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Deep Learning in Pre-AlexNet Era (2009) M | Engineering
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\ Recognized examples of “CellToEar” y

= Action recognition from real-world airport surveillance video
= One of the earliest work on deep learning for video analysis
= Winner of the 2009 TRECVID Video Surveillance Challenge

7

Ji et al., 3D Convolutional Neural Networks for Human Action Recognition. ICML2010 and TPAMI'’2013. 4,000+ citations
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Today: Beyond Natural Image and Video Recognition ;\FV[ Eﬁ;}?ﬂngfsg

* More complex images in cellular and molecular imaging
* Image to image transformation problems

* Beyond grid-like data, such as graphs

« Use of graph techniques for molecular level analysis
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Biological Image Transformations 1'&1?! Engineering

e Biological image transformations in general

Computational | Transformed
Models Image

\ 4
A

Input Image
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Biological Image Transformations AFVI Engineering

e Image Denoising

Weigert, Martin, et al. "Content-aware image restoration: pushing the limits of fluorescence microscopy."
Nature methods 15.12 (2018):1090.
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Biological Image Transformations Engineering

e Substructure Prediction & Segmentation

Interphase

Mitotic

Segmented
cells
w‘)] Predictive models
ql} 4 R — e
"‘r@“\ (learned from dozens
‘ ‘{\ﬂ of labeled/brightfield
. image inputs)
5 " Merge
Brightfield _—
Predicted channels Composite volume

Ounkomol, Chawin, et al. "Label-free prediction of three-dimensional fluorescence images from transmitted-
light microscopy.” Nature methods 15.11 (2018): 917.
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Engineering

128 64 64 2
e Current state-of-the-artand most .n;”;"g output
e IMAGE || *1*|*| segmentation
popular network for bioimage tile S EEER

transformations

e Architecture

o Down-sampling path

o Up-sampling path

o Skip connections = Conv 3x3, ReLU

copy and crop

¥ max pool 2x2
4 up-conv 2x2
& & = CONV 1x1

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for
biomedical image segmentation.” International Conference on Medical image computing
and computer-assisted intervention. Springer, Cham, 2015.
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Local Operators in U-Net m Ensélg;‘hlﬂeernf]g

e Limited receptive field
e Focus more onlocal dependencies

e Fixed weights of kernels once trained
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Attention Operator M| Engineering

Softmax
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Local v.s. Non-local Engineering

3x3 Kernels ¢

-
(a) Convolution (b) Attention Operator
e Locationrelationship based e Relevance or similarity based
e Pixels only have access to their e Pixels have access to other pixels

in the previous layer

e Determined weights e Input-dependent weights

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017.

Fundamentally different with fully connected layers
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Global Voxel Transformation Operators (GVTOs) AFyl Engineering

‘ c ———— Input tensor & ¢ R4 hxwxe
— g v 1x1x1Convs: query (2), key (X),value (¥)
l l
1x1x1Conv 1x1x1Conv 1x1x1Conv v
C filters C filters C filters UnfOId.' Q K V c RCth'w
la Ik v) T

|

v
(‘P Y =V - Normalize( KT Q) € R4
~— Fold back: & € R&*hxwxc
I y . 1
Output tensor & + %

Attention Operator

Size-preserving GVTO
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Global Voxel Transformation Operators (GVTOS) 1.&1?4 Engineering

Transpose Conv
1x1x1 Conv 1x1x1Conv 1x1x1Conv Stride 2 1x1x1 Conv 11 131l ey SR oy 1% 1x1Conv 1x1x1Conv
C/2 filters C/2 filters Stride 2
C filters C filters C filters Transposed Conv C/2 filters 2C filters 2C filters
. K v 3x3x3 Conv 2C filters
Q L K v Stride 2 I Q Stride 2 K v
y y y C/2 filters | J— | ride l Q
ention erator
Attention Operator P Sl G

