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Modeling and designing decentralized decision making



• Ranging size and capabilities
• Scale cm to meters
• UAVs, terrain locomotion

• Wide variety of objectives
• Active sensing, containment, 

surveillance, formation

• Vision:
• Plan, learn and coordinate in novel 

environments

DesertRhex - KodLab Wildcat - Boston 
Dynamics

Swarm of 1K robots 2D shapes
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Common challenge in networked multiagent systems with uncertainty
Actors given partial information reason about information & goals of others 

Environment:
Actor’s surrounding 
influencing goals 

Partial information:
Noisy information 
about the environment

Local information:
Information exchange 
and observations

Actor:
Decision-maker 
with a goal

Topology

Communication

Local sensors

Robot

Vision: Plan, learn and coordinate in novel environments



2. DFP with voluntary communication

Communication-aware autonomous teams

DFP in unknown environments
3. Learning in near-potential games

Networked multi-agent systems

[IEEE SPM 2013, IEEE TSP 2014, OR 2015]

[IEEE TAC 2018, IEEE TAC 2018, Aydin & Eksin 2020]

[Aydin et al 2021]
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1. Bayesian network games
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• Graph with 𝑁 = 8 agents and connections
• Agent 1 has 4 neighbors

𝑛 1 = 2,3,7,8
Time-varying, and random graphs

• Environment 𝜃
• Agent 1 has signal 𝑠! about environment, e.g., 

𝑠! = θ + 𝜖!
with noise 𝜖!

𝜃
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• Repeated decision-making 𝑎!,#
• Agents act with respect to objectives (payoff)

𝑢1(𝑎!,#, 𝑎$!,#, 𝜃)

• Payoff depends on actions of others −1 = 𝑁 ∖ 1

• Messages from neighbors 𝑚%,#, 𝑚&,#, 𝑚',#, 𝑚(,#
• Information of agent 1

𝐼!,#)! = 𝐼!,#, 𝑠!,#, 𝑚*(!),#

𝑠!,#
𝜃

𝑠%,#
𝑠&,#

𝑠(,#
𝑠',#

𝑠-,#

𝑠.,#

𝑠/,#

𝑎!,#)! = arg max
0!

𝐸 𝑢1(𝑎!, 𝑎$!,#)!, 𝜃) |𝐼!,#)!

• Strategic reasoning by considering motives of others based on information              Model
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𝐼!,#
𝜃

𝐼%,#
𝐼&,#

𝐼(,#𝐼-,#

𝐼.,#

𝐼/,#

𝐼',#

𝜎$! 𝐼$!,# , 𝜃

𝐼!,# ≠ 𝐼%,#
• Agents have different information

• Information of agent 1:   𝐼!,#)! = 𝐼!,#, 𝑠!,#, 𝑚*(!),#

𝜎!,# 𝐼!,# : 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 → 𝐴𝑐𝑡𝑖𝑜𝑛
• Strategy of agent 1

• Strategy profile of all agents

• Reason about the information of others based on strategy profile 𝜎

𝜎:= {𝜎1,# }12!,…,4,#2!,…,5

• Game theory is concerned with decision-making of self-interested individuals
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𝐸6∗ 𝑢1(𝜎1,#∗ , 𝜎$1,#∗ , 𝜃) 𝐼1,# ≥ 𝐸6∗ 𝑢1 𝑎1 , 𝜎$1,#∗ , 𝜃 𝐼1,# 𝐼1,# ∈ ℐ1, ∀𝑖
• Bayesian Nash equilibrium (BNE) strategy 𝜎1,#∗

BNE is optimal with respect to strategies of other agents given local information. 

Strategy profile  𝜎∗ and beliefs 𝑃6∗ N 𝐼1,#) that satisfy
Definition (Bayesian-Nash equilibrium)

𝐸6∗ 𝑢1(𝜎1,#∗ , 𝜎$1,#∗ , 𝜃) 𝐼1,# ≥ 𝐸6∗ 𝑢1 𝑎1, 𝜎$1,#∗ , 𝜃 𝐼1,# 𝐼1,# ∈ ℐ1, ∀𝑖

𝜎∗

𝑃6∗

History 𝐼𝒕

Time

𝑃

0

• Space of play Ω = Θ×(𝑆×𝐴)ℕ
• Prior 𝑃 on  Θ×𝑆ℕ induce a distribution on Ω with strategy profile 𝜎
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Process

𝜎!",$∗

BNE strategy
𝐸",$

𝜎!,#∗
𝑎!,# 𝑎%!,#

𝑚&(!),#

𝐼",&
+

𝑠!,#

𝐼",$

Bayesian Network Games (BNG)
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• What happens when individuals act according to BNE (optimal) at each step?

