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Observation Selection and Information Gathering

• Sensor networks often operate under restrictions on communication
bandwidth and computational capabilities
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Privacy Motivated Distributed Learning

• Federated learning systems: ameliorating privacy concerns yet still
communication-intensive

2/41



Organization of the Talk

Information Gathering

• Linear models
• Weak submodularity of the MSE objective
• Greedier than greedy: Randomized greedy selection

• Beyond linear models: Observation selection for quadratic models
• Exploiting Van Trees’ bound

Privacy preserving ML: Federated Learning

• Client selection as the remote estimation problem

• Exploring communication-accuracy tradeoff
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Roadmap

Information Gathering

• Linear models
• Weak submodularity of the MSE objective
• Greedier than greedy: Randomized greedy selection

• Beyond linear models: Observation selection for quadratic models
• Exploiting Van Trees’ bound

Privacy preserving ML: Federated Learning

• Client selection as the remote estimation problem

• Exploring communication-accuracy tradeoff



An Illustrative Example

• An example of a large-scale sensor network: A swarm of UAVs
• UAVs gathering measurements of targets’ positions
• location estimation and tracking in a remote control unit

• The goal: Computationally efficient selection of informative
measurements for accurate (in terms of MSE) target tracking
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System Model

• A (linearized) dynamical model:

xk+1 = Akxk + wk

yk = Hkxk + vk

• State and measurement noises: wk = N (0,Qk), vk = N (0,Rk)

• At each step k , select a subset Sk of size K from n measurements

• Control unit: track the state vector via (extended) Kalman filter
based on the communicated measurements:

(predicted error covariance) Pk|k�1 = AkPk�1|k�1A
>
k + Qk

(filtered error covariance) Pk|k,Sk
=
⇣
P

�1
k|k�1 + H

>
k,Sk

R
�1
k,Sk

Hk,Sk

⌘�1
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Selection of Observations

• Mean-square error of the state estimate at k : MSESk
= Tr(Pk|k,Sk

)

• Select a subset S of size K to achieve the lowest estimation MSE

minimize
S

Tr
�
F
�1
S

�

subject to S ⇢ [n], |S | = K

� FS = P
�1
k|k,S : The Fisher information matrix

• Challenges:

� An NP-hard, combinatorial problem [Natarajan’95]; due to high
computational complexity, resort to approximate methods

� Massive amounts of sensory data ! need accelerated schemes
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Related Work and Our Contribution

• Existing approaches

� Using a surrogate objective function (e.g., log det(Pk|k,Sk )) [Joshi’09,
Shamaiah’10, Mirzasoleyman’15, Tzoumas’16]

– submodular (and thus efficient algorithms come with performance
guarantees) but not explicitly related to MSE, the desired objective

� Greedy schemes for MSE formulation [Singh’17, Chamon’17]

– iteratively selecting sensors, one at each iteration

– O(nKm2) complexity ! not suitable for large-scale networks

• Our work: A randomized greedy algorithm for the MSE objective

� demonstrating, exploiting weak submodularity of the MSE

� O(nm2) complexity ! O(K) gain in speed

� theoretical bound on worst-case MSE, near-optimal performance
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Background: Set Functions

• Set function: a function that assigns a value to each subset of the
ground set X (e.g., the set of all sensors in a network)

Example: The value of a cut f (S) for all S ✓ V in an undirected
graph G = (V ,E ).

• Monotonicity: f (S)  f (T ) for all S ✓ T ✓ X
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Background Cont’d: (Weak) Submodularity

• Marginal gain: fj(S) = f (S [ {j})� f (S), i.e., the gain obtained by
adding j to S

• Submodularity: fj(T )  fj(S) for all S ✓ T ⇢ X and j 2 X\T

� diminishing returns property

• Weak Submodularity: fj(T )  C ⇥ fj(S) where C > 1 is the max
(over all combinations of (S ,T , j)) element-wise curvature of f
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Weak Submodularity of Sensor Selection

• Define f (S) = Tr
�
Pk|k�1 � F

�1
S

�
(inverse additive of MSE)

� a maximization task equivalent to MMSE:

max
S

f (S)

s.t. S ⇢ [n], |S | = K .