Attention Operator

Size-preserving GVTO Up-sampling GVTO Down-sampling GVTO

Global Voxel Transformer Networks for Augmented Microscopy. Nature Machine Intelligence, 2021
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GVTNets " | Engineering
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e Size-preserving GVTOs
e Apply Up-sampling / Down-sampling GVTOs optionally

Global Voxel Transformer Networks for Augmented Microscopy. Nature Machine Intelligence, 2021
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Results: 3D Image Denoising AF_VI TEE?;\;;}?A;:;EiR;.g

e CARE datasets

Weigert, Martin, et al. "Content-aware image restoration: pushing the limits of fluorescence microscopy." Nature methods
15.12(2018):1090.

o 3D Image Denoising

SSIM PSNR
Input Baseline Ours Input Baseline Ours
Planaria CO0 0.226 0.771 0.795 22.22 31.57 32.09
Cl 0.183 0.740 0.778 21.73 30.15 31.07
C2 0.156 0.644 0.694 21.44 28.13 28.72
Tribolium CO 0.368 0.917 0.921 22.68 32.43 32.57
C1 0.236 0.900 0.907 21.37 31.04 31.21
C2 0.182 0.876 0.885 20.81 29.41 29.55

*8SIM : The Structural Similarity Index, the higher the better.

*PSNR : Peak Signal-to-Noise Ratio, the higher the better.

*Baseline: Weigert, Martin, et al. "Content-aware image restoration: pushing the
limits of fluorescence microscopy." Nature methods 15.12 (2018):1090.
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Results: 3D Image Denoising AF.W Exﬁgﬁi”e”lﬁ“ﬁ'g

Planaria
1

e CARE datasets

Weigert, Martin, et al. "Content-aware image restoration: pushing the limits of
fluorescence microscopy.” Nature methods 15.12 (2018): 1090.

o 3D Image Denoising (Planaria)

Input

SSIM over patch sizes
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Results: 3D-2D Image Projection AF.W Enfél&r“]”eemf]g

e CARE datasets

Weigert, Martin, et al. "Content-aware image restoration: pushing the limits of fluorescence microscopy.” Nature methods
15.12(2018):1090.

o 3D Image Projection (Flywing)

Projection Module | 2D Non-local

3D to 2D - U-Net
Noised 3D Image Same & Up-sampling GABs ~ Same & Up-sampling GABs Projected 2D Image
SSIM PSNR

Input Baseline Ours Input Baseline Ours

Flywing CO0 0.190 0.607 0.753 18.38 23.66 25.86
C1  0.080 0.597 0.695 17.24 22.55 24.27

C2 0.024 0.559 0.590 16.63 21.96 22.35
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Results: 3D-2D Image Projection M | Engineering

e Projection (Flywing)

Condition 1 Condition 3
|

SSIM (higher is better)
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Results: Label-Free Prediction AF.W Enjgl&r“]”eemf]g

e L|abel-free prediction

Ounkomol, Chawin, et al. "Label-free prediction of three-dimensional fluorescence images from transmitted-light
microscopy.” Nature methods 15.11 (2018): 917.

Pearson Correlation

Dataset Baseline (AVG) Ours (AVG) Difference  P-value
fibrillarin 0.876 0.880 0.005 0.021317
sec61_beta 0.722 0.738 0.015 0.029856
myosin_iib 0.481 0.504 0.023 0.002878

dna 0.626 0.638 0.012 0.004611
alpha_tubulin 0.800 0.806 0.007 0.051277
lamin_b1l 0.843 0.853 0.009 4.04E-05
beta_actin 0.758 0.765 0.007 0.05905
dic_lamin_b1l 0.645 0.648 0.003 0.01688
membrane_caax_63x 0.699 0.711 0.012 3.04E-06
zol 0.460 0.486 0.026 0.023023

tom20 0.703 0.719 0.015 3.40E-07

st6gall 0.200 0.214 0.014 0.003901

*Shown are pearson correlations averaged on 20 test samples per dataset
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Results: Label-Free Prediction -ARM.\ Engineering

(mEGFP

e L|abel-free prediction

Ounkomol, Chawin, et al. "Label-free prediction of three-dimensional fluorescence images from
transmitted-light microscopy." Nature methods 15.11 (2018): 917.