If agents play a coordination game and message their actions, then they 
a) Consensus: lim

#→5
𝜎1,#∗ − 𝜎?,#∗ = 0 almost surely

b) Information aggregation: lim
#→5

𝐸6∗[𝜃|𝐼1,#] = 𝐸6∗[𝜃| 𝐼5] almost surely

Theorem (w/Molavi, Ribeiro, Jadbabaie, Operations Research 2015)

Bayesian social learning: Borkar & Varaiya 1982 IEEE TAC, Jadbabaie et al 2012 GEB, Jackson & Kalai 1997 GEB

• Reaching consensus in actions implies
• Ex-ante identical payoffs
• 𝐸6∗ 𝜃 𝐼1,# = 𝐸6∗[𝜃|𝐼?,#]

• Not necessarily aggregate information
• True generically 𝒎𝟓,𝒕 = 𝒂𝟓,𝒕

Coordination game

15

6

7

8

4

3
2 𝜃

Coordination game
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2. DFP with voluntary communication

Communication-aware autonomous teams

Persisting uncertainty among teams
3. Learning in Near Potential Games

1. Bayesian network games
Networked multi-agent systems

[IEEE SPM 2013, IEEE TSP 2014, OR 2015]

[IEEE TAC 2018, IEEE TAC 2018, Aydin & Eksin 2020]

[Aydin et al 2021]
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• Communication network of 5 robots
• 5 Targets

T1 T2

T3 T4

T5

• Global Objective: 
Cover all targets with minimum effort

0          if another pick T
𝑢1 T, 𝑜𝑡ℎ𝑒𝑟𝑠, 𝜃 =

𝑑(𝜃C, 𝑥1) )* o.w.

• State 𝜃 is the location of targets

• Noisy information about the locations 

𝑠𝑖𝑔𝑛𝑎𝑙 = 𝑓(𝜃C!, 𝑛𝑜𝑖𝑠𝑒)

𝑥+

𝜃,-

𝑑( -𝜃'(, 𝑥&)

Arslan, Marden & Shamma 2007 ASME JDSMC
Richards, Bellinghem, Tillerson & How 2002 AIAA GNC
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• Consider agent 3 with location 𝑥&
• Neighbors 𝑛 3 = {4, 5}

T1 T2

T3 T4

T5𝑥+

1. Initial estimate congestion at each target
2. Subtract congestion caused by self
3. Compute expected utility from each T

𝑢1 𝑇4, 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒, c𝜃 = 𝑑( ̂𝜃C/, 𝑥&)
)*

4. Pick target 𝑎&,!= T4 
5. Move in the estimated direction
6. Update congestion caused at each target

𝑐𝑜𝑛𝑔1,# 𝑇4 = 𝛼×𝑐𝑜𝑛𝑔1,# 𝑇4 + (1 − 𝛼)
7. Share congestion estimate with 𝑛 3
8. Update congestion estimates averaging
9. Update location estimates c𝜃
10. Go to step 2 and repeat

(1 + 𝛼)
𝑑( -𝜃'(, 𝑥&)

(1 − 𝛼)

(1 + 𝛼)

(1 − 𝛼)

Decentralized Fictitious Play (D-FP) 
algorithm
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• Underlying communication network, and constant (successful) communication attempts 

GRITSBot
[Pickem et al.,2015]
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• Common initial estimates
• Gaussian independent signals about target locations
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• Agents assume other agents use stationary strategies (even though they are not)
• Empirical frequency of past actions: 𝑓?,# ∈ Δ𝐴 ,       𝐴 is the set of finite actions

- Fading constant: 𝛼 (can depend on time, e.g., 𝛼 = !
F)

- Mapping from action to the probability over the action space:  Φ 𝑎?,# ∈ Δ𝐴
• Expected utility of agent given the empirical frequencies of other agents 𝑓$1,# = {𝑓?,#}?∈4∖1

