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Observation Selection and Information Gathering

e Sensor networks often operate under restrictions on communication
bandwidth and computational capabilities
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Privacy Motivated Distributed Learning

e Federated learning systems: ameliorating privacy concerns yet still
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Organization of the Talk

Information Gathering

e Linear models

e Weak submodularity of the MSE objective
e Greedier than greedy: Randomized greedy selection

e Beyond linear models: Observation selection for quadratic models

e Exploiting Van Trees' bound
Privacy preserving ML: Federated Learning

e Client selection as the remote estimation problem

e Exploring communication-accuracy tradeoff
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Roadmap

Information Gathering

e Linear models

e Weak submodularity of the MSE objective
e Greedier than greedy: Randomized greedy selection

e Beyond linear models: Observation selection for quadratic models

e Exploiting Van Trees' bound
Privacy preserving ML: Federated Learning

e Client selection as the remote estimation problem

e Exploring communication-accuracy tradeoff



An lllustrative Example

e An example of a large-scale sensor network: A swarm of UAVs

e UAVs gathering measurements of targets’ positions
e location estimation and tracking in a remote control unit
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e The goal: Computationally efficient selection of informative
measurements for accurate (in terms of MSE) target tracking
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System Model

e A (linearized) dynamical model:

Xkt+1 = Arxp + wy

Y = Hixp + vy
e State and measurement noises: wyx = N(0, Qx), vk = N (0, Ry)
e At each step k, select a subset S, of size K from n measurements

e Control unit: track the state vector via (extended) Kalman filter
based on the communicated measurements:

(predicted error covariance) Pyjx_1 = A,<Pk_1|k_1A;<r + Qx

~1
- - _ (p-1 T p-1
(filtered error covariance) Py s, = (Pk|k_1 + Hk,SkRk,Ska,Sk)
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Selection of Observations

e Mean-square error of the state estimate at k: MSEs, = Tr(Py s,)

e Select a subset S of size K to achieve the lowest estimation MSE

miniSmize Tr (Fgl)

subjectto S C [n], |S|=K

o Fs = Pk_li 5. The Fisher information matrix

e Challenges:

o An NP-hard, combinatorial problem [Natarajan'95]; due to high
computational complexity, resort to approximate methods

o Massive amounts of sensory data — need accelerated schemes

6/41



Related Work and Our Contribution

e Existing approaches

o Using a surrogate objective function (e.g., logdet(P/«s,)) [Joshi'09,
Shamaiah'10, Mirzasoleyman'15, Tzoumas'16]

— submodular (and thus efficient algorithms come with performance
guarantees) but not explicitly related to MSE, the desired objective

o Greedy schemes for MSE formulation [Singh'17, Chamon'17]

— iteratively selecting sensors, one at each iteration

— O(nKm?) complexity — not suitable for large-scale networks

e Our work: A randomized greedy algorithm for the MSE objective

o demonstrating, exploiting weak submodularity of the MSE
o O(nm?) complexity — O(K) gain in speed

o theoretical bound on worst-case MSE, near-optimal performance
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Background: Set Functions

e Set function: a function that assigns a value to each subset of the
ground set X (e.g., the set of all sensors in a network)

Example: The value of a cut f(S) for all S C V in an undirected
graph G = (V,E).

e Monotonicity: f(S) < f(T) forall SC T C X
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Background Cont'd: (Weak) Submodularity

e Marginal gain: (S) = f(SU{j}) — f(S), i.e., the gain obtained by
adding j to S

e Submodularity: fi(T) < fi(S) forall SC T C X andj € X\T

o diminishing returns property

e Weak Submodularity: f;(T) < C x f;(S) where C > 1 is the max
(over all combinations of (S, T,j)) element-wise curvature of f
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Weak Submodularity of Sensor Selection

o Define f(S) = Tr (Pyk_1 — F5') (inverse additive of MSE)
o a maximization task equivalent to MMSE:

max f(S)

st. SC|n], |S|=K.
e Useful observations:
o f(S) is monotone (higher values as we keep selecting more sensors)

o An efficient formula for marginal gain using matrix inversion lemma:

