benef on *j* s frequency: *w_{j,k}(i)*

DFP converges in potential games

Theorem (w/Swenson, Kar, Ribeiro, IEEE TAC 2018; Arefizadeh, Asilomar 2019)

- 1) Potential games (a function $u(\cdot)$ that captures incentives of agents)
- 2) Asymptotically **weakly agree** on the state estimate $(\hat{\theta}_t^i \xrightarrow{w} \hat{\theta})$,
- 3) Time-varying network:
 - a. Union of edges over a finite horizon constitute a strongly connected network
 - b. Weights sum to 1 (row stochastic), and positive only when neighbors

 $\{a_t\}_{t\geq 1}$ converges to a pure-strategy Nash equilibrium almost surely.

- Union of edges over times **1**, **2** and **3** yields a connected network!
- Information needs to be able to travel from one node to another in finite time

DFP converges in potential games

Theorem (w/Swenson, Kar, Ribeiro, IEEE TAC 2018; Arefizadeh, Asilomar 2019)

- 1) Potential games (a function $u(\cdot)$ that captures incentives of agents)
- 2) Asymptotically **weakly agree** on the state estimate $(\hat{\theta}_t^i \xrightarrow{w} \hat{\theta})$,
- 3) Time-varying network:
 - a. Union of edges over a finite horizon constitute a strongly connected network
 - b. Weights sum to 1 (row stochastic), and positive only when neighbors

 $\{a_t\}_{t\geq 1}$ converges to a pure-strategy Nash equilibrium almost surely.

DFP converges in potential games

Theorem (w/Swenson, Kar, Ribeiro, IEEE TAC 2018; Arefizadeh, Asilomar 2019)

- 1) Potential games (a function $u(\cdot)$ that captures incentives of agents)
- 2) Asymptotically **weakly agree** on the state estimate $(\hat{\theta}_t^i \xrightarrow{w} \hat{\theta})$,
- 3) Time-varying network:
 - a. Union of edges over a finite horizon constitute a strongly connected network
 - b. Weights sum to 1 (row stochastic), and positive only when neighbors

 $\{a_t\}_{t\geq 1}$ converges to a pure-strategy Nash equilibrium almost surely.

Toward communication efficient decentralized algorithms

- Communicating at each step is costly (energy, bandwidth)
 - In DFP, there are $N \times |n(i)|$ messages shared at each step
 - Each message is matrix with $N \times |A|$ values
- Communication may be subject to failures, thus it may not be possible
 - Wireless communication is subject to failures
- Existing efficient communication protocols in distributed optimization:
 - One-bit communication, Communication censoring
 - Slows down convergence but reduces communication
- A general condition for the communication protocol $\,$

convergence of DFP

- First and second order belief-based communication protocols
- The setup is for random communication networks

Random communication networks

Random point-to-point communication

 $c_{ki}(t) \sim Bernoulli(p_{ki}(t))$

where $0 < p_{ki}(t) \leq 1$

Positive probability of communication between each agent

 $\label{eq:Algorithm 1} \mbox{DFP with voluntary communication}$

- 1: Input: ρ, ϵ and communication specific parameters.
- 2: for $t = 1, 2, \cdots$, do
- 3: Best-response with inertia
- 4: Communication protocol
- 5: Belief update
- 6: **end for**

DFP with Voluntary Communication

• Agnostic to the specific communication protocol as long as the following condition holds:

Condition (Prediction convergence under static environments)

If agent *j* repeats an action $a_j \in A$ for $T \ge \overline{T}$ times after t > 0, then agent *i* learns agent *j*'s action a_j with finite probability, i.e. $P(|a_{j,t+T} - f_{j,t+T}^i| \le \eta |H(t+T)) \ge \hat{\epsilon}$.

• Any agent is able to learn the repeated action of another agent with positive probability

Weakly-acyclic games

- Congestion games: *m* resources, value of a resource decreases with number of players using
- Autonomous systems with global objectives are potential games

Definition (Weakly-acyclic games)

A game Γ is weakly acyclic if from any joint action profile, there exists a best-response path ending at a pure Nash equilibrium.

Convergence of DFP type algorithms

Theorem (w/Aydin, Arxiv 2020)

Given the prediction convergence under static environments is satisfied, the actions in DFP with voluntary communication converge to a pure NE of any weakly acyclic game almost surely in finite time.