• Best respond with inertia: 

𝑢1 𝑎, 𝑓$1,#, 𝜃 =h
0#$

𝑢1 𝑎, 𝑎$1, 𝜃 𝑓$1,#(𝑎$1)

𝜎?,#: = 𝑓?,# = 1 − 𝛼 𝑓?,#$! + 𝛼Φ(𝑎?,#)

𝑎1,# = i
argmax
0∈I

𝑢1 𝑎, 𝑓$1,#, 𝜃 𝑤. 𝑝𝑟𝑜𝑏. 1 − 𝜌

𝑎1,#$! 𝑤. 𝑝𝑟𝑜𝑏. 𝜌
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• Agents assume other agents use stationary strategies (even though they are not)
• Empirical frequency of past actions: 𝑓?,# ∈ Δ𝐴 ,       𝐴 is the set of finite actions

- Fading constant: 𝛼 (can depend on time, e.g., 𝛼 = !
F)

- Mapping from action to the probability over the action space:  Φ 𝑎?,# ∈ Δ𝐴
• Expected utility of agent given the empirical frequencies of other agents 𝑓$1,# = {𝑓?,#}?∈4∖1

• Best respond with inertia: 

𝜎?,#: = 𝑓?,# = 1 − 𝛼 𝑓?,#$! + 𝛼Φ(𝑎?,#)

𝑎1,# = i
argmax
0∈I

𝑢1 𝑎, 𝑓$1,#, 𝜃 𝑤. 𝑝𝑟𝑜𝑏. 1 − 𝜌

𝑎1,#$! 𝑤. 𝑝𝑟𝑜𝑏. 𝜌
State and empirical frequencies are unknown 

𝑢1 𝑎, 𝑓$1,#, 𝜃 =h
0#$

𝑢1 𝑎, 𝑎$1, 𝜃 𝑓$1,#(𝑎$1)
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• Agent 𝑖’s belief of agent 𝑗’s	strategy:	𝑓?,#1 ∈ Δ𝐴
• Agent 𝑖’s belief of others’ future actions: 𝑓$1,#1

• Agent 𝑖’s belief of the environment state 𝜃: c𝜃#1

- Agent 𝑖’s weight on 𝑘’s belief on 𝑗’s frequency: 𝑤!,#$ (𝑡)

1) Inertial best-response: 𝑎1,# = i
argmax
0∈I

𝑢1 𝑎, 𝑓$1,#$!1 , c𝜃#$!1 𝑤. 𝑝𝑟𝑜𝑏. 1 − 𝜌

𝑎1,#$! 𝑤. 𝑝𝑟𝑜𝑏. 𝜌

2) Update local empirical frequency: 𝑓1,# = 1 − 𝛼 𝑓1,#$! + 𝛼Φ(𝑎1,#)

3) Share beliefs {𝑓?,#$!1 }?∈4 where 𝑓1,# = 𝑓1,#$!1 with current neighbors

𝑓?,#1 = h
J∈4

𝑤?, J1 𝑡 𝑓?,#JUpdate agent 𝑖’s belief on 𝑗’s	frequency:	 𝑖

𝑗

𝑘
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1) Inertial best-response: 𝑎1,# = i
argmax
0∈I

𝑢1 𝑎, 𝑓$1,#$!1 , c𝜃#$!1 𝑤. 𝑝𝑟𝑜𝑏. 1 − 𝜌

𝑎1,#$! 𝑤. 𝑝𝑟𝑜𝑏. 𝜌

2) Update local empirical frequency: 𝑓1,# = 1 − 𝛼 𝑓1,#$! + 𝛼Φ(𝑎1,#)

3) Share beliefs {𝑓?,#$!1 }?∈4 where 𝑓1,# = 𝑓?,#$!1 with current neighbors

𝑓?,#1 = h
J∈4

𝑤?, J1 𝑡 𝑓?,#JUpdate agent 𝑖’s belief on 𝑗’s	frequency:	 𝑖

𝑗

𝑘

• Agent 𝑖’s belief of agent 𝑗’s	strategy:	𝑓?,#1 ∈ Δ𝐴
• Agent 𝑖’s belief of others’ future actions: 𝑓$1,#1

• Agent 𝑖’s belief of the environment state 𝜃: c𝜃#1

- Agent 𝑖’s weight on 𝑘’s belief on 𝑗’s frequency: 𝑤!,#$ (𝑡)

