

Image and Graph Deep Learning Methods for Cellular and Molecular Level Science Discoveries

Shuiwang Ji Department of Computer Science & Engineering

Deep Learning in Pre-AlexNet Era (2009)

Engineering

ĀM

- Action recognition from real-world airport surveillance video
- One of the earliest work on deep learning for video analysis
- Winner of the 2009 TRECVID Video Surveillance Challenge

Ji et al., 3D Convolutional Neural Networks for Human Action Recognition. ICML'2010 and TPAMI'2013. 4,000+ citations

- More complex images in cellular and molecular imaging
- Image to image transformation problems
- Beyond grid-like data, such as graphs
- Use of graph techniques for molecular level analysis

Biological Image Transformations

• Biological image transformations in general

Biological Image Transformations

TEXAS A&M UNIVERSITY Engineering

Image Denoising

Weigert, Martin, et al. "Content-aware image restoration: pushing the limits of fluorescence microscopy." Nature methods 15.12 (2018): 1090.

Biological Image Transformations

Substructure Prediction & Segmentation

Ounkomol, Chawin, et al. "Label-free prediction of three-dimensional fluorescence images from transmittedlight microscopy." Nature methods 15.11 (2018): 917.

U-Net

- Current state-of-the-art and most popular network for bioimage transformations
- Architecture
 - Down-sampling path
 - Up-sampling path
 - Skip connections

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation." International Conference on Medical image computing and computer-assisted intervention. Springer, Cham, 2015.

Local Operators in U-Net

Engineering

- Limited receptive field
- Focus more on local dependencies
- Fixed weights of kernels once trained

Attention Operator

Local v.s. Non-local

- Location relationship based
- Pixels only have access to their neighbour pixels in the previous layer
- Determined weights

- Relevance or similarity based
- Pixels have access to other pixels globally
- Input-dependent weights

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017.

Fundamentally different with fully connected layers

Global Voxel Transformation Operators (GVTOs)

Size-preserving GVTO

TEXAS A&M UNIVERSITY

Engineering

A M

Global Voxel Transformation Operators (GVTOs)

Transposed Conv

Stride 2

C/2 filters

 $\begin{array}{c} & & & \\ & & & \\ & & & \\$

Size-preserving GVTO

Up-sampling GVTO

. . .

1 x 1 x 1 Conv

C/2 filters

Attention Operator

 (\mathbf{f})

ĸ

1 x 1 x 1 Conv

C/2 filters

V

Transpose Conv

Stride 2

C/2 filters

Q

. . . 3 x 3 x 3 Conv 1 x 1 x 1 Conv 1 x 1 x 1 Conv Stride 2 2C filters 2C filters 2C filters 3 x 3 x 3 Conv V Κ Stride 2 Q 2C filters Attention Operator ...

A M

TEXAS A&M UNIVERSITY

Engineering

Down-sampling GVTO

Global Voxel Transformer Networks for Augmented Microscopy. Nature Machine Intelligence, 2021

GVTNets

- Size-preserving GVTOs
- Apply Up-sampling / Down-sampling GVTOs optionally

Global Voxel Transformer Networks for Augmented Microscopy. Nature Machine Intelligence, 2021

Results: 3D Image Denoising

TEXAS A&M UNIVERSITY Engineering

• CARE datasets

Weigert, Martin, et al. "Content-aware image restoration: pushing the limits of fluorescence microscopy." Nature methods 15.12 (2018): 1090.

• 3D Image Denoising

			\mathbf{SSIM}		PSNR			
		Input	Baseline	Ours	Input	Baseline	Ours	
Planaria	C0	0.226	0.771	0.795	22.22	31.57	32.09	
	C1	0.183	0.740	0.778	21.73	30.15	31.07	
	C2	0.156	0.644	0.694	21.44	28.13	28.72	
Tribolium	C0	0.368	0.917	0.921	22.68	32.43	32.57	
	C1	0.236	0.900	0.907	21.37	31.04	31.21	
	C2	0.182	0.876	0.885	20.81	29.41	29.55	

* **SSIM** : The Structural Similarity Index, the higher the better.

* **PSNR** : Peak Signal-to-Noise Ratio, the higher the better.

* **Baseline**: Weigert, Martin, et al. "Content-aware image restoration: pushing the limits of fluorescence microscopy." Nature methods 15.12 (2018): 1090.

Results: 3D Image Denoising

Department of Computer Science & Engineering

Results: 3D-2D Image Projection

Engineering

• CARE datasets

Weigert, Martin, et al. "Content-aware image restoration: pushing the limits of fluorescence microscopy." Nature methods 15.12 (2018): 1090.

3D Image Projection (Flywing)

		\mathbf{SSIM}			PSNR			
		Input	Baseline	Ours	Input	Baseline	Ours	
Flywing	C0	0.190	0.607	0.753	18.38	23.66	25.86	
	C1	0.080	0.597	0.695	17.24	22.55	24.27	
	C2	0.024	0.559	0.590	16.63	21.96	22.35	

Results: 3D-2D Image Projection

Projection (Flywing) lacksquare

0.7 -0.6 -0.5 -0.4 -0.3 -

0.2 -

0.1 -0.0

0.07 0.06 0.05 0.04 -0.03 -

0.02 -

0.01 -0.00 -

Results: Label-Free Prediction

TEXAS A&M UNIVERSITY Engineering

• Label-free prediction

Ounkomol, Chawin, et al. "Label-free prediction of three-dimensional fluorescence images from transmitted-light microscopy." Nature methods 15.11 (2018): 917.

