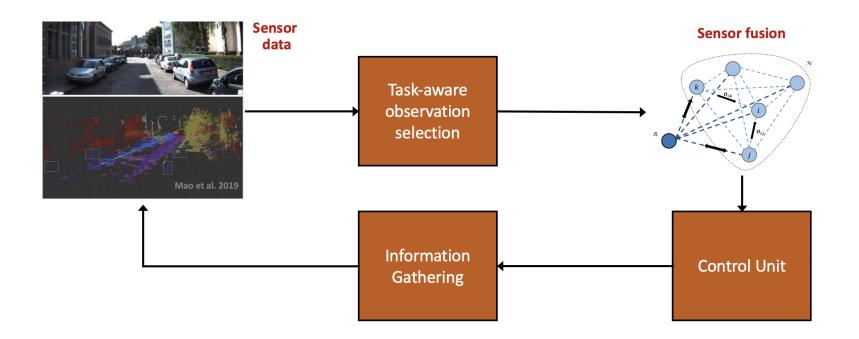


Sensing and Learning in Distributed Systems Operating under Resource Constraints

Haris Vikalo

Texas A&M, April 9, 2021

• Sensor networks often operate under restrictions on communication bandwidth and computational capabilities



• Federated learning systems: ameliorating privacy concerns yet still communication-intensive

Information Gathering

- Linear models
 - Weak submodularity of the MSE objective
 - Greedier than greedy: Randomized greedy selection
- Beyond linear models: Observation selection for quadratic models
 - Exploiting Van Trees' bound

Privacy preserving ML: Federated Learning

- Client selection as the remote estimation problem
- Exploring communication-accuracy tradeoff

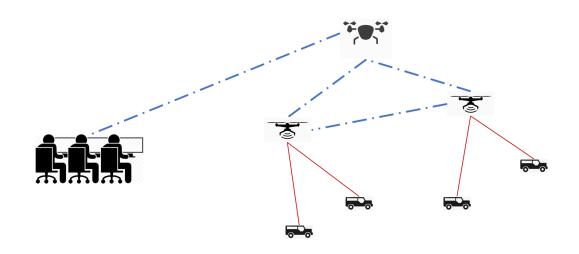
Information Gathering

- Linear models
 - Weak submodularity of the MSE objective
 - Greedier than greedy: Randomized greedy selection
- Beyond linear models: Observation selection for quadratic models
 - Exploiting Van Trees' bound

Privacy preserving ML: Federated Learning

- Client selection as the remote estimation problem
- Exploring communication-accuracy tradeoff

- An example of a large-scale sensor network: A swarm of UAVs
 - UAVs gathering measurements of targets' positions
 - location estimation and tracking in a remote control unit



• **The goal**: Computationally efficient selection of informative measurements for accurate (in terms of MSE) target tracking

• A (linearized) dynamical model:

$$\mathbf{x}_{k+1} = \mathbf{A}_k \mathbf{x}_k + \mathbf{w}_k$$
 $\mathbf{y}_k = \mathbf{H}_k \mathbf{x}_k + \mathbf{v}_k$

- State and measurement noises: $\mathbf{w}_k = \mathcal{N}(0, \mathbf{Q}_k)$, $\mathbf{v}_k = \mathcal{N}(0, \mathbf{R}_k)$
- At each step k, select a subset S_k of size K from n measurements
- Control unit: track the state vector via (extended) Kalman filter based on the communicated measurements:

(predicted error covariance) $\mathbf{P}_{k|k-1} = \mathbf{A}_k \mathbf{P}_{k-1|k-1} \mathbf{A}_k^\top + \mathbf{Q}_k$

(filtered error covariance) $\mathbf{P}_{k|k,\mathbf{S}_{k}} = \left(\mathbf{P}_{k|k-1}^{-1} + \mathbf{H}_{k,\mathbf{S}_{k}}^{\top}\mathbf{R}_{k,\mathbf{S}_{k}}^{-1}\mathbf{H}_{k,\mathbf{S}_{k}}\right)^{-1}$