Action-based learning in games:
Marden, Arslan & Shamma 2009 IEEE TAC,  Monderer & Shapley 1996 JET
Distributed convex optimization:
Nedic & Ozdaglar 2009 TAC, Chen & Sayed 2012  TSP
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1) Potential games (a function 𝑢 ⋅ that captures incentives of agents)
2) Asymptotically weakly agree on the state estimate ( c𝜃#1→

N c𝜃), 
3) Time-varying network: 

a. Union of edges over a finite horizon constitute a strongly connected network
b.  Weights sum to 1 (row stochastic), and positive only when neighbors

Theorem (w/Swenson, Kar, Ribeiro, IEEE TAC 2018; Arefizadeh, Asilomar 2019)

𝒂𝒕 𝒕O𝟏 converges to a pure-strategy Nash equilibrium almost surely.

𝑖

𝑗

𝑘

𝑖

𝑗

𝑘

• Union of edges over times 1, 2 and 3 yields a connected network!
• Information needs to be able to travel from one node to another in finite time

𝑡 = 1 𝑡 = 2 𝑡 = 3

+

𝑖

𝑗

𝑘

𝑖

𝑗

𝑘 x
#∈{!,%,&}

𝐸#
+ =
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1) Potential games (a function 𝑢 ⋅ that captures incentives of agents)
2) Asymptotically weakly agree on the state estimate ( c𝜃#1→

N c𝜃), 
3) Time-varying network: 

a. Union of edges over a finite horizon constitute a strongly connected network
b.  Weights sum to 1 (row stochastic), and positive only when neighbors

Theorem (w/Swenson, Kar, Ribeiro, IEEE TAC 2018; Arefizadeh, Asilomar 2019)

𝒂𝒕 𝒕O𝟏 converges to a pure-strategy Nash equilibrium almost surely.

𝑡 = ∞ 𝐾( c𝜃)Nash equilibria 

𝜎∗

Any covering is a NE

𝑎!,5 = 𝐵

𝑎%,5 = 𝐵

𝑎&,5 = 𝐵

𝑎/,5 = 𝐴

2

3

𝐴 𝐴 𝐵

𝐵 𝐴 𝐵

𝐵 𝐵 𝐵
…

1

4 𝐵 𝐵 𝐴

𝑡 = 1 2 3 …
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1) Potential games (a function 𝑢 ⋅ that captures incentives of agents)
2) Asymptotically weakly agree on the state estimate ( c𝜃#1→

N c𝜃), 
3) Time-varying network: 

a. Union of edges over a finite horizon constitute a strongly connected network
b.  Weights sum to 1 (row stochastic), and positive only when neighbors

Theorem (w/Swenson, Kar, Ribeiro, IEEE TAC 2018; Arefizadeh, Asilomar 2019)

𝒂𝒕 𝒕O𝟏 converges to a pure-strategy Nash equilibrium almost surely.

𝑡 = ∞ 𝐾( c𝜃)Nash equilibria 

𝜎∗

Any covering is a NE

𝑎!,5 = 𝐵

𝑎%,5 = 𝐵

𝑎&,5 = 𝐵

𝑎/,5 = 𝐴

2

3

𝐴 𝐴 𝐵

𝐵 𝐴 𝐵

𝐵 𝐵 𝐵
…

1

4 𝐵 𝐵 𝐴

𝑡 = 1 2 3 …

Each agent communicates its estimates to all its neighbors at each time step. 
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• Communicating at each step is costly (energy, bandwidth)
- In DFP, there are 𝑁× 𝑛 𝑖 messages shared at each step
- Each message is matrix with 𝑁×|𝐴| values

• Communication may be subject to failures, thus it may not be possible
- Wireless communication is subject to failures

• Existing efficient communication protocols in distributed optimization: 
- One-bit communication, Communication censoring
- Slows down convergence but reduces communication 

• A general condition for the communication protocol                    convergence of DFP
- First and second order belief-based communication protocols

• The setup is for random communication networks

𝑖

𝑘
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• Random point-to-point communication
𝑐J1 𝑡 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝J1 𝑡 )

where 0 < 𝑝J1 𝑡 ≤ 1
• Positive probability of communication between each agent

𝑖

𝑘

Key Steps of the Algoritm DFP

Algorithm 1 DFP with voluntary communication

1: Input: ⇢, ✏ and communication specific parameters.