• Useful observations:

� f (S) is monotone (higher values as we keep selecting more sensors)

� An efficient formula for marginal gain using matrix inversion lemma:

fj(S) =
h
>
k,jF

�2
S

hk,j

�2
j
+ h>

k,jF
�1
S

hk,j

where Rk = diag(�2
1 , . . . ,�

2
n) (independent measurements)
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Weak Submodularity of Sensor Selection Cont’d

• While not submodular, under certain conditions f (S) has bounded
maximum element-wise curvature [Hashemi et al., 2021]

• deterministic bound on C under a constraint on �max(HT

k Hk)

• probabilistic bounds if hk,j are i.i.d. with bounded variance

• Informally, these results imply that for a well-conditioned Pk|k�1, the
curvature of f (S) is small (i.e., f (S) is weak submodular)

• We still need fast algorithms for solving large scale sensor selection
problems...
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Randomized Greedy Sensor Selection

• The main idea: Perform greedy search over only a subset of the
search space

• Construct R by sampling uniformly at random (no replacement)

• A condition for accuracy: intersection of R with Ok

� |R| = n

K
log( 1

✏ ) ! intersection with high probability

� 0 < ✏ < 1: controlling size of the search space
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Outline of the Algorithm

• Initialize: S
(0)
k

= ;, F
�1
S
(0)
k

= Pk|k�1 (initial Fisher information)

• In each iteration:

� select a subset R of size n

K
log( 1

✏ ) uniformly at random and without
replacement from the set of all sensors

� identify sensor is 2 R with the largest marginal gain

� update the selected subset:

S (i+1)
k

= S (i)
k

[ {is}
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Theoretical Performance Guarantees

• On expectation, not too far from the optimal solution

E[f (Sk)] � (1 � e
� 1

c �
✏�

c
)

| {z }
↵

f (Ok),

where c = max{1, C}, e�K
 ✏  1, and � � 1 is a function of |R |.

• Bound on expected MSE:

E [MSESk
]  ↵MSEOk

+ (1 � ↵)Tr(Pk|k�1).

• Running time of the algorithm is O(nm2 log( 1
✏ ))

� O(K) gain in speed compared to greedy
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Simulation Results

A comparison with the classic greedy algorithm and the SDP relaxation

• The settings: State estimation in linear/linearized systems with
Kalman filter / EKF

• Investigated accuracy/runtime tradeoff, scalability (network size)
and the impact of search randomization
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Results (1): Accelerated Multi-Target Tracking

• Tracking the state vector over a period of 100 time steps

• There are m = 20 targets; we select K = 100 out of n = 600
measurements
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Results (2): A Scalability Study

• Start with a linear dynamical system with m = 20, n = 200, K = 25

• Scaling it up to 20X
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Roadmap

Information Gathering

• Linear models
• Weak submodularity of the MSE objective
• Greedier than greedy: Randomized greedy selection

• Beyond linear models: Observation selection for quadratic models
• Exploiting Van Trees’ bound

Privacy preserving ML: Federated Learning

• Client selection as the remote estimation problem

• Exploring communication-accuracy tradeoff



Beyond Linear Observation Models

• Measurement models are often non-linear

� phase retrieval, object tracking and localization in robotics and
autonomous systems

• Existing methods for information gathering selection typically rely on
Monte Carlo methods or linearization of the utility function

� determining informativeness of an observation in terms of metrics of
interest becomes challenging

� greedy algorithms no longer come with performance guarantees
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Observation Selection for Quadratic Models

Quadratic relation between observations and unknown parameters

yi =
1
2
x
>
Zix + h

>
i x

| {z }
gi (x)