- Mean-square error of the state estimate at k: $MSE_{S_k} = Tr(\mathbf{P}_{k|k,S_k})$
- Select a subset S of size K to achieve the lowest estimation MSE

minimize $\operatorname{Tr}(\mathbf{F}_{S}^{-1})$ subject to $S \subset [n], |S| = K$

• $\mathbf{F}_{S} = \mathbf{P}_{k|k,S}^{-1}$: The Fisher information matrix

- Challenges:
 - An NP-hard, combinatorial problem [Natarajan'95]; due to high computational complexity, resort to approximate methods
 - $\circ~$ Massive amounts of sensory data \rightarrow need accelerated schemes

• Existing approaches

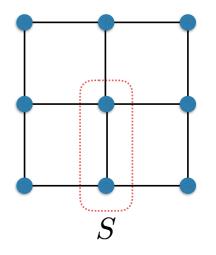
- Using a surrogate objective function (e.g., log det(P_{k|k,Sk})) [Joshi'09, Shamaiah'10, Mirzasoleyman'15, Tzoumas'16]
 - submodular (and thus efficient algorithms come with performance guarantees) but not explicitly related to MSE, the desired objective
- Greedy schemes for MSE formulation [Singh'17, Chamon'17]
 - iteratively selecting sensors, one at each iteration
 - $\mathcal{O}(\textit{nKm}^2)$ complexity \rightarrow not suitable for large-scale networks

• Our work: A randomized greedy algorithm for the MSE objective

- demonstrating, exploiting weak submodularity of the MSE
- $\mathcal{O}(nm^2)$ complexity $\rightarrow \mathcal{O}(K)$ gain in speed
- theoretical bound on worst-case MSE, near-optimal performance

• Set function: a function that assigns a value to each subset of the ground set X (e.g., the set of all sensors in a network)

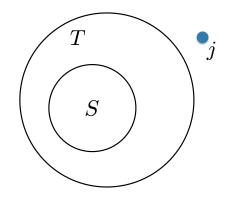
Example: The value of a cut f(S) for all $S \subseteq V$ in an undirected graph G = (V, E).



• Monotonicity: $f(S) \leq f(T)$ for all $S \subseteq T \subseteq X$

Background Cont'd: (Weak) Submodularity

• Marginal gain: $f_j(S) = f(S \cup \{j\}) - f(S)$, i.e., the gain obtained by adding j to S



• Submodularity: $f_j(T) \leq f_j(S)$ for all $S \subseteq T \subset X$ and $j \in X \setminus T$

• diminishing returns property

• Weak Submodularity: $f_j(T) \leq C \times f_j(S)$ where C > 1 is the max (over all combinations of (S, T, j)) element-wise curvature of f

• Define $f(S) = \text{Tr} \left(\mathsf{P}_{k|k-1} - \mathsf{F}_{S}^{-1} \right)$ (inverse additive of MSE)

• a maximization task equivalent to MMSE:

$$\begin{array}{ll} \max_{S} & f(S)\\ \text{s.t.} & S \subset [n], \ |S| = K. \end{array}$$

- Useful observations:
 - f(S) is monotone (higher values as we keep selecting more sensors)
 - An efficient formula for marginal gain using matrix inversion lemma:

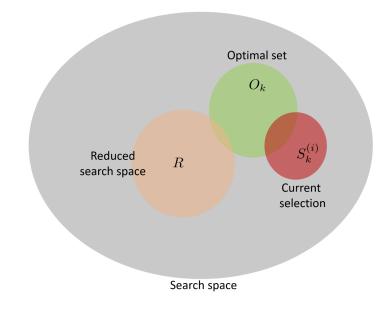
$$f_j(S) = rac{\mathbf{h}_{k,j}^{ op} \mathbf{F}_S^{-2} \mathbf{h}_{k,j}}{\sigma_j^2 + \mathbf{h}_{k,j}^{ op} \mathbf{F}_S^{-1} \mathbf{h}_{k,j}}$$

where $\mathbf{R}_k = \text{diag}(\sigma_1^2, \ldots, \sigma_n^2)$ (independent measurements)

- While not submodular, under certain conditions f(S) has bounded maximum element-wise curvature [Hashemi et al., 2021]
 - deterministic bound on C under a constraint on $\lambda_{\max}(\mathbf{H}_k^T\mathbf{H}_k)$
 - probabilistic bounds if $\mathbf{h}_{k,j}$ are i.i.d. with bounded variance
- Informally, these results imply that for a well-conditioned $P_{k|k-1}$, the curvature of f(S) is small (i.e., f(S) is weak submodular)
- We still need fast algorithms for solving large scale sensor selection problems...