T -2
h, iFshg,

2 T p—1 _

f(S) =

where R, = diag(o3,...,07) (independent measurements)
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Weak Submodularity of Sensor Selection Cont’'d

e While not submodular, under certain conditions f(S) has bounded
maximum element-wise curvature [Hashemi et al., 2021]

e deterministic bound on C under a constraint on Amax(H; Hy)

e probabilistic bounds if hy ; are i.i.d. with bounded variance

e Informally, these results imply that for a well-conditioned Py._1, the
curvature of f(S) is small (i.e., f(S) is weak submodular)

e We still need fast algorithms for solving large scale sensor selection
problems...
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Randomized Greedy Sensor Selection

e The main idea: Perform greedy search over only a subset of the
search space

Optimal set

Oy,

Reduced ‘
R
search space

Current
selection

Search space

e Construct R by sampling uniformly at random (no replacement)
e A condition for accuracy: intersection of R with O

o |R| = % log(%) — intersection with high probability

o 0 < € < 1: controlling size of the search space
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Outline of the Algorithm

e Initialize: SIEO) = (), F;(ﬁ) = Py k-1 (initial Fisher information)
k

e In each iteration:

o select a subset R of size 7 log(2) uniformly at random and without

replacement from the set of all sensors
o identify sensor is € R with the largest marginal gain

o update the selected subset:

S/EH_l) _ S/Ei) U {ls}
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Theoretical Performance Guarantees

e On expectation, not too far from the optimal solution

1 EB
E[(S0)] = (1— ™t = <) (O,

~\~
«

where ¢ = max{1,C}, e X <e <1, and B> 1is a function of |R)|.

e Bound on expected MSE:

K [MSESk] < CVMSEOk + (1 — Oé)TI’(Pk“(_l).

e Running time of the algorithm is O(nm? log(*))

o O(K) gain in speed compared to greedy
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Simulation Results

A comparison with the classic greedy algorithm and the SDP relaxation

e The settings: State estimation in linear/linearized systems with
Kalman filter / EKF

e Investigated accuracy/runtime tradeoff, scalability (network size)
and the impact of search randomization
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Results (1): Accelerated Multi-Target Tracking

e Tracking the state vector over a period of 100 time steps

e There are m = 20 targets; we select K = 100 out of n = 600

measurements
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Results (2): A Scalability Study

e Start with a linear dynamical system with m = 20, n = 200, K = 25
e Scaling it up to 20X
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Roadmap

Information Gathering

e Linear models

e Weak submodularity of the MSE objective
e Greedier than greedy: Randomized greedy selection

e Beyond linear models: Observation selection for quadratic models

e Exploiting Van Trees' bound
Privacy preserving ML: Federated Learning

e Client selection as the remote estimation problem

e Exploring communication-accuracy tradeoff



Beyond Linear Observation Models

e Measurement models are often non-linear

o phase retrieval, object tracking and localization in robotics and
autonomous systems

e Existing methods for information gathering selection typically rely on
Monte Carlo methods or linearization of the utility function

o determining informativeness of an observation in terms of metrics of
interest becomes challenging

o greedy algorithms no longer come with performance guarantees
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Observation Selection for Quadratic Models

Quadratic relation between observations and

TZ,‘ —I—hlT +V; i€{1,2,...,n}

7
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(a) Phase retrieval: y; = %x* (zjzF)x+v; (b) Localization: y; = %Hh,- — xH% + v,

(Figures from [Candes’'15] and [Gezici'05])
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Prior Work on Selection in Quadratic Models

e Challenge: Unknown optimal estimator and error covariance matrix

e Locally-optimal selection [Flaherty'06, Krause'08|: Linearize around
a guess Xg

Vi == yi — gi(x0) = Vgi(xo) ' x + v,
and find an approximate covariance matrix:
~1
Ps = <2X1 +> (jlgvgi(xo)Vgi(xo)T>
icS !
e The observation selection becomes

mlnlsmlze r{Ps

st. SC|n], |[S|=K
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Proposed Approach: VTB for Quadratic Models