Proof method: absorbing Markov Chain

Condition (Prediction convergence under static environments)

If action profile *a* is repeated *T* times after t > 0 then $\arg \max_{\alpha} u_i(\alpha, f_{-i,t+T}^i) = \arg \max_{\alpha} u_i(\alpha, a_{-i})$

Let $a = \{B, B, B, A\}$ be the repeated action profile

	1	2	•••	t	t+1		t+7	•
	A	Α		В	В		В	
2	В	Α		В	В		В	Estimated best response =
3	В	В		В	В		В	Best response to actual
4	В	В		A	A		A	

Proof method: absorbing Markov Chain

Lemma (positive probability of reaching NE)

Let a_t for $t \ge 1$ be generated by FP algorithm with inertia. For all $t \ge \overline{t}$, $P(Pure Nash equilibrium a^* is reached starting from time t) > \epsilon$

• Weakly-acyclic \longrightarrow From any action a there exists a finite best-response path to a^*

Start from action $a_t = \{B, A, B, A\}$, let $a^* = \{B, B, B, A\}$ be a NE of the game

	$t \geq \overline{t}$	•••	t + T	' — 1	t+T
	В		В	w. prob. $ ho$	В
2	A		A	$\arg \max_{\alpha} u_2(\alpha, \frac{a_{-i}}{a_{-i}}) =$	В
3	В		B	w. prob. $ ho$	В
4	A		A	w. prob. $ ho$	A

Proof method: absorbing Markov Chain

Lemma (absorption property of pure Nash equilibria)

 $\exists T \text{ such that after } t > 0$ if Nash equilibrium action a^* is repeated for T periods, then future actions will be Nash equilibrium, i.e., $a_{t+\tau} = a^*$ for all $\tau > T$.

• Use the condition

Let $a^* = \{B, B, B, A\}$ be a NE of the game with common belief

	1	2		$t > \overline{t}$	t + 1		t + T - 1	$t + \tau$	
	Α	A		В	В		В	В	
2	В	A		В	В		В	В	•••
3	В	В	•••	В	В	•••	В	В	
4	В	В		A	A		Α	A	

Learning-aware communication protocols for DFP

• Protocols that rely on these two metrics

Novelty of information $\implies H_{ii}(t) = |f_{i,t} - \Phi(a_{i,t})|$ Belief mismatch $\implies H_{ij}(t) = |f_{i,t} - f_{i,t}^{j}|$

- (CC) Communication censoring based on novelty of information:
 - Agent *i* attempts to send empirical frequency to *all agents*
- (CV) Voluntary communication based on novelty and belief mismatch :
 - Agent *i* attempts to send empirical frequency to agent *j*
 - Provides a preference ranking of neighbors to communicate
- (L) Limited bandwidth communication
 - Agent *i* attempts to send leading action and its frequency to agent *j*
- Any combination of protocols **C**, **V** or **L** satisfies the condition for η_1 , η_2

 $H_{ii}(t) > \eta_1$

Target assignment game

- N = 5 agents select among K = 5 targets to maximize coverage
- Agents move at constant speeds in the direction
- Positions affect the probability of successful communication

 $p_{ij}(t) = \beta_{ij}(t)e^{-r|x_i(t)-x_j(t)|^2}$

where routing rate $\beta_{ij}(t)$ and fading constant r

- Chance of communication drops with distance between *i* and *j*
- Routing rate $\beta_{ij}(t)$ can be determined by the sender
 - Inversely proportional to belief mismatch H_{ij}
- Communication-aware mobility: Mobility can be "optimized" to account for communication

- Communication parameters: censoring $\eta_1=0.1$ and mismatch $\eta_2=0.4$
- DFP parameters: fading $\alpha = 0.05$ and inertia $\rho = 0.05$

- Voluntary communication (C) and mobility-aware V-com (MC) have comparable convergence
- By t = 20, attempt drop below 40%, more than 60% reduction in communication attempts

- Communication parameters: censoring $\eta_1 = 0.1$ and mismatch $\eta_2 = 0.4$
- DFP parameters: fading $\alpha = 0.05$ and inertia $\rho = 0.05$

- Voluntary communication (C) and mobility-aware V-com (MC) have comparable convergence
- Total belief mismatch is lower in standard DFP

- Communication parameters: censoring $\eta_1=0.1$ and mismatch $\eta_2=0.4$
- DFP parameters: fading $\alpha = 0.05$ and inertia $\rho = 0.05$

- Voluntary communication (C) and mobility-aware V-com (MC) have comparable convergence
- MC-DFP has higher rate of successful communication initially

- Communication parameters: censoring $\eta_1=0.1$ and mismatch $\eta_2=0.4$
- DFP parameters: fading $\alpha = 0.05$ and inertia $\rho = 0.05$

- Voluntary communication (C) and mobility-aware V-com (MC) have comparable convergence
- In MC-DFP, agents stick together until they resolve their differences

Communication-aware game-theoretic learning algorithms

Networked multi-agent systems

1. Bayesian network games

[IEEE SPM 2013, IEEE TSP 2014, OR 2015]

Communication-aware autonomous teams

2. DFP with voluntary communication

[IEEE TAC 2018, IEEE TAC 2018, Aydin & Eksin 2020]

Persisting uncertainty among teams

3. Learning in Near-Potential Games

[Aydin et al 2021]