Randomized Greedy Sensor Selection

• The main idea: Perform greedy search over only a subset of the search space



- Construct *R* by sampling uniformly at random (no replacement)
- A condition for accuracy: intersection of R with O_k
 - $|R| = \frac{n}{K} \log(\frac{1}{\epsilon}) \rightarrow$ intersection with high probability
 - $\circ~0<\epsilon<1$: controlling size of the search space

- Initialize: $S_k^{(0)} = \emptyset$, $\mathbf{F}_{S_k^{(0)}}^{-1} = \mathbf{P}_{k|k-1}$ (initial Fisher information)
- In each iteration:
 - select a subset R of size $\frac{n}{K} \log(\frac{1}{\epsilon})$ uniformly at random and without replacement from the set of all sensors
 - \circ identify sensor $i_s \in R$ with the largest marginal gain
 - update the selected subset:

$$S_k^{(i+1)} = S_k^{(i)} \cup \{i_s\}$$

• On expectation, not too far from the optimal solution

$$\mathbb{E}[f(S_k)] \geq \underbrace{(1-e^{-\frac{1}{c}}-\frac{\epsilon^{\beta}}{c})}_{\alpha}f(O_k),$$

where $c = \max\{1, \mathcal{C}\}$, $e^{-\kappa} \leq \epsilon \leq 1$, and $\beta \geq 1$ is a function of |R|.

• Bound on expected MSE:

$$\mathbb{E}\left[\mathsf{MSE}_{S_k}\right] \leq \alpha \mathsf{MSE}_{O_k} + (1-\alpha)\mathsf{Tr}(\mathsf{P}_{k|k-1}).$$

• Running time of the algorithm is $\mathcal{O}(nm^2 \log(\frac{1}{\epsilon}))$

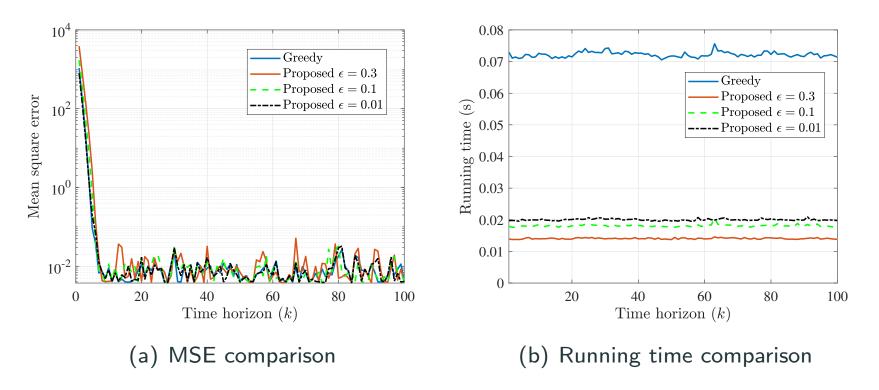
• $\mathcal{O}(K)$ gain in speed compared to greedy

A comparison with the classic greedy algorithm and the SDP relaxation

- The settings: State estimation in linear/linearized systems with Kalman filter / EKF
- Investigated accuracy/runtime tradeoff, scalability (network size) and the impact of search randomization

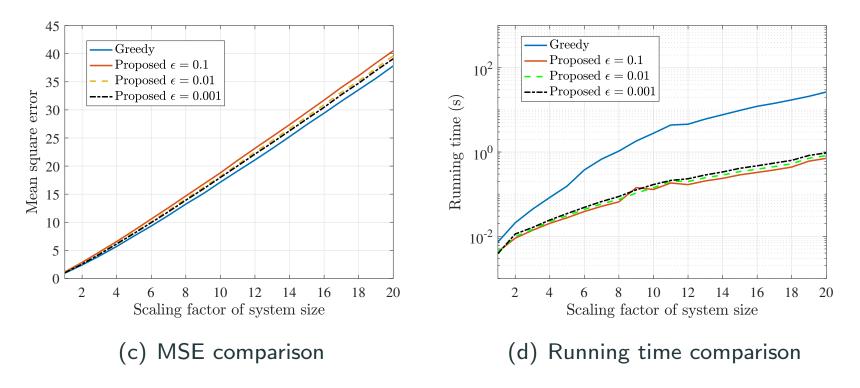
Results (1): Accelerated Multi-Target Tracking