Main ldea
Exploiting on the error covariance matrix of

potentially biased estimators

o A for VTB of quadratic models

Theorem

For any weakly biased estimator Xs with error covariance Pg it holds

that »
1
5 = (Z 0_2 (2;2,Z] +hh/) + |X> Bs
ieS !
e Proposed method: Find S by maximizing Tr(.) scalarization

of Bs: fA(S) = Tr(l;l — BS)
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Characterizing 4(S)

Theorem

fA(S) is a monotone, weak submodular set function (i.e., bounded ca).

o interpretation of bound on afa as an SNR condition

Greedy maximization performance:

FAS) > (1— e " )F(O)

Remark: Obtained submodularity characterization for other criteria:

o f7(S)=Tr(Bg') — Tr(l,) is monotone modular
o fP(S) = log det(B5") — log det(l,) is monotone submodular

o fE(S) = )\min(Bgl) — Amin(lx) is monotone and weak submodular
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Simulation Results

e Demonstration of the tightness of the Van Trees bound

e A comparison of the VTB based observation selection vs. selection
based on linearization of quadratic models

e applications to phase retrieval, multi-target tracking
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Results (1): Tightness of the Van Trees Bound

e The phase retrieval problem with n = 12 observations

4.5
ol —— Greedy Van Trees | | 4+
10 — - Optimal MSE —— Bound on aye
-------- Optimal Van Trees| | 35¢ —-—-True aye
—-—-Van Trees Bound 1
3 L
2951
&2
2 L
__________________ 1.5}
et 1
10-3 I I I I I I I 0.5 L L L
3 4 5 6 7 8 9 10 11 107 102 107! 10° 10!
Number of selected observations (K) Signal-to-noise ratio
(a) Tightness of VTB (b) Bound on aya

e Asymptotic tightness of VTB

e Tightness of weak submodularity bound in low SNR regime
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Results (2): Scaling up the Phase Retrieval Problem ®

e The phase retrieval problem with n = 1280 observations

e Wirtinger flow [Candes'15] as the estimator
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Results (3): Multi-Target Tracking

e The setting: 10 UAVs, 10 targets

e Selecting 10% of radar observations

Quadratic, Trace
Quadratic, log det
Linearized, Trace | |
---------- Linearized, log det | .
- = = Random ]

Mean square error

S 10 15 20 25 30 35 40 45 50
Time horizon (k)
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Conclusions and Extensions

e Established weak submodularity of the MSE for linear models

e Exploited weak submodularity to establish performance guarantees
of a randomized greedy algorithm for observation selection

e Utilized VTB as a surrogate to MSE for quadratic models and
showed its weak submodularity

e Future work: Beyond quadratic models
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Roadmap

Information Gathering

e Linear models

e Weak submodularity of the MSE objective
e Greedier than greedy: Randomized greedy selection

e Beyond linear models: Observation selection for quadratic models

e Exploiting Van Trees' bound
Privacy preserving ML: Federated Learning

e Client selection as the remote estimation problem

e Exploring communication-accuracy tradeoff



Federated Learning

Private and efficient framework for learning a global model in settings
where data is distributed across many clients.

1. Serverselect n clients at 2. Clients train locally 3. Server aggregates
random and broadcast initial and return updates clients’” updates to produce
model new global model

u®
|

4. Server broadcasts the new
model to a new set of n clients

One global round of FL
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Federated Learning Cont'd: Challenges

e A large number of clients, potentially in millions

e Memory and bandwidth-intensive ML models; e.g., VGG-16 has
138M parameters, 500MB

e Highly dynamic systems: new users may join, new data may be
generated by old users

e may require a large number of global FL rounds
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Prior Work on Improving Communications Efficiency @

e Reducing individual users’ communication

e compression, sparsification, subsampling, low-rank approximation of
weights' matrices [Konecny et al., 2016; Alistarh et al., 2017;
Konecny et al. 2018; Horvath et al., 2019; Cho et al. 2020]

e Client subsampling [Hsieh et al. 2017; Chen et al., 2018; Singh et
al., 2019; Cho et al., 2020]

e introduces bias and/or increases variance of model estimation in each
round, causing model variations and slowing down the convergence

e relies on hyperparameters which have to be determined (e.g., k in
“top-k" selection methods)