Persisting uncertainty

- Environmental uncertainty may not be resolved
 - Agents may stop receiving signals
 - Agents may stop communicating
- What can we say when uncertainty is not resolved?
 - I.e., when consensus is not possible

- Framework of *near-potential games*
 - Relaxation of potential games $\hat{\Gamma} = (N, A^N, u)$
 - Defines a game $\Gamma = (N, A^N, \{u_i\}_{i \in N})$ based on its *closeness to the nearest potential*
- Premise: when there is disagreement, game agents play is near the potential game

Near-potential games

Definition (Maximum Pairwise Difference)

Consider two games Γ and $\hat{\Gamma}$. Let $d_{a'_i,a}^{\Gamma} := u_i(a'_i, a_{-i}) - u_i(a_i, a_{-i})$ difference in utility functions when agent i deviates from action profile $a = (a_i, a_{-i})$ and takes action a'_i . MPD is $d(\Gamma, \hat{\Gamma}) = \max_{i \in N, a'_i \in A, a \in A^N} |d_{a'_i,a}^{\Gamma} - d_{a'_i,a}^{\hat{\Gamma}}|.$

• MPD based on the difference in agent payoffs resulting from *unilateral changes*

Definition (δ Near-potential games)

The game Γ is a δ near-potential game if there exists a potential game $\hat{\Gamma}$ within $d(\Gamma, \hat{\Gamma}) < \delta$.

- Finding the nearest potential game and its potential function (Candogan et al, 2011)
- Focus on learning in near-potential games assuming potential function is known

Convergence of DFP in near-potential games

1) **Best-response**: $a_{i,t} = \underset{a_i \in A}{\operatorname{arg max}} u_i(a_i, f_{-i,t-1}^i)$

2) Update local empirical frequency: $f_{i,t} = (1 - \alpha)f_{i,t-1} + \alpha \Phi(a_{i,t})$. where $\alpha = \frac{1}{t}$

3) Share beliefs $\{f_{j,t-1}^i\}_{j \in \mathbb{N}}$ where $f_{i,t} = f_{j,t-1}^i$ with current neighbors n(i,t)

Update agent *i*'s belief on *j*'s frequency:
$$f_{j,t}^i = \sum_{k \in N} w_{j,k}^i(t) f_{j,t}^k$$

- A few differences: no inertia, empirical frequency is computed using weight $\frac{1}{r}$
- Note: we do not have an environment state to disagree on
 - Implicit in the near potential game framework

Convergence of DFP in near-potential games

Theorem (Aydin et al, Arxiv 2021)

 Γ is a δ -near-potential game with closest potential game with function $u(\cdot)$. Suppose a time-varying communication network:

a. Union of edges over a finite horizon constitute a strongly connected network

b. Weights sum to 1 (row stochastic), and positive only when neighbors

If the empirical frequencies f_t are ϵ away from NE, then given large enough T > 0, for t > T

$$u(f_{t+1}) - u(f_t) \ge \frac{\epsilon - N\delta}{t+1} - O(\frac{\log t}{t^2})$$

- Potential function value $u(f_t)$ improves until near Nash equilibrium
- Main result: $f_t \in \{\sigma \in \Delta A^N | u(\sigma) \ge \min_{y \in \Delta_N \delta + \epsilon} u(y)\}$ for large t > 0
 - Convergence to better potential value than potential function value of an approx. NE

Target assignment game with unknown target locations

- Agents start from random initial positions around the center & ring and star com. networks
- Target locations heta are unknown & Agents receive noisy signals about heta for 10 steps

- Different estimates of target locations generates a near-potential game
- Convergence to NE of the ``closest'' potential game in finite time

Persisting uncertainty among teams

Networked multi-agent systems

1. Bayesian network games, Distributed fictitious play (DFP)

[IEEE SPM 2013, IEEE TSP 2014, OR 2015]

Communication-aware autonomous teams

2. DFP with voluntary communication

[IEEE TAC 2018, IEEE TAC 2018, Aydin & Eksin 2020]

Persisting uncertainty among teams

3. Learning in Near Potential Games

[Aydin et al 2021]

Learning-aware communication in distributed algorithms

Networked multi-agent systems, DFP, communication protocols, persisting uncertainty

Sarper Aydin: sarper.aydin@tamu.edu

Group members:

- Dr. Hossein Khazaei
- <u>Soham Das</u>
- <u>Furkan Sezer</u>

Collaborators:

- Alejandro Ribeiro, UPenn
- Ali Jadbabaie, MIT
- Pooya Molavi, Northwestern U.
- Jeff S. Shamma, UIUC
- Keith Paarporn, UC Santa Barbara
- Brian Swenson, Princeton
- Soummya Kar, Carnegie Mellon
- Alfredo Garcia, Texas A&M

NSF - Computing and Communication Foundations (CCF)