- Tracking the state vector over a period of 100 time steps
- There are m = 20 targets; we select K = 100 out of n = 600 measurements



Results (2): A Scalability Study

- Start with a linear dynamical system with m = 20, n = 200, K = 25
- Scaling it up to 20X



Information Gathering

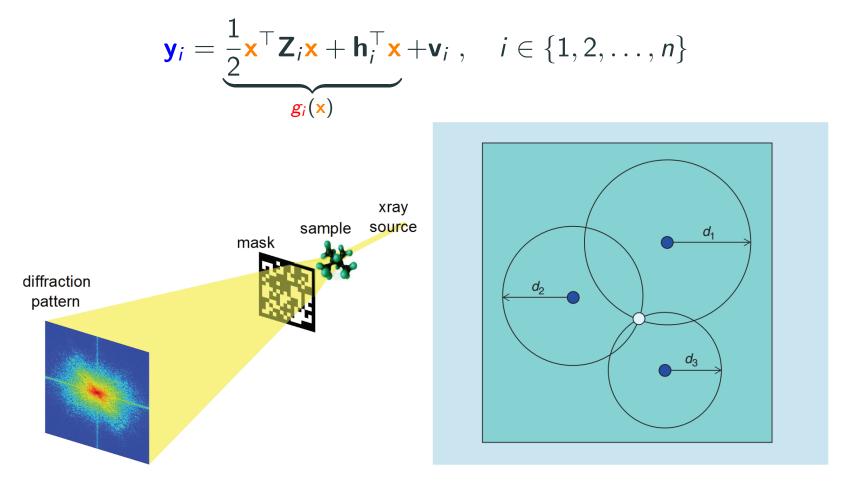
- Linear models
 - Weak submodularity of the MSE objective
 - Greedier than greedy: Randomized greedy selection
- Beyond linear models: Observation selection for quadratic models
 - Exploiting Van Trees' bound

Privacy preserving ML: Federated Learning

- Client selection as the remote estimation problem
- Exploring communication-accuracy tradeoff

- Measurement models are often non-linear
 - phase retrieval, object tracking and localization in robotics and autonomous systems
- Existing methods for information gathering selection typically rely on Monte Carlo methods or linearization of the utility function
 - determining informativeness of an observation in terms of metrics of interest becomes challenging
 - greedy algorithms no longer come with performance guarantees

Quadratic relation between observations and unknown parameters



(a) Phase retrieval: $y_i = \frac{1}{2} \mathbf{x}^* (\mathbf{z}_i \mathbf{z}_i^*) \mathbf{x} + v_i$ (b) Localization: $\mathbf{y}_i = \frac{1}{2} ||\mathbf{h}_i - \mathbf{x}||_2^2 + \mathbf{v}_i$ (Figures from [Candes'15] and [Gezici'05])

Prior Work on Selection in Quadratic Models

- TEXAS The University of Texas at Austin
- Challenge: Unknown optimal estimator and error covariance matrix
- Locally-optimal selection [Flaherty'06, Krause'08]: Linearize around a guess x₀

$$\hat{y}_i := y_i - g_i(\mathbf{x}_0) \approx \nabla g_i(\mathbf{x}_0)^\top \mathbf{x} + v_i,$$

and find an approximate covariance matrix:

$$\hat{\mathsf{P}}_{\mathcal{S}} = \left(\boldsymbol{\Sigma}_{x}^{-1} + \sum_{i \in \mathcal{S}} \frac{1}{\sigma_{i}^{2}} \nabla g_{i}(\mathbf{x}_{0}) \nabla g_{i}(\mathbf{x}_{0})^{\top} \right)^{-1}$$