2: for t = 1, 2, · · · , do
3: Best-response with inertia

4: Communication protocol

5: Belief update

6: end for

S. Aydin Decentralized Fictitious Play with Voluntary Communication in Random Communication Networks 4 / 14
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• Agnostic to the specific communication protocol as long as the following condition holds:

• Any agent is able to learn the repeated action of another agent with positive probability 

If agent 𝑗 repeats an action 𝑎? ∈ 𝐴 for 𝑇 ≥ �𝑇 times after 𝑡 > 0, then agent 𝑖 learns agent 𝑗’s  
action 𝑎? with finite probability, i.e. 𝑃 𝑎?,#)C − 𝑓?,#)C1 ≤ 𝜂 𝐻 𝑡 + 𝑇 ≥ ̂𝜖.

Condition (Prediction convergence under static environments)



PotentialCongestion

Task assignment 
game

• Congestion games: 𝑚 resources, value of a resource decreases with number of players using
• Autonomous systems with global objectives are potential games
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A game Γ is weakly acyclic if from any joint action profile, there exists a best-response path 
ending at a pure Nash equilibrium. 

Definition (Weakly-acyclic games)



𝑡 = ∞ 𝐾( c𝜃)Nash equilibria 

𝜎∗

Any covering is a NE

𝑎!,5 = 𝐵

𝑎%,5 = 𝐵

𝑎&,5 = 𝐵

𝑎/,5 = 𝐴

2

3

𝐴 𝐴 𝐵

𝐵 𝐴 𝐵

𝐵 𝐵 𝐵
…

1

4 𝐵 𝐵 𝐴

𝑡 = 1 2 3 …

Theorem (w/Aydin, Arxiv 2020)
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Given the prediction convergence under static environments is satisfied, the actions in DFP 
with voluntary communication  converge to a pure NE of any weakly acyclic game almost 
surely in finite time. 



Condition (Prediction convergence under static environments)
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𝐵

𝐵

𝐵

𝐴

2

3

𝐴 𝐴

𝐵 𝐴

𝐵 𝐵
…

1

4 𝐵 𝐵

1 2 … 𝑡
𝐵

𝐵

𝐵

𝐴

𝐵

𝐵

𝐵

𝐴

…

Let 𝑎 = {𝐵, 𝐵, 𝐵, 𝐴} be the repeated action profile
𝑡 + 𝑇t+1

Estimated best response =
Best response to actual

If action profile 𝑎 is repeated 𝑇 times after 𝑡 > 0 then
arg max

T
𝑢1(𝛼, 𝑓$1,#)C1 ) = arg max

T
𝑢1(𝛼, 𝑎$1)



𝐵

𝐵

𝐵

𝐴

2

3

𝐵 𝐵

𝐴 𝐴

𝐵 𝐵

1

4 𝐴 𝐴

𝑡 ≥ ̅𝑡 𝑡 + 𝑇 − 1 𝑡 + 𝑇
Start from action 𝑎# = 𝐵, 𝐴, 𝐵, 𝐴 , let 𝑎∗ = {𝐵, 𝐵, 𝐵, 𝐴} be a NE of the game

Let 𝑎# for 𝑡 ≥ 1 be generated by FP algorithm with inertia. For all 𝑡 ≥ ̅𝑡,
Lemma (positive probability of reaching NE)

…
arg max

T
𝑢% 𝛼, 𝑎$1 =

…

w. prob. 𝜌

w. prob. 𝜌

w. prob. 𝜌

• Weakly-acyclic                  From any action 𝑎 there exists a finite best-response path to 𝑎∗

𝑃 Pure Nash equilibrium 𝑎∗ is reached starjng from jme 𝑡 > 𝜖
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Lemma (absorption property of pure Nash equilibria)
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𝐵

