Communication-Aware and Decentralized

Strategic Learning in Networked Multiagent
Systems

Ceyvhun Eksin

I

TEXAS A&M UNIVERSITY
Wm Michael Barnes '64 Department of

Industrial & Systems Engineering

September 6, 2021
netmas.engr.tamu.edu




Networked systems are everywhere Alm
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Modeling and designing decentralized decision making




Autonomous robots — teams and collaborations J:Tq

* Ranging size and capabilities
* Scale cm to meters
* UAVs, terrain locomotion

Wildcat - Boston

DesertRhex - KodLab )
Dynamics

* Wide variety of objectives

* Active sensing, containment,
surveillance, formation

Swarm of 1K robots 2D shapes

* Vision:
* Plan, learn and coordinate in novel
environments

NewsScientist

Swam of 1024 robots forms shapes on its own




Fundamental challenges in autonomous teams m

Vision: Plan, learn and coordinate in novel environments

Environment: Partial information:
Actor’s surrounding e / Noisy information
influencing goals about the environment

Actor: Local information:
Decision-maker - == |nformation exchange
with a goal and observations

Common challenge in networked multiagent systems with uncertainty
Actors given partial information reason about information & goals of others




Today’s theme: communication-aware game-theoretic algorithms ATQ[

\NeTWOor

1. Bayesian network games

[IEEE SPM 2013, IEEE TSP 2014, OR 2015] 2,4

Communication-aware autonomous teams

2. DFP with voluntary communication
[IEEE TAC 2018, IEEE TAC 2018, Aydin & Eksin 2020]

DFP in unknown environments

3. Learning in near-potential games

[Aydin et al 2021]



Networks and uncertain environments AT%

 Graph with N = 8 agents and connections
 Agent 1 has 4 neighbors

n(1l) = (2,3,7,8)
Time-varying, and random graphs

* Environment 6
* Agent 1 has signal s; about environment, e.g.,
S1 = 0 + €1
with noise €4



Interactive decision-making problem AJM

* Repeated decision-making a; ;
* Agents act with respect to objectives (payoff)

ui(as,, a1, 0)
* Payoff depends on actions of others —1 = N \ 1

* Messages from neighbors m, ;, ms, m, ;, mg;
* Information of agent 1

I1t41 = {11,1:» S1,t» mn(l),t}

A1t+1 = alg MdX E[u1(a1: a_1t+1,0) |11,t+1]
1

* Strategic reasoning by considering motives of others based on information =) Model



Game theory in networked systems @

* Game theory is concerned with decision-making of self-interested individuals

* Information ofagent1l: I;;., = {11,t» S1,ts mn(l),t}

Strategy of agent 1
o1t (I1¢): Information - Action

Strategy profile of all agents

0:= {0t ti=1,.,Nt=1,..,0

Agents have different information
Ly # 1t
 Reason about the information of others based on strategy profile o



Equilibrium behavior AJM

* Space of play QO = Ox(SxA4)N
 Prior P on OxSY induce a distribution on Q with strategy profile ¢
History I, o

0

Definition (Bayesian-Nash equilibrium)

Strategy profile ¢* and beliefs P+ (-|I; ;) that satisfy
Eo|ui(07e, 02 1o O|lie| = Egr|ui(ai 02, 0)|lie] Lo € 33, Vi

BNE is optimal with respect to strategies of other agents given local information.
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Equilibrium behavior — block diagram

*
0_i>

Bayesian Network Games (BNG)

T
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Asymptotic learning in BNG

 What happens when individuals act according to BNE (optimal) at each step?

Theorem (w/Molavi, Ribeiro, Jadbabaie, Operations Research 2015)

If agents play a coordination game and message their actions, then they
a) Consensus: lim g;; — 0;; = 0 almost surely

t—o0 J

b) Information aggregation: tlim Es+0|1;¢] = E5+|0] I] almost surely

* Reaching consensus in actions implies
* Ex-ante identical payoffs
* Ea*[9|1i,t] = E5+0]1j ]

* Not necessarily aggregate information
* True generically Mg, = s,

Coordination game
Bayesian social learning: Borkar & Varaiya 1982 IEEE TAC, Jadbabaie et al 2012 GEB, Jackson & Kalai 1997 GEB
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1. Bayesian network games

[IEEE SPM 2013, IEEE TSP 2014, OR 2015] 2,4

Communication-aware autonomous teams

2. DFP with voluntary communication
[IEEE TAC 2018, IEEE TAC 2018, Aydin & Eksin 2020]

Persisting uncertainty among teams

3. Learning in Near Potential Games

[Aydin et al 2021]
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Task assignment problem

e Communication network of 5 robots

* 5 Targets

T1®

3@

2@

u; (T, others,0) = =

AHM
Global Objective:

Cover all targets with minimum effort

ga—

0 if another pick T

d(0r, x;) "1 ow.