• The observation selection becomes

minimize
$$\operatorname{Tr}\left(\hat{\mathbf{P}}_{\mathcal{S}}\right)$$

s.t. $\mathcal{S} \subset [n], \ |\mathcal{S}| = K$

TEXAS The University of Texas at Aust

Main Idea

Exploiting Van Trees' bound (VTB) on the error covariance matrix of potentially biased estimators

• A closed-form expression for VTB of quadratic models

Theorem

For any weakly biased estimator $\hat{x}_\mathcal{S}$ with error covariance $P_\mathcal{S}$ it holds that

$$\mathbf{P}_{\mathcal{S}} \succeq \left(\sum_{i \in \mathcal{S}} \frac{1}{\sigma_i^2} \left(\mathbf{Z}_i \boldsymbol{\Sigma}_x \mathbf{Z}_i^\top + \mathbf{h}_i \mathbf{h}_i^\top \right) + \mathbf{I}_x \right)^{-1} = \mathbf{B}_{\mathcal{S}}$$

 Proposed method: Find S by greedily maximizing Tr(.) scalarization of B_S: f^A(S) := Tr(I_x⁻¹ - B_S)

Theorem

 $f^{A}(S)$ is a monotone, weak submodular set function (i.e., bounded $\alpha_{f^{A}}$).

 $\circ\,$ interpretation of bound on α_{f^A} as an SNR condition

Greedy maximization performance:

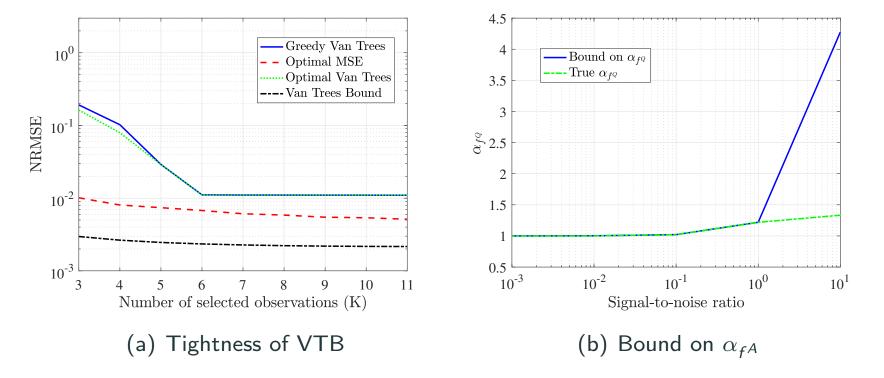
$$f^{\mathcal{A}}(\mathcal{S}) \geq (1 - e^{-\frac{\mathbf{1}}{\alpha_{f^{\mathcal{A}}}}})f(\mathcal{O})$$

Remark: Obtained submodularity characterization for other criteria:

- $f^{T}(S) = \text{Tr}(\mathbf{B}_{S}^{-1}) \text{Tr}(\mathbf{I}_{x})$ is monotone modular
- $f^{D}(S) = \log \det(\mathbf{B}_{S}^{-1}) \log \det(\mathbf{I}_{x})$ is monotone submodular
- $f^{E}(S) = \lambda_{\min}(\mathbf{B}_{S}^{-1}) \lambda_{\min}(\mathbf{I}_{x})$ is monotone and weak submodular

- Demonstration of the tightness of the Van Trees bound
- A comparison of the VTB based observation selection vs. selection based on linearization of quadratic models
 - applications to phase retrieval, multi-target tracking

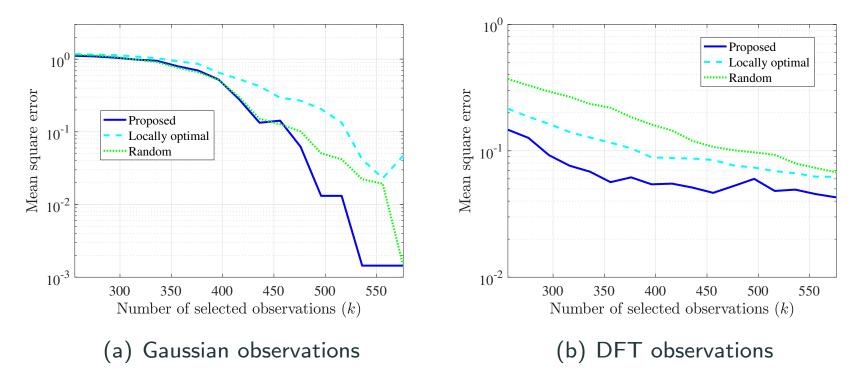
• The phase retrieval problem with n = 12 observations