30/41



Proposed Approach to Client Selection

e A framework for selecting clients with the most informative updates,
estimating aggregate update of the clients not selected

e a computationally efficient FL algorithm that reduces communication
e a reduced bias and variance gradient estimator

e Extensive experimental verification of the developed methodology in
realistic federated learning settings
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Preliminaries

e SGD can be thought as a discretization of an OU process [Blanc et
al., 2019; Wang et al., 2017; Li et al., 2018; Mandt et al., 2016]

e Ornstein—Uhlenbeck process: A stationary (Gauss-Markov) process

0, which, over time, drifts towards its mean function

e letting W; denote the standard Wiener process,

d@t = )\(,u — Qt)dt —+ O'th

e Basic idea: rely on the proximity of a sample path to the mean to

assess informativeness of an update
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Client Selection in FL

Revised model update strategy: collect only the updates with magnitude
that exceed a threshold 7 is the optimal sampling strategy

Ornstein - Uhlenbeck

db, = A — 6,)dt + odW,,
/ e

Far from mean value, new S TGt O W
sample helps estimation =

//’/ Close to mean value, new

/ sample mostly contains noise
2 3 8=1,u=12,0=03

Estimate/predict the update of the clients that did not communicate
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Communication-Efficient FL

Step 1:

At time t, server selectn
clients at random, broadcast
initial model and threshold 7,
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Communication-Efficient FL Cont'd

Step 2:

- Clients train locally.
- Clients transmit only if update

magnitude m¥, exceeds threshold.

- All clients transmit m*,.

(m{V, (& ) (m;¥, NACK)
S ; S ; |
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Communication-Efficient FL Cont'd

Step 3:

Tt+1

Estimate missing
clients from OU

parameters

Estimate new model
with received and
estimated updates

Estimate new
threshold from m¥,
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Simulation and Analytical Results

e We consider two client selection strategies:

(a) adaptive threshold adjusted according to the gradient magnitude

(b) random selection of a pre-fixed number of participating clients

e Compare the following model estimation strategies:

e Our proposed OU process based estimation (0U strategy)

e The strategy in [Li et al., 2019], where missing updates are replaced
by the previous global model (Ignore strategy)

e Dismiss missing, average transmitted updates (Zero strategy) [Hsieh
et al., 2017]
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Test accuracy of EMNIST CNN.
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Accuracy on Different Data Sets: Comments

e Dismissing clients’ updates slows down the convergence in all
experiments

e in fact, Zero strategy yields biased model estimate

e Ignore strategy exhibits a significantly more unstable convergence
than other techniques

e both 0U and Zero achieve lower variance

e OU estimation incorporates missing updates without rendering the
convergence slow nor unstable

e Analytical result: Formally showed that the variance of OU strategy
is lower than the variance of Ignore strategy
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Accuracy vs. Communication Cost: Comments

e Thresholding-based sampling combined with OU estimation cuts
communication up to 50% while achieving accuracy comparable to
the baseline (i.e., to the full communication scheme)

e The Zero estimation strategy has communication savings similar to
0U but with slower convergence rates and inferior final accuracy

e The Ignore strategy achieves the highest communication savings
due to threshold inflation caused by ignoring clients, which then lead
to even fewer clients in the following rounds

e ultimately, the Ignore strategy is not capable of matching the
accuracy of the 0U method on Shakespeare and CIFAR100 datasets
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Conclusions and Extensions

e Proposed a new way of selecting clients in a FL system

e an efficient algorithm, guaranteed convergence, variance reduced

w.r.t. alternative technique

e Future work: Client selection/sampling as a fairness mechanism
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