-

State 0 is the location of targets

Noisy information about the locations
signal = f (071, noise)

Arslan, Marden & Shamma 2007 ASME JDSMC
Richards, Bellinghem, Tillerson & How 2002 AIAA GNC

14



Task assignment —

local algorithm AJM

* Consider agent 3 with location x5

* Neighborsn(3) = {4,5}

T10(1 — a)

3@

T2@
(1-a)
C.l(ém; X3

M=

8.

9.

Initial estimate congestion at each target
Subtract congestion caused by self
Compute expected utility from each T
ui(T4, estimate, é) = d(fp,, x3) 1
Pick target a3 1=T4

Move in the estimated direction

Update congestion caused at each target
cong; +(T4) = axcong; ((T4) + (1 — )
Share congestion estimate with n(3)
Update congestion estimates averaging
Update location estimates 6

10. Go to step 2 and repeat

Decentralized Fictitious Play (D-FP)

algorithm
15



Decentralized fictitious play in action

e Common initial estimates
e Gaussian independent signals about target locations

GRITSBot
[Pickem et al.,2015]

* Underlying communication network, and constant (successful) communication attempts
16



Standard fictitious play with inertia m

* Agents assume other agents use stationary strategies (even though they are not)

* Empirical frequency of past actions: f;; € AA,  Aisthe set of finite actions

Ojt: = fj,t =(1- a)fj,t—l + “(D(aj,t)

- Fading constant: a

(can depend on time, e.g., a = %)

- Mapping from action to the probability over the action space: CID(aj,t) € AA

* Expected utility of agent given the empirical frequencies of other agents f_; ; = {fj ¢} jen\i

ui(a, f-ir, 0) = z ui(a,a_;,0)f_; (a_;)

* Best respond with inertia:

Aj¢ = 3

/

\

arg max ui(a, f-it 0) w.prob. 1 —p
a€A
ajr—1 w.prob. p

17



Standard fictitious play with inertia m

* Agents assume other agents use stationary strategies (even though they are not)

* Empirical frequency of past actions: f;; € AA,  Aisthe set of finite actions

Ojt: = fj,t =(1- a)fj,t—l + “(D(aj,t)

- Fading constant: a (can depend on time, e.g.,, a = %)
- Mapping from action to the probability over the action space: CID(aj,t) € AA

* Expected utility of agent given the empirical frequencies of other agents f_; ; = {fj ¢} jen\i

ui(a, f-ir, 0) = z ui(a,a_;,0)f_; (a_;)

(nrcmnvﬂ-(n £ ..0) w nroh 1 — n
. State and empirical frequencies are unknown
\ btl’t_l VV.[JI Ul. IJ

17



Decentralized-FP with inertia m

* Agent i’s belief of agent j's strategy: f]‘t e AA
* Agent i’s belief of others’ future actions: f_ii,t
* Agent i’s belief of the environment state 0: 8}

g

. arg max ui(a, f_il-’t_l, @f_l) w.prob. 1 —p
1) Inertial best-response: a;; = a€4
\ Ait—1 w.prob. p

2) Update local empirical frequency: fi¢ = (1 — a)fi¢—1 + a®P(a;¢)
3) Share beliefs {fj‘;t_l}jEN where f; ; = fift—l with current neighbors ‘

[ L k
Update agent i’s belief on j’s frequency: fj,t — 2 wj k(t)fj,t
keEN

- Agent i’s weight on k’s belief on j’s frequency: Wji’k (t) 18



Decentralized-FP with inertia }Tﬁ

* Agent i’s belief of agent j's strategy: f]‘t e AA
* Agent i’s belief of others’ future actions: f_ii’t
* Agent i’s belief of the environment state 6: 0

( . .
. arg max ui(a, flit-1 95_1) w.prob. 1 —p
1) Inertial best-response: a;; = a€4

\ Ajr—1 w.prob. p

2) Update local empirical frequency: fi: = (1 — a)fi—1 + a®(a;)

Action-based Iearnihg in games: ‘\
Marden, Arslan & Shamma 2009 IEEE TAC, Monderer & Shapley 1996 JET @ k
Distributed convex optimization: h

Nedic & Ozdaglar 2009 TAC, Chen & Sayed 2012 TSP

- ABCIIL L S WEIGIHIL VI K S5 DEliel Ul f S TTEeEyuctily. W]’k\L} 18



DFP converges in potential games

Theorem (w/Swenson, Kar, Ribeiro, IEEE TAC 2018; Arefizadeh, Asilomar 2019)