- Asymptotic tightness of VTB
- Tightness of weak submodularity bound in low SNR regime

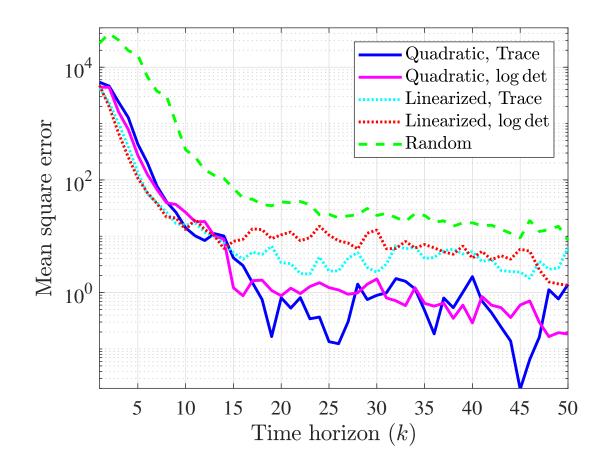
Results (2): Scaling up the Phase Retrieval Problem **TEXAS**

- The phase retrieval problem with n = 1280 observations
 - Wirtinger flow [Candes'15] as the estimator



Results (3): Multi-Target Tracking

- The setting: 10 UAVs, 10 targets
- Selecting 10% of radar observations



- Established weak submodularity of the MSE for linear models
- Exploited weak submodularity to establish performance guarantees of a randomized greedy algorithm for observation selection
- Utilized VTB as a surrogate to MSE for quadratic models and showed its weak submodularity
- Future work: Beyond quadratic models

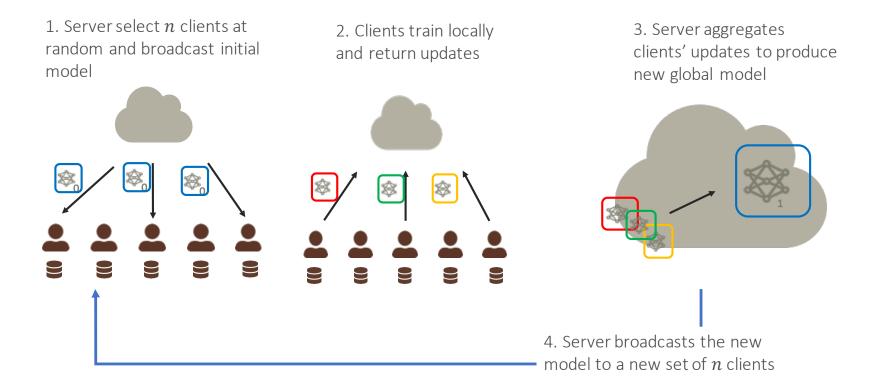
Information Gathering

- Linear models
 - Weak submodularity of the MSE objective
 - Greedier than greedy: Randomized greedy selection
- Beyond linear models: Observation selection for quadratic models
 - Exploiting Van Trees' bound

Privacy preserving ML: Federated Learning

- Client selection as the remote estimation problem
- Exploring communication-accuracy tradeoff

Private and efficient framework for learning a *global model* in settings where data is distributed across many clients.