[ U-Net

g

Pearson correlation coefficient (r)

Structures
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Engineering

Prediction Ground Truth

Department of Computer Science & Engineering




TEXAS A&M UNIVERSITY

Transfer Learning Engineering
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Results: Transfer Learning Engineering

e Transfer Learning - without fine-tuning

SSIM - cross dataset prediction
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Self-Supervised Transformations AFVI Engineering

« Supervised image transformation requires matched pairs of training
Images, which might be hard to obtain

« Can we do unsupervised learning?
 We use self-supervised approaches

« Self-supervised learning is a type of unsupervised learning
approach that predict one part of input from other parts

» Predict any part of the input from any time or space —
other part. -
» Predict the from the past. ’

» Predict the from the visible. ’ ’ ' | D
» Predict the from all , |
available parts. I ’ ﬁ l

» Pretend there is a part of the input you don’t know and predict that.

Figure: LeCun
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NOlsezsame .ATM Engineering

«  We derive a self-supervised upper bound of the supervised loss

Theorem 1. Consider a normalized noisy image x € R (obtained by subtracting the mean and
dividing by the standard deviation) and its ground truth signal y € R™. Assume the noise is zero-
mean and i.i.d among all the dimensions, and let J be a subset of m dimensions uniformly sampled
from the image x. For any f : R™ — R™, we have

1/2

E, ||f () — f(®se)s]°

Eqy [1f (@) =yl [+ llz - y|* <[E. [If(2) - |° +2mE, ]

Supervised loss

(6)

The self-supervised bound as the new loss

Yaochen Xie, Zhengyang Wang, and Shuiwang Ji: Noise2Same: Optimizing A Self-Supervised Bound for Image
Denoising. Neural Information Processing Systems (NeurlPS), 2020
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Results: Noise2Same

AP

TEXAS A&M UNIVERSITY

Engineering

Datasets

Methods ImageNet HanZi Planaria BSD68

Input 9.69 6.45 21.52/21.09/20.82 20.19

Traditional NLM [3] 18.04 8.41 25.80/24.03/21.62 2273
BM3D [5] 18.74 10.90 - 28.59

g od Noise2True 23.39 15.66 31.57/30.15/28.13 29.06
upervise Noise2Noise [13] 23.27 14.30 - 28.86
Seb”—Sup ervised Laine et al. [12] - - - 28.84

+ noise model

Laine et al. [12] 20.89 10.70 - 27.15

Noise2Void [10] 21.36 13.72 25.84/23.57/21.60 27.71

Self-Supervised Noise2Self-Noise [1] 20.38 13.94 27.58/24.83/21.83  26.98
Noise2Self-Donut [1] 8.62 13.29 27.63/24.72/21.73  28.20

Noise2Same 22.26 14.38 29.48/2693/22.41 2795
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Results: Noise2Same Engineering

Noise2Noise Noise2True Ground Truth
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Results: Noise2Same Engineering

Noise2Self Ground Truth

Condition 1

Condition 2

Condition 3
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Deep Learning on Grid-Like Data AFYI Eﬁsg'}&ri”élffﬁ'g

“Hello world!” W

Text Audio

Grid-like Data!