1) Potential games (a function u(-) that captures incentives of agents)

2) Asymptotically weakly agree on the state estimate (@f 4 6),

3) Time-varying network:
a. Union of edges over a finite horizon constitute a strongly connected network
b. Weights sum to 1 (row stochastic), and positive only when neighbors

- {a,}~1 converges to a pure-strategy Nash equilibrium almost surely.

t=1 t =2 t =3

U &
0% 0% 08 ol
0 @ ~--@

* Union of edges over times 1, 2 and 3 yields a connected network!

 |nformation needs to be able to travel from one node to another in finite time
18



DFP converges in potential games

Theorem (w/Swenson, Kar, Ribeiro, IEEE TAC 2018; Arefizadeh, Asilomar 2019)
1) Potential games (a function u(-) that captures incentives of agents)

2) Asymptotically weakly agree on the state estimate (@f 4 6),

3) Time-varying network:
a. Union of edges over a finite horizon constitute a strongly connected network
b. Weights sum to 1 (row stochastic), and positive only when neighbors

- {a;};>1 converges to a pure-strategy Nash equilibrium almost surely.
1

|

N
w
|
8

Nash equilibria K ()

A A B 100 = B
B A B 30 = B
B B B (30 = B
B B A

Qg0 = A Any covering is a NE19



DFP converges in potential games

Theorem (w/Swenson, Kar, Ribeiro, IEEE TAC 2018; Arefizadeh, Asilomar 2019)
1) Potential games (a function u(-) that captures incentives of agents)
~: W
2) Asymptotically weakly agree on the state estimate (6 — 0),
3) Time-varying network:
a. Union of edges over a finite horizon constitute a strongly connected network
b. Weights sum to 1 (row stochastic), and positive only when neighbors

- {a,}~1 converges to a pure-strategy Nash equilibrium almost surely.

t=1 2 3 t = Nash equilibria K (0)
A A B al,oo — B

B A B az,oo — B

B B B ag,oo — B o

Each agent communicates its estimates to all its neighbors at each time step. Jis a NE
: S 19



Toward communication efficient decentralized algorithms m

 Communicating at each step is costly (energy, bandwidth)
- In DFP, there are N X|n(i)| messages shared at each step
- Each message is matrix with N X|A]| values

 Communication may be subject to failures, thus it may not be possible '
- Wireless communication is subject to failures

* Existing efficient communication protocols in distributed optimization: b
- One-bit communication, Communication censoring
- Slows down convergence but reduces communication

* A general condition for the communication protocol ‘ convergence of DFP
- First and second order belief-based communication protocols

* The setup is for random communication networks

20



Random com

munication networks

* Random point-to-point communication

cri(t) ~ Bernoulli(py;(t))

where 0 < py;(t) <1

* Positive probabi

lity of communication between each agent

Algorithm 1 DFP with voluntary communication

1
2
3
4:
5
6

. Input: p, e and communication specific parameters.
fort=1,2,---, do

Best-response with inertia

Communication protocol

Belief update

. end for

21



DFP with Voluntary Communication m

* Agnostic to the specific communication protocol as long as the following condition holds:

Condition (Prediction convergence under static environments)

If agent j repeats an action a; € A for T = T times after t > 0, then agent i learns agent j’s
action a; with finite probability, i.e. P(|aj’t+T — f]-‘:t+T| < 7)|H (t + T)) > €.

* Any agent is able to learn the repeated action of another agent with positive probability

22



Weakly-acyclic games AJM

Task assignment
game

Potential

Congestion games: m resources, value of a resource decreases with number of players using
* Autonomous systems with global objectives are potential games

Definition (Weakly-acyclic games)

A game I' is weakly acyclic if from any joint action profile, there exists a best-response path
ending at a pure Nash equilibrium.

23



Convergence of DFP type algorithms @:

Theorem (w/Aydin, Arxiv 2020)

Given the prediction convergence under static environments is satisfied, the actions in DFP
with voluntary communication converge to a pure NE of any weakly acyclic game almost
surely in finite time.