+vi , i 2 {1, 2, . . . , n}

(a) Phase retrieval: yi =
1
2x⇤(ziz⇤i )x+vi (b) Localization: yi = 1

2khi � xk2
2 + vi

(Figures from [Candes’15] and [Gezici’05])
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Prior Work on Selection in Quadratic Models

• Challenge: Unknown optimal estimator and error covariance matrix

• Locally-optimal selection [Flaherty’06, Krause’08]: Linearize around
a guess x0

ŷi := yi � gi (x0) ⇡ rgi (x0)
>
x + vi ,

and find an approximate covariance matrix:

P̂S =

 
⌃�1

x +
X

i2S

1
�2
i

rgi (x0)rgi (x0)
>

!�1

• The observation selection becomes

minimize
S

Tr
⇣
P̂S

⌘

s.t. S ⇢ [n], |S| = K
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Proposed Approach: VTB for Quadratic Models

Main Idea

Exploiting Van Trees’ bound (VTB) on the error covariance matrix of
potentially biased estimators

• A closed-form expression for VTB of quadratic models

Theorem

For any weakly biased estimator x̂S with error covariance PS it holds
that

PS ⌫

 
X

i2S

1
�2
i

�
Zi⌃xZ

>
i + hih

>
i

�
+ Ix

!�1

= BS

• Proposed method: Find S by greedily maximizing Tr(.) scalarization
of BS : f

A(S) := Tr(I�1
x � BS)
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Characterizing f A(S)

Theorem

f
A(S) is a monotone, weak submodular set function (i.e., bounded ↵f A).

� interpretation of bound on ↵f A as an SNR condition

Greedy maximization performance:

f
A(S) � (1 � e

� 1
↵
f A )f (O)

Remark: Obtained submodularity characterization for other criteria:

• f
T (S) = Tr(B�1

S )� Tr(Ix) is monotone modular

• f
D(S) = log det(B�1

S )� log det(Ix) is monotone submodular

• f
E (S) = �min(B

�1
S )� �min(Ix) is monotone and weak submodular
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Simulation Results

• Demonstration of the tightness of the Van Trees bound

• A comparison of the VTB based observation selection vs. selection
based on linearization of quadratic models

• applications to phase retrieval, multi-target tracking
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Results (1): Tightness of the Van Trees Bound

• The phase retrieval problem with n = 12 observations
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• Asymptotic tightness of VTB

• Tightness of weak submodularity bound in low SNR regime
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Results (2): Scaling up the Phase Retrieval Problem

• The phase retrieval problem with n = 1280 observations
• Wirtinger flow [Candes’15] as the estimator
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Results (3): Multi-Target Tracking

• The setting: 10 UAVs, 10 targets

• Selecting 10% of radar observations
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Conclusions and Extensions

• Established weak submodularity of the MSE for linear models

• Exploited weak submodularity to establish performance guarantees
of a randomized greedy algorithm for observation selection

• Utilized VTB as a surrogate to MSE for quadratic models and
showed its weak submodularity

• Future work: Beyond quadratic models
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Roadmap

Information Gathering

• Linear models
• Weak submodularity of the MSE objective
• Greedier than greedy: Randomized greedy selection

• Beyond linear models: Observation selection for quadratic models
• Exploiting Van Trees’ bound

Privacy preserving ML: Federated Learning

• Client selection as the remote estimation problem

• Exploring communication-accuracy tradeoff



Federated Learning

Private and efficient framework for learning a global model in settings
where data is distributed across many clients.