Pictures from Google Images
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AIM Engineering

From Images to Graphs
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Ubiquitous Graph Data Engineering

Objects + Relationships = Graph

@ | Ea-- Nl
i@ff" e /tf_‘ Bl E
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_\!// . ,::@/\ - h \_]7 .
=iy . \\ \\\\ o ¢ 1
Social networks Drug/Material molecules Citation networks Brain networks

Photos from Google Images
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Tasks on Graph Data Engineering

* Node classification/regression
» Graph classification/regression
 Link prediction

« Community detection
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Tasks on Graph Data 1'&1?! Enjg,&r“:eer,;g

* e.g., Node classification

— Citation Networks

)
.| Computer
:.« science

- J
) —
Math

e AN

X
.
® ® O
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Tasks on Graph Data 1'&1?! Enjg,&r“:eer,;g

* e.g., Graph classification

— Molecular property prediction

2
H3C
\NH
O O}\NH
HBC\N/\/\N
NQ“\N éHa
L 0 o
Cl
Cl
Toxic Non-toxic ?
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Molecular Property Prediction Engineering

2 - .- - ' - -
Quantum Physical . : :
. ) Biophysics Physiolo
Mechanics Chemistry phy y gy
M8 ESOL HIV - PCBA BBBP * SIDER
QM9 Lipophilicity BACE e MUV Tox21 e ClinTox
Q FreeSolv ToxCast

Geometric, energetic, Water solubility, : . - Barrier permeability,
: : : Bioactivity, binding :
electronic, thermodynamic hydration free energy, Affinities toxicology, adverse
properties lipophilicity reactions

Wu, Zhenqin, et al. "MoleculeNet: a benchmark for molecular
machine learning." Chemical science 9.2 (2018): 513-530.
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3D Graphs

Engineering

3D graphs (13.5)
» Graph structure
» Node-level positional info

(-1,0,1)

Important for a lot of real-world applications

S—
xé;f%

Molecular modeling Protein structural representation Quantum system simulation

Photos from Google Images
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Research Obstacles

TEXAS A&M UNIVERSITY

Engineering

» No unified framework for 3D graphs
» Structural representation is not complete

Continuous filter

energy £

atom positions R

SchNet: distance

DimeNet: distance & angle Only distance & angle is not enough!

Schitt, K. et al. Schnet: A continuous-filter convolutional neural network for modeling quantum interactions. In NIPS, pp. 991-1001, 2017.
Klicpera, J. et al. Directional message passing for molecular graphs. In ICLR, 2020.
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Engineering

A Unified Framework: 3DGN

/ e p—e '
/\ € = ‘;Df (ekvv?‘k s Vg, Esk s W, ;O; ({Fh}h.:r;{u.a-ku,&-i.k )) y

(Vi pTY (Ei) s w, pP T ({h Fh=iung ) 5
e ) (V!) u, PP ({rhth=1m)) .

u
7
pv—>u
vV . hV _ 874 » A generic and unifying framework for 3D
graphs

\\ / o et
pe—m p
/ / ’
. -E » An interface for manipulating 3D graphs

E JoX
at different levels of granularity

Liu, Yi, et al. "Spherical Message Passing for 3D Graph Networks." arXiv preprint arXiv:2102.05013 (2021)
Peter W. Battaglia et al.: Relational inductive biases, deep learning, and graph networks. https://arxiv.org/abs/1806.01261
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A Novel MP Method: SMP AIM | Engineering

Spherical message passing
v" An accurate and complete architecture for 3DGN

v Existing methods are special cases

(b)

SMP considers distance, angle, and torsion Compute torsion

Liu, Yi, et al. "Spherical Message Passing for 3D Graph Networks." arXiv preprint arXiv:2102.05013 (2021).
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Results: SphereNet Engineering