One global round of FL

- A large number of clients, potentially in millions
- Memory and bandwidth-intensive ML models; e.g., VGG-16 has 138M parameters, 500MB
- Highly dynamic systems: new users may join, new data may be generated by old users
 - may require a large number of global FL rounds

- Reducing individual users' communication
 - compression, sparsification, subsampling, low-rank approximation of weights' matrices [Konecny et al., 2016; Alistarh et al., 2017; Konecny et al. 2018; Horvath et al., 2019; Cho et al. 2020]
- Client subsampling [Hsieh et al. 2017; Chen et al., 2018; Singh et al., 2019; Cho et al., 2020]
 - introduces bias and/or increases variance of model estimation in each round, causing model variations and slowing down the convergence
 - relies on hyperparameters which have to be determined (e.g., k in "top-k" selection methods)

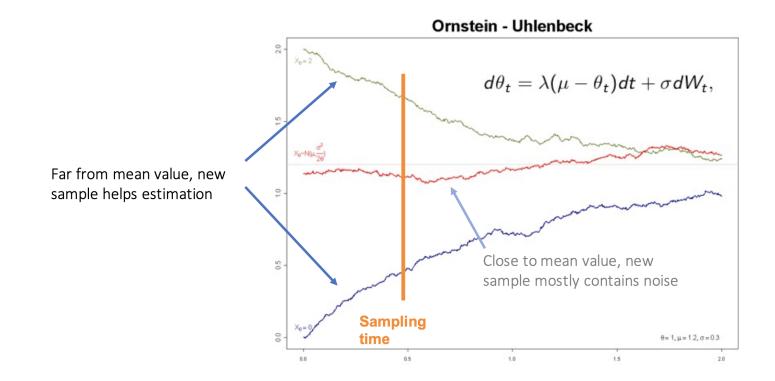
- A framework for selecting clients with the most informative updates, estimating aggregate update of the clients not selected
 - a computationally efficient FL algorithm that reduces communication
 - a reduced bias and variance gradient estimator
- Extensive experimental verification of the developed methodology in realistic federated learning settings

- SGD can be thought as a discretization of an OU process [Blanc et al., 2019; Wang et al., 2017; Li et al., 2018; Mandt et al., 2016]
- Ornstein–Uhlenbeck process: A stationary (Gauss-Markov) process θ_t which, over time, drifts towards its mean function
 - letting W_t denote the standard Wiener process,

$$d\theta_t = \lambda(\mu - \theta_t)dt + \sigma dW_t$$

• Basic idea: rely on the proximity of a sample path to the mean to assess informativeness of an update

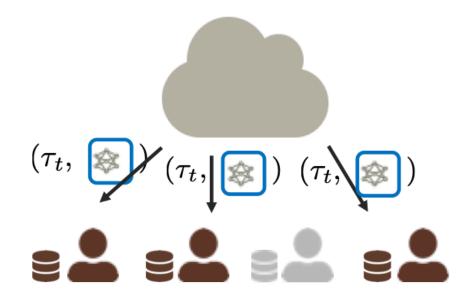
Revised model update strategy: collect only the updates with magnitude that exceed a threshold τ is the optimal sampling strategy



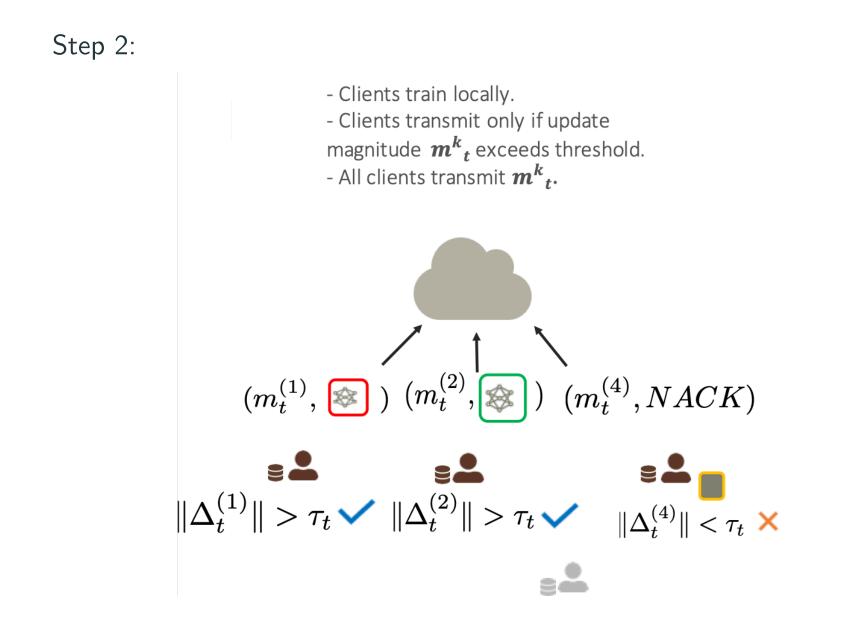
Estimate/predict the update of the clients that did not communicate