0 00

1. Server select ! clients at 
random and broadcast initial 
model 

2. Clients train locally 
and return updates

1

3. Server aggregates 
clients’ updates to produce 
new global model

4. Server broadcasts the new 
model to a new set of !	clients

One global round of FL
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Federated Learning Cont’d: Challenges

• A large number of clients, potentially in millions

• Memory and bandwidth-intensive ML models; e.g., VGG-16 has
138M parameters, 500MB

• Highly dynamic systems: new users may join, new data may be
generated by old users

• may require a large number of global FL rounds
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Prior Work on Improving Communications Efficiency

• Reducing individual users’ communication

• compression, sparsification, subsampling, low-rank approximation of
weights’ matrices [Konecny et al., 2016; Alistarh et al., 2017;
Konecny et al. 2018; Horvath et al., 2019; Cho et al. 2020]

• Client subsampling [Hsieh et al. 2017; Chen et al., 2018; Singh et
al., 2019; Cho et al., 2020]

• introduces bias and/or increases variance of model estimation in each
round, causing model variations and slowing down the convergence

• relies on hyperparameters which have to be determined (e.g., k in
“top-k" selection methods)
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Proposed Approach to Client Selection

• A framework for selecting clients with the most informative updates,
estimating aggregate update of the clients not selected

• a computationally efficient FL algorithm that reduces communication
• a reduced bias and variance gradient estimator

• Extensive experimental verification of the developed methodology in
realistic federated learning settings
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Preliminaries

• SGD can be thought as a discretization of an OU process [Blanc et
al., 2019; Wang et al., 2017; Li et al., 2018; Mandt et al., 2016]

• Ornstein–Uhlenbeck process: A stationary (Gauss-Markov) process
✓t which, over time, drifts towards its mean function

• letting Wt denote the standard Wiener process,

d✓t = �(µ� ✓t)dt + �dWt

• Basic idea: rely on the proximity of a sample path to the mean to
assess informativeness of an update
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Client Selection in FL

Revised model update strategy: collect only the updates with magnitude
that exceed a threshold ⌧ is the optimal sampling strategy

Estimate/predict the update of the clients that did not communicate
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Communication-Efficient FL

Step 1:
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Communication-Efficient FL Cont’d

Step 2:
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Communication-Efficient FL Cont’d

Step 3:
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Simulation and Analytical Results

• We consider two client selection strategies:

(a) adaptive threshold adjusted according to the gradient magnitude

(b) random selection of a pre-fixed number of participating clients

• Compare the following model estimation strategies:

• Our proposed OU process based estimation (OU strategy)

• The strategy in [Li et al., 2019], where missing updates are replaced
by the previous global model (Ignore strategy)

• Dismiss missing, average transmitted updates (Zero strategy) [Hsieh
et al., 2017]
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Results: Accuracy on Different Data Sets

Test accuracy of EMNIST CNN. Test accuracy of Shakespeare RNN.

Test accuracy of CIFAR100 Resnet.

38/41



Accuracy on Different Data Sets: Comments

• Dismissing clients’ updates slows down the convergence in all
experiments

• in fact, Zero strategy yields biased model estimate

• Ignore strategy exhibits a significantly more unstable convergence
than other techniques

• both OU and Zero achieve lower variance

• OU estimation incorporates missing updates without rendering the
convergence slow nor unstable

• Analytical result: Formally showed that the variance of OU strategy
is lower than the variance of Ignore strategy
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Accuracy vs. Communication Cost: Comments

• Thresholding-based sampling combined with OU estimation cuts
communication up to 50% while achieving accuracy comparable to
the baseline (i.e., to the full communication scheme)

• The Zero estimation strategy has communication savings similar to
OU but with slower convergence rates and inferior final accuracy

• The Ignore strategy achieves the highest communication savings
due to threshold inflation caused by ignoring clients, which then lead
to even fewer clients in the following rounds

• ultimately, the Ignore strategy is not capable of matching the
accuracy of the OU method on Shakespeare and CIFAR100 datasets
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Conclusions and Extensions

• Proposed a new way of selecting clients in a FL system

• an efficient algorithm, guaranteed convergence, variance reduced
w.r.t. alternative technique

• Future work: Client selection/sampling as a fairness mechanism
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