QM9

Property Unit PPGN  SchNet PhysNet Cormorant MGCN  DimeNet DimeNet++  SphereNet

i D 0.047  0.033  0.0529 0.13 0.0560  0.0286 0.0297 0.0269 '
a ay’ 0.131 0235  0.0615 0.092 0.0300  0.0469 0.0435 0.0465 - ’A““ R -
€HOMO meV 40.3 4] 329 36 42.1 27.8 24.6 23.6 e , . . 4 \
ELUMO meV 327 34 24.7 36 57.4 19.7 19.5 18.9 \ @ J YW’ y* “r
Ac meV 600 63 42.5 60 64.2 34.8 32.6 32.3 \ / \ ” / g N\ //
(R?) an> 0.592  0.073 0.765 0.673 0.110 0.331 0.331 0.292
7ZPVE meV 3.12 1.7 1.39 1.98 1.12 1.29 1.21 1.12
Us meV 36.8 14 8.15 28 12.9 8.02 6.32 6.26 '8
U meV 36.8 19 8.34 - 14.4 7.89 6.28 7.33 £ F B
H meV 363 14 8.42 ‘ 14.6 8.11 6.53 6.40 P/ ada . \
G meV 36.4 14 9.40 : 16.2 8.98 7.56 8.0 .’ d+2) \*/
ey mf:flk 0.055  0.033 0.0280 0.031 0.0380  0.0249 0.0230 0.0215 — — — —
std. MAE % 1.84 1.76 1.37 2.14 1.86 1.05 0.98 0.94
‘ % ) Foc® 3l ol
OCZO B T v e
Energy MAE [eV] | ] EwT 1
Model 1D 00D Ads 00D Cat  OODBoth | ID 00D Ads  OOD Cat  OOD Both .
CGCNN 1.0479 1.0527 1.0232 0.9608 ‘ 1,394 1.38% 1.59% 1.57% SphereNet fllters
SchNet 1.0858 1. 1044 1.0720 1.0391 1.34% 1.399 1.42% 1.44% ; :
DimeNet 1.0117 1.0734 0.9814 0.9767 1.459 1.41% 1.53% 1.41% All the dIStance’ angle’ and torsion
DimeNet++ (.8819 0.9106 0.8357 0.8408 1.94% 1.69% 2.13% 1.84% make COﬂtl’ibUtiOnS
SphereNet  0.8352  (.8723 0.7959 0.7952 | 1.96% 2.02% 2.19% 1.90 %
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Neural Nets are Black Boxes

TEXAS A&M UNIVERSITY
AN Engineering

* They cannot be fully trusted!

* It prevents their use in critical applications
pertaining to fairness, privacy, and safety

* We need explanation techniques

« Explain the relationships between input
graph and output predictions

Reference: https://towardsdatascience.com/guide-to-interpretable-machine-learning-d40e8a64b6cf

INPUT

v

BLACK BOX

THE BLACK BOX IS AN ALGORITHIM
THAT TAKES DATA AND TURNS IT INTO
SOMETHING. THE ISSUE IS THAT
BLACK BOXES OFTEN FIND PATTERNS
WITHOUT BEING ABLE TO EXPAIN
THEIR METHODOLOGY.

> QUTPUT
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EXp|a| N | ng GNNS .ATM TIEEﬁSgAIS'::/IeUz\;.EIR:g

» Existing methods focus on nodes, 3 b

edges, and features. c
* Less intuitive, not human-intelligible

* Subgraph-level explanations

 Subgraphs are highly related to the 2

functionalities of graphs
More human-intelligible f :
 Example: network motifs, the simple building

blocks of complex networks o

Reference: https://en.wikipedia.org/wiki/Dense_subgraph

Department of Computer Science & Engineering



The Proposed SubgraphX AFy[ En;,ﬂeer,;g

« Explain GNN predictions using subgraphs

* Find the most important subgraph for a target prediction

« Explore subgraphs with the search algorithm

« Monte Carlo Tree Search
 Learn the trade-off between exploration and exploitation

A Game-Theoretical Scoring Function

« Shapley values to measure the importance of different subgraphs

« Efficient approximation schemes to compute Shapley values by considering interactions
within the information aggregation range

Hao Yuan....Shuiwang Ji: On Explainability of Graph Neural Networks via Subgraph Explorations. https://arxiv.org/abs/2102.05152
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The Proposed SubgraphX Engineering

« Shapley values can capture the interactions in GNNS!