Nash equilibria K ()

Any covering is a NE

24



Proof method: absorbing Markov Chain AJM

Condition (Prediction convergence under static environments)

If action profile a is repeated T times after t > 0 then
arg max u;(«, f'; ..r) = arg maxu;(a,a_;)
a ’ a

Let a = {B, B, B, A} be the repeated action profile

1 t t+1 t+T

N

' A A B B B

‘ B A B B B Estimated best response =
Best response to actual

® 5 - B B B

@ s s A A A

25



Proof method: absorbing Markov Chain AJM

Lemma (positive probability of reaching NE)

Let a; fort = 1 be generated by FP algorithm with inertia. For all t > t,
P(Pure Nash equilibrium a* is reached starting from time t) > €

* Weakly-acyclic === From any action a there exists a finite best-response path to a™

Start from action a; = {B,A,B, A}, leta® = {B, B, B, A} be a NE of the game
t>t . t+T—1 t+T

‘ B B w. prob. p B
‘ A A arg maxu, (a,a_;) = B
‘ b B w. prob. p B
‘ A A w. prob. p A

26



Proof method: absorbing Markov Chain AJM

Lemma (absorption property of pure Nash equilibria)

3 T such that after t > 0 if Nash equilibrium action a™ is repeated for T periods, then future
actions will be Nash equilibrium, i.e., azrr = a” forallt > T.

e Use the condition

Let a® = {B, B, B, A} be a NE of the game with common belief

1 2 t>t t+1 t+T—-1 t+1
' A A B B B B
‘ B A B B B B
® 5 B B B B B
@ 5 B A A A A

27



Learning-aware communication protocols for DFP

* Protocols that rely on these two metrics
Novelty of information == H;;(t) = |f; — P(a;,)]
Belief mismatch we H;;(t) = |f;; — th|

e (CC) - Communication censoring based on novelty of information:
- Agent i attempts to send empirical frequency to all agents

e (CV) - Voluntary communication based on novelty and belief mismatch :

- Agent i attempts to send empirical frequency to agent j
- Provides a preference ranking of neighbors to communicate

* (L) - Limited bandwidth communication
- Agent [ attempts to send leading action and its frequency to agent j

* Any combination of protocols C, V or L satisfies the condition for 14,1,

T

H;; (t) > 1

@

H;; (t) > 1
H;;(t) >n,

max Jfis\a
nax fie(@)

argmax fi:(a)
acA

28



Target assignment game }Tﬁ

« N = 5 agents select among K = 5 targets to maximize coverage

* Agents move at constant speeds in the direction T1® T20
* Positions affect the probability of successful communication 2

pij(8) = By (t)e ThRO=5OF ;

where routing rate f8;;(t) and fading constant r 20 °

* Chance of communication drops with distance between i and j

* Routing rate 3;;(t) can be determined by the sender
- Inversely proportional to belief mismatch H;;

 Communication-aware mobility: Mobility can be “optimized” to account for communication

29



Communication vs convergence rate AHM

* Communication parameters: censoring n; = 0.1 and mismatchn, = 0.4

* DFP parameters: fading a« = 0.05 and inertia p = 0.05

5 I I

N —— MC-DFP

—
o

£, —~ -
5 \ — C-DFP £ 08
S, (\\ — DFP g
LICJ- \ <{ 06
o \ -
P \ ] \
3 \\ O 04 \
& 3 o
B 4 \ 2 \\
a \ 02 N
0 =S 0.0 ]
0 10 2 0 40 0 &0 0 10 20 30 40 50 60

Time Time

* Voluntary communication (C) and mobility-aware V-com (MC) have comparable convergence
Byt = 20, attempt drop below 40%, more than 60% reduction in communication attempts
30



Communication vs convergence rate AHM

* Communication parameters: censoring n; = 0.1 and mismatchn, = 0.4

* DFP parameters: fading a« = 0.05 and inertia p = 0.05

5 | T 10

5 —or - TTAC

DFP {
N
\ =

-

=

Distance to Equilibrium
Total Estimation Error

™ —

fass 0 e

———— ~
10 M0 0 40 50 &0 0 10 2 0 40 0 @0

=y

o

o

* Voluntary communication (C) and mobility-aware V-com (MC) have comparable convergence
e Total belief mismatch is lower in standard DFP

30



Communication vs convergence rate AHM

* Communication parameters: censoring n; = 0.1 and mismatchn, = 0.4

* DFP parameters: fading a« = 0.05 and inertia p = 0.05

5 I I

05
N —— MC-DFP

N —— CDFP
DFP

-

o
NS

w
//
o
w
-
[—
—

Distance to Equilibrium
Average Com Rate
ﬁ
—

/ AN~

Vz
e
'f

S
£
:

\\‘
00
0 10 2 B0 40 0 e 0 10 2 D 40 50 )
Time Time

* Voluntary communication (C) and mobility-aware V-com (MC) have comparable convergence