𝐵

𝐵

𝐴

2

3

𝐴 𝐴

𝐵 𝐴

𝐵 𝐵
…

1

4 𝐵 𝐵

1 2 … 𝑡 > ̅𝑡
𝐵

𝐵

𝐵

𝐴

𝐵

𝐵

𝐵

𝐴

…

Let 𝑎∗ = {𝐵, 𝐵, 𝐵, 𝐴} be a NE of the game with common belief

𝑡 + 𝑇 − 1𝑡 + 1
𝐵

𝐵

𝐵

𝐴

𝑡 + 𝜏

…

• Use the condition

∃ 𝑇 such that after 𝑡 > 0 if Nash equilibrium action 𝑎∗ is repeated for T periods, then future 
actions will be Nash equilibrium, i.e., 𝑎#)U = 𝑎∗ for all 𝜏 > 𝑇.
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• Protocols that rely on these two metrics
Novelty of information       𝐻11 𝑡 = |𝑓1,# −Φ(𝑎1,#)|
Belief mismatch 𝐻1? 𝑡 = |𝑓1,# − 𝑓1,#

? |
• (CC) - Communication censoring based on novelty of information:

- Agent 𝑖 attempts to send empirical frequency to all agents

• (CV) - Voluntary communication based on novelty and belief mismatch : 
- Agent 𝑖 attempts to send empirical frequency to agent 𝑗
- Provides a preference ranking of neighbors to communicate 

• (L) - Limited bandwidth communication
- Agent 𝑖 attempts to send leading action and its frequency to agent 𝑗

• Any combination of protocols C, V or L satisfies the condition for 𝜂!, 𝜂%

𝑖𝑗
𝐻"" 𝑡 > 𝜂)

𝑖𝑗

𝐻"" 𝑡 > 𝜂)
𝐻"* 𝑡 > 𝜂$

max
+∈-

𝑓". 𝑎
argmax
+∈-

𝑓".(𝑎)



𝑝!.(𝑡) = 𝛽!. 𝑡 𝑒%/ 0! 1 %0" 1
#
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• 𝑁 = 5 agents select among 𝐾 = 5 targets to maximize coverage 
• Agents move at constant speeds in the direction
• Positions affect the probability of successful communication

where routing rate 𝛽1? 𝑡 and fading constant 𝑟
• Chance of communication drops with distance between 𝑖 and 𝑗
• Routing rate 𝛽1? 𝑡 can be determined by the sender 

- Inversely proportional to belief mismatch 𝐻1?
• Communication-aware mobility: Mobility can be “optimized” to account for communication

𝑝1?(𝑡) = 𝛽1? 𝑡 𝑒$Z [$ # $[% #
&



𝑝!.(𝑡) = 𝛽!. 𝑡 𝑒%/ 0! 1 %0" 1
#
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• Communication parameters: censoring 𝜂! = 0.1 and mismatch 𝜂% = 0.4
• DFP parameters: fading 𝛼 = 0.05 and inertia 𝜌 = 0.05

• Voluntary communication (C) and mobility-aware V-com (MC) have comparable convergence
• By t = 20, attempt drop below 40%, more than 60% reduction in communication attempts



𝑝!.(𝑡) = 𝛽!. 𝑡 𝑒%/ 0! 1 %0" 1
#
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• Communication parameters: censoring 𝜂! = 0.1 and mismatch 𝜂% = 0.4
• DFP parameters: fading 𝛼 = 0.05 and inertia 𝜌 = 0.05

• Voluntary communication (C) and mobility-aware V-com (MC) have comparable convergence
• Total belief mismatch is lower in standard DFP 



𝑝!.(𝑡) = 𝛽!. 𝑡 𝑒%/ 0! 1 %0" 1
#
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• Communication parameters: censoring 𝜂! = 0.1 and mismatch 𝜂% = 0.4
• DFP parameters: fading 𝛼 = 0.05 and inertia 𝜌 = 0.05

• Voluntary communication (C) and mobility-aware V-com (MC) have comparable convergence
• MC-DFP has higher rate of successful communication initially



𝑝!.(𝑡) = 𝛽!. 𝑡 𝑒%/ 0! 1 %0" 1
#
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• Communication parameters: censoring 𝜂! = 0.1 and mismatch 𝜂% = 0.4
• DFP parameters: fading 𝛼 = 0.05 and inertia 𝜌 = 0.05

• Voluntary communication (C) and mobility-aware V-com (MC) have comparable convergence
• In MC-DFP, agents stick together until they resolve their differences

MC-DFP DFP



2. DFP with voluntary communication

Communication-aware autonomous teams

Persisting uncertainty among teams
3. Learning in Near-Potential Games

Networked multi-agent systems

[IEEE SPM 2013, IEEE TSP 2014, OR 2015]