——— e —— — — — — — — — — — — — — — — — — — ——— — — — — ——— — — ————— — — — — — — — ——— — — —— — — —
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Results: SubgraphX AF.W Enjgl&r“]ﬂeem_s]g

- Data are labeled by the motifs (house-like motif or cycle motif)
« First row: correct prediction; second row: incorrect prediction.

l |
| |
|

N/ N7 N/ N7
| \\\/r_ \\\Zr_ \\\;_"_— \‘\\Z__ |
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i A N B N B N -
| |
l |
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| T e T e T e T |
! | I | | |
| — — N |
i s / \—a — e /\“N-h —_ e /“‘-\ — B /("—\ — |
: — \ ) — N\ ), - \\/ —1 \ — :
| / / / / |
o |

SubgraphX MCTS GNN PGExplainer GNNExplainer
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Results: SubgraphX AF.W Enjgﬁ?eenég
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Fidelity: the change of prediction by removing important substructures (higher is better)
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From Graph Prediction to Generation
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Molecular Graph Generation AFVI Engineering

« Afundamental problem in drug discovery is to find novel molecules with
desired properties.

« Search in the chemical space with molecular property prediction.
»  Extremely expensive since chemical space is huge.

H5C /\/\ @
\N N

|
@ »  Properties (e.g., Toxicity)

CH,

« Generate molecules with desired properties directly.
» Circumvent the expensive search.
» Molecule generation is still in the preliminary stage.

H3C._ @

N N

Properties (e.g., Druglikeness) > I

CH,
cl @
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Molecular Graph Generation AFVI Engineering

Given a molecule dataset, use it to train a molecule generator which
can generate valid molecular graphs.
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Property Optimization Engineering

QL 00
'''''''' B &s 0
QED: 0.626 QED: 0.734
o\; i | \ / =
_________ > o
QED: 0.948 QED: 0.948

Given a pretrained molecule generator, optimize it to generate
molecules with high property scores.

Department of Computer Science & Engineering



A Discrete Flow Model AFYI Enjglg;:ﬂeerlrflg

[ J { rtormaton > Decompose the molecular graph into a sequence
77777777 e e o of discrete tokens S, = (ay, ay, boq, as, ...).
"j > Use the composition of multiple invertible modulo
© Conditiona shift transforms to convert discrete latent variables
) |
z to the next discrete token x based on
“mmm———— A< Flow L2—— Pz, X = (Z + l,l) mod t,
v where t is the number of categories of x.
[G:)j Conditional
@J —T > Conditional information is extracted with Relational
SR Flow Lo1—— Pz, Graph Convolutional networks (R-GCN)" and

incorporated into u.

Youzhi Luo, Kegiang Yan, Shuiwang Ji: GraphDF: A Discrete Flow Model for Molecular Graph Generation. https://arxiv.org/abs/2102.01189
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Optimize Property with Reinforcement Learning AFy[ Eﬁ;‘}ﬂ;:ﬁﬁ'g

. > Formulate the sequential generation of molecular
~ graph as a Markov Decision Process,
____________ -~ Q i
. state --- currently unfinished sub-graph,
= action --- new node or edge addition,
A QED: 0.734 +« reward --- property score of the finished molecular
graph.

> Start from a model pretrained on a molecule dataset,
then fine-tune the model with reinforcement learning
by Proximal Policy Optimization (PPO)* algorithm.

Reward

Youzhi Luo, Kegiang Yan, Shuiwang Ji: GraphDF: A Discrete Flow Model for Molecular Graph Generation. https://arxiv.org/abs/2102.01189
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« Energy-based models (EBMSs)
« Eg(x):X - R is the energy function, e.g., a deep neural network.
* The probabillity distribution given by an EBM is:

e~ Eg(x)
po(x) = 7
o Zp=[ e EoeMdx for continuous data and Z,=Y. e~E¢(*) for discrete data. Zy is usually

intractable.

« EBMs have been used as generative models in various domains, e.g., images and videos.