 MC-DFP has higher rate of successful communication initially
30



Communication vs convergence rate AIiM

* Communication parameters: censoring n; = 0.1 and mismatchn, = 0.4

* DFP parameters: fading a« = 0.05 and inertia p = 0.05

5 | I
= [N —— MC-DFP
BN —— CDFP ~
.'9 \
s, \ DFP  _
@ 2 > o
8 \ ""
Y I A @
.91 4] 0
o \ X1 X1
el DFP

0 10 2 20 40 50 a0
Time

* Voluntary communication (C) and mobility-aware V-com (MC) have comparable convergence
* In MC-DFP, agents stick together until they resolve their differences
30



1. Bayesian network games

[IEEE SPM 2013, IEEE TSP 2014, OR 2015] 2,4

Communication-aware autonomous teams

2. DFP with voluntary communication
[IEEE TAC 2018, IEEE TAC 2018, Aydin & Eksin 2020]

Persisting uncertainty among teams

3. Learning in Near-Potential Games

[Aydin et al 2021]
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Persisting uncertainty

Environmental uncertainty may not be resolved
- Agents may stop receiving signals
- Agents may stop communicating 2

T1@® 2@

What can we say when uncertainty is not resolved?
- l.e., when consensus is not possible
T3®

Framework of near-potential games
- Relaxation of potential games I' = (N, AN, u)
- Defines agame I’ = (N, AN, {u;};en) based on its closeness to the nearest potential

Premise: when there is disagreement, game agents play is near the potential game

32



Near-potential games }Tﬁ

Definition (Maximum Pairwise Difference)

Consider two games I and T. Let dgg’a: = u;(a;, a_;) — u;(a;, a_;) difference in utility
functions when agent i deviates from action profile a = (a;, a_;) and takes action a;. MPD is
&) _ r r
d(I,T) = max ldy, —dgs |

iEN ,a;€A,a€AN

* MPD based on the difference in agent payoffs resulting from unilateral changes

Definition (0 Near-potential games)

The game I is a § near-potential game if there exists a potential game T within d(I‘, f) < 0.

* Finding the nearest potential game and its potential function (Candogan et al, 2011)

* Focus on learning in near-potential games assuming potential function is known

33



Convergence of DFP in near-potential games m

1) Best-response:  Qj; = argmax ui(ai: f—li,t—l)
a;eA

2) Update local empirical frequency: ;. = (1 — a)f;,_1 + a®(a;;). wherea = %

3) Share beliefs {fjl:t_l}jeN where f; ; = fjl:t_l with current neighbors n(i, t)

. . "
Update agent i’s belief on j’s frequency: f]lt = 2 le’ k(t)fj,t
kKEN

* A few differences: no inertia, empirical frequency is computed using weight p;

* Note: we do not have an environment state to disagree on
- Implicit in the near potential game framework

34



Convergence of DFP in near-potential games X HM“

I"is a §-near-potential game with closest potential game with function u(-). Suppose a time-
varying communication network:
a. Union of edges over a finite horizon constitute a strongly connected network
b. Weights sum to 1 (row stochastic), and positive only when neighbors
If the empirical frequencies f; are € away from NE, then given large enough T > 0, fort > T
e—No logt

u(fes1) —ulfe) = T 1 — O( 2

* Potential function value u (f;) improves until near Nash equilibrium

* Mainresult: f; € {o € AAY|u(o) = min u(y)}forlarget > 0
YEANGS+e

- Convergence to better potential value than potential function value of an approx. NE

35



Target assignment game with unknown target locations }Tﬁ

* Agents start from random initial positions around the center & ring and star com. networks

e Target locations @ are unknown & Agents receive noisy signals about @ for 10 steps

w

T
)

Action values

Average estimation error

-
o

0 0.1 0.2 0.3 0.4 0.5
Time 102

5_

N

\V)

|

2 3 4 5
Time x10"

» Different estimates of target locations generates a near-potential game

e Convergence to NE of the "‘closest” potential game in finite time

36



Persisting uncertainty among teams }!TQ[

1. Bayesian network games, Distributed fictitious play (DFP)

[IEEE SPM 2013, IEEE TSP 2014, OR 2015] 24 45

2. DFP with voluntary communication
[IEEE TAC 2018, IEEE TAC 2018, Aydin & Eksin 2020]

Persisting uncertainty among teams

3. Learning in Near Potential Games

[Aydin et al 2021]

37



Learning-aware communication in distributed algorithms m

T1® T20 : _l MC-]DFP 57
) E" \ — CDFP T~ g m4—7_‘ J
g g, e DER CF 8 3
1 g < g
5 °, \ : A =l
d“’. |- \ E N 2ol
3 4 01 <
T3@ T49.T4 (=] \\\_
zo\mﬁ ) & P 0 4 50 60 10 1 2 3 4 5
Time Time Time «10"
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