Step 1:

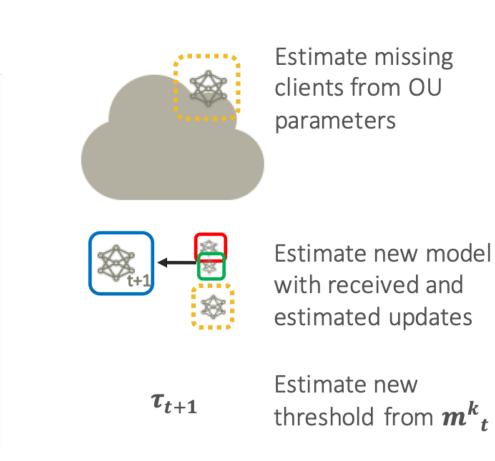
At time t, server select n clients at random, broadcast initial model and threshold τ_t



Communication-Efficient FL Cont'd

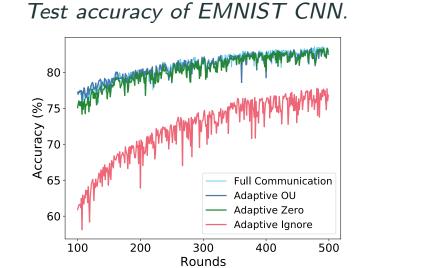


Step 3:

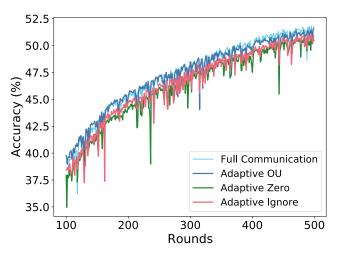


- We consider two client selection strategies:
 - (a) adaptive threshold adjusted according to the gradient magnitude
 - (b) random selection of a pre-fixed number of participating clients
- Compare the following model estimation strategies:
 - Our proposed OU process based estimation (OU strategy)
 - The strategy in [Li et al., 2019], where missing updates are replaced by the previous global model (Ignore strategy)
 - Dismiss missing, average transmitted updates (Zero strategy) [Hsieh et al., 2017]

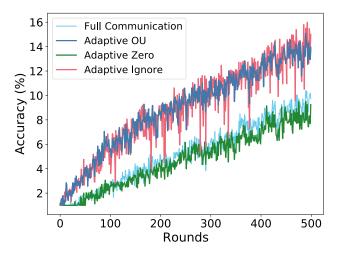
Results: Accuracy on Different Data Sets



Test accuracy of Shakespeare RNN.



Test accuracy of CIFAR100 Resnet.



- Dismissing clients' updates slows down the convergence in all experiments
 - in fact, Zero strategy yields biased model estimate
- Ignore strategy exhibits a significantly more unstable convergence than other techniques
 - both OU and Zero achieve lower variance
- OU estimation incorporates missing updates without rendering the convergence slow nor unstable
- Analytical result: Formally showed that the variance of OU strategy is lower than the variance of Ignore strategy

- Thresholding-based sampling combined with OU estimation cuts communication **up to 50%** while achieving accuracy comparable to the baseline (i.e., to the full communication scheme)
- The Zero estimation strategy has communication savings similar to OU but with slower convergence rates and inferior final accuracy
- The Ignore strategy achieves the highest communication savings due to threshold inflation caused by ignoring clients, which then lead to even fewer clients in the following rounds
 - ultimately, the Ignore strategy is not capable of matching the accuracy of the OU method on Shakespeare and CIFAR100 datasets

- Proposed a new way of selecting clients in a FL system
 - an efficient algorithm, guaranteed convergence, variance reduced w.r.t. alternative technique
- Future work: Client selection/sampling as a fairness mechanism

Acknowledgements

Joint work with Abolfazl Hashemi, Monica Ribero, Mahsa Ghasemi, and Ufuk Topcu