LeCun, Yann, et al. "A tutorial on energy-based learning." Predicting structured data 1.0, 2006.
Song, Yang, and Diederik P. Kingma. "How to Train Your Energy-Based Models." Preprint, 2021.
Du, Yilun, et al. "Improved Contrastive Divergence Training of Energy Based Models." Neural Information Processing Systems, 2019.
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GraphEBM M| Engineering

Energy function is parameterized as a permutation invariant graph neural network.
MaX|mum likelihood tramlng with MCMC (e.qg., Langevm dynamics).

loss = Eg(X®,49) — E4(X©,40)

Goal-directed: push down energies with flexible degrees f(y) based on property values y
loss = f(¥)Eg(X®,A%) — E4(X©,A0).
Multi-objective: combine multiple trained energy functions associated with different properties
Eg«(X,A) = Eg: (X, A)*+ Eg:(X, A).
Generating with MCMC sampling.

Meng Liu, Kegiang Yan, Bora Oztekin, Shuiwang Ji: GraphEBM: Molecular Graph Generation with Energy-Based Models. https://arxiv.org/abs/2102.00546
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Method Validity % Validity w/o check % Uniqueness % Novelty % Reconstruct %
JT-VAE 100 n/a 100 100 76.7
GCPN 100 20 99.97 100 n/a
MoFlow 100 81.76 99.99 100 100
GraphCNF 96.35 n/a 99.98 99.98 100
GraphAF 100 68 99.1 100 100
GraphDF (ours) 100 89.03 99.16 100 100
Table 1 Molecule generation performance on ZINC 250K dataset. GraphDF can model the
underlying chemical rule more accurately and achieve much higher validity w/o check rate.
Penalized logP QED
Method 1st 2nd 3rd 1st 2nd 3rd
JT-VAE 5.3 4.93 4.49 0.925 0.911 0.91
GCPN 7.98 7.85 7.8 0.948 0.947 0.946
MRNN 8.63 6.08 4.73 0.844 0.796 0.736
MoFlow n/a n/a n/a 0.948 0.948 0.948
GraphAF 12.23 11.29 11.05 0.948 0.948 0.947
GraphDF (ours) 13.70 13.18 13.16 0.948 0.948 0.948

Table 2 Property optimization performance evaluated by top-3 property scores. GraphDF
has stronger capacity to search molecules with high property scores.
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« Random generation « Multi-objective generation

» can generate non-trivial molecules » can improve multiple properties
R Gy . Y
| / . / N
S “Br 5.0
T N /Q« . > S
\ 2.51
(o %
« Goal-directed generation
» can improve the property of generated molecules § .ol
0:200 Random generation 354 Random generation “
- 4 E=1 Goal-directed generation - : =1 Goal-directed generation 751
o 2204 1007
E E 1.5
g 2
E e 1.0 4 -12.5 A
0.0 0.2 OQ4ED 0.6 0.8 0.0 0.2 (SED 0.6 0.8
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DIG: Dive into Graphs m Exr;\sé/mneu:ﬁ:.g

A research-oriented testbed for graph neural networks
Includes unified implementation of common methods, datasets, evaluations
A turn-key solution to easily test new ideas and compare with baselines

Currently, DIG includes four major research directions for graphs
» Graph generation

Self-supervised learning on graphs

Interpretability of graph neural networks

3D graphs

MRS

Department of Computer Science & Engineering
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https://github.com/divelab/DIG (Coming soon!)
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https://github.com/divelab/DIG

. TEXAS A&M UNIVERSITY
Conclusion and Outlook AFVI

Engineering

« Concerted efforts to solve challenging real-world problems

« Develop new methods, and use them to solve problems in biology,
neuroscience, chemistry, physics, etc.

« Scales range from cellular, molecular, to atomic in quantum world
« Interested in fundamental methodology, and fundamental science
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Image and Graph Deep Learning Methods for Cellular and
Molecular Level Science Discoveries

Sji@tamu.edu
http://[people.tamu.edu/~sji/
https://github.com/divelab/DIG/ coming in 3 weeks