[IEEE TAC 2018, IEEE TAC 2018, Aydin & Eksin 2020]

[Aydin et al 2021]
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1. Bayesian network games
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• Environmental uncertainty may not be resolved
- Agents may stop receiving signals
- Agents may stop communicating

• What can we say when uncertainty is not resolved?
- I.e., when consensus is not possible

• Framework of near-potential games 
- Relaxation of potential games cΓ = (𝑁, 𝐴4, 𝑢)
- Defines a game Γ = 𝑁, 𝐴4, {𝑢1 1∈4) based on its closeness to the nearest potential

• Premise: when there is disagreement, game agents play is near the potential game
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• MPD based on the difference in agent payoffs resulting from unilateral changes

• Finding the nearest potential game and its potential function (Candogan et al, 2011)
• Focus on learning in near-potential games assuming potential function is known

Consider two games Γ and cΓ. Let 𝑑0$',0
\ : = 𝑢1 𝑎1], 𝑎$1 − 𝑢1(𝑎1, 𝑎$1) difference in utility 

functions when agent 𝑖 deviates from action profile 𝑎 = (𝑎1, 𝑎$1) and takes action 𝑎1]. MPD is
𝑑 Γ, cΓ = max

^∈_ ,`(
'∈I,`∈a)

|𝑑0$',0
\ − 𝑑0$',0

b\ |.

Definition (Maximum Pairwise Difference)

The game Γ is a 𝛿 near-potential game if there exists a potential game cΓ within 𝑑 Γ, cΓ < 𝛿.
Definition (𝛿 Near-potential games)
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• A few differences: no inertia, empirical frequency is computed using weight !
#

• Note: we do not have an environment state to disagree on 
- Implicit in the near potential game framework

1) Best-response: 𝑎1,# = argmax
0$∈I

𝑢1 𝑎1, 𝑓$1,#$!1

2) Update local empirical frequency: 𝑓1,# = 1 − 𝛼 𝑓1,#$! + 𝛼Φ 𝑎1,# .     where 𝛼 = !
#

3) Share beliefs {𝑓?,#$!1 }?∈4 where 𝑓1,# = 𝑓?,#$!1 with current neighbors 𝑛(𝑖, 𝑡)

𝑓?,#1 = h
J∈4

𝑤?, J1 𝑡 𝑓?,#JUpdate agent 𝑖’s belief on 𝑗’s	frequency:	
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• Potential function value 𝑢 𝑓# improves until near Nash equilibrium

• Main result: 𝑓# ∈ {𝜎 ∈ Δ𝐴4|𝑢 𝜎 ≥ min
c∈d*+,-

𝑢 𝑦 } for large 𝑡 > 0

- Convergence to better potential value than potential function value of an approx. NE

Γ is a 𝛿-near-potential game with closest potential game with function 𝑢 ⋅ . Suppose a time-
varying communication network: 

a. Union of edges over a finite horizon constitute a strongly connected network
b.  Weights sum to 1 (row stochastic), and positive only when neighbors

If the empirical frequencies 𝑓# are 𝜖 away from NE, then given large enough 𝑇 > 0, for 𝑡 > 𝑇

𝑢 𝑓#)! − 𝑢 𝑓# ≥
𝜖 − 𝑁𝛿
𝑡 + 1

− 𝑂(
log 𝑡
𝑡%

)

Theorem (Aydin et al, Arxiv 2021)
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• Agents start from random initial positions around the center & ring and star com. networks
• Target locations 𝜽 are unknown & Agents receive noisy signals about 𝜽 for 10 steps

• Different estimates of target locations generates a near-potential game
• Convergence to NE of the ``closest’’ potential game in finite time
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2. DFP with voluntary communication

Communication-aware autonomous teams

Persisting uncertainty among teams
3. Learning in Near Potential Games

1. Bayesian network games, Distributed fictitious play (DFP)
Networked multi-agent systems

[IEEE SPM 2013, IEEE TSP 2014, OR 2015]

[IEEE TAC 2018, IEEE TAC 2018, Aydin & Eksin 2020]

[Aydin et al 2021]
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Networked multi-agent systems, DFP, communication protocols, persisting uncertainty 
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