	Pearson Correlation						
Dataset	Baseline (AVG)	Ours (AVG)	Difference	P-value			
fibrillarin	0.876	0.880	0.005	0.021317			
${f sec61_beta}$	0.722	0.738	0.015	0.029856			
${f myosin_iib}$	0.481	0.504	0.023	0.002878			
dna	0.626	0.638	0.012	0.004611			
$alpha_tubulin$	0.800	0.806	0.007	0.051277			
$lamin_b1$	0.843	0.853	0.009	4.04E-05			
${f beta}_{-}{f actin}$	0.758	0.765	0.007	0.05905			
dic_lamin_b1	0.645	0.648	0.003	0.01688			
$membrane_caax_63x$	0.699	0.711	0.012	3.04E-06			
$\mathbf{zo1}$	0.460	0.486	0.026	0.023023			
$\mathbf{tom20}$	0.703	0.719	0.015	3.40E-07			
st6gal1	0.200	0.214	0.014	0.003901			

* Shown are **pearson correlations** averaged on 20 test samples per dataset

Results: Label-Free Prediction

• Label-free prediction

Ounkomol, Chawin, et al. "Label-free prediction of three-dimensional fluorescence images from transmitted-light microscopy." Nature methods 15.11 (2018): 917.

Endor fa (mEGFP

Transfer Learning

Results: Transfer Learning

• Transfer Learning - without fine-tuning

SSIM - cross dataset prediction

Self-Supervised Transformations

- Supervised image transformation requires matched pairs of training images, which might be hard to obtain
- Can we do unsupervised learning?
- We use self-supervised approaches
- Self-supervised learning is a type of unsupervised learning approach that predict one part of input from other parts
 - Predict any part of the input from any other part.
 - Predict the future from the past.
 - Predict the masked from the visible.
 - Predict the any occluded part from all available parts.

time or space \rightarrow

Pretend there is a part of the input you don't know and predict that.

Figure: LeCun

• We derive a **self-supervised upper bound** of the supervised loss

Theorem 1. Consider a normalized noisy image $x \in \mathbb{R}^m$ (obtained by subtracting the mean and dividing by the standard deviation) and its ground truth signal $y \in \mathbb{R}^m$. Assume the noise is zeromean and i.i.d among all the dimensions, and let J be a subset of m dimensions uniformly sampled from the image x. For any $f : \mathbb{R}^m \to \mathbb{R}^m$, we have

$$\mathbb{E}_{x,y} \|f(\boldsymbol{x}) - \boldsymbol{y}\|^{2} + \|\boldsymbol{x} - \boldsymbol{y}\|^{2} \leq \mathbb{E}_{x} \|f(\boldsymbol{x}) - \boldsymbol{x}\|^{2} + 2m \mathbb{E}_{J} \left[\frac{\mathbb{E}_{x} \|f(\boldsymbol{x})_{J} - f(\boldsymbol{x}_{J^{c}})_{J}\|^{2}}{|J|} \right]^{1/2}$$
(6)
Supervised loss

The self-supervised bound as the new loss

Yaochen Xie, Zhengyang Wang, and Shuiwang Ji: Noise2Same: Optimizing A Self-Supervised Bound for Image Denoising. Neural Information Processing Systems (NeurIPS), 2020

				Datasets	
	Methods	ImageNet	HànZì	Planaria	BSD68
	Input	9.69	6.45	21.52 / 21.09 / 20.82	20.19
Traditional	NLM [3]	18.04	8.41	25.80 / 24.03 / 21.62	22.73
Iraditional	BM3D [5]	18.74	10.90	-	28.59
Supervised	Noise2True	23.39	15.66	31.57 / 30.15 / 28.13	29.06
	Noise2Noise [13]	23.27	14.30	-	28.86
Self-Supervised + noise model	Laine et al. [12]	_	-	_	28.84
	Laine et al. [12]	20.89	10.70	-	27.15
Self-Supervised	Noise2Void [10]	21.36	13.72	25.84 / 23.57 / 21.60	27.71
	Noise2Self-Noise [1]	20.38	13.94	27.58 / 24.83 / 21.83	26.98
	Noise2Self-Donut [1]	8.62	13.29	27.63 / 24.72 / 21.73	28.20
	Noise2Same	22.26	14.38	29.48 / 26.93 / 22.41	27.95

Results: Noise2Same

TEXAS A&M UNIVERSITY Engineering

Results: Noise2Same

Department of Computer Science & Engineering

Deep Learning on Grid-Like Data

"Hello world!"

Text

Image

AM

Grid-like Data!

Pictures from Google Images

From Images to Graphs

Ubiquitous Graph Data

Engineering

Objects + Relationships = Graph

Citation networks

Brain networks

Tasks on Graph Data

- Node classification/regression
- Graph classification/regression
- Link prediction
- Community detection

Tasks on Graph Data

- e.g., Node classification
 - Citation Networks

Tasks on Graph Data

- e.g., Graph classification
 - Molecular property prediction

Molecular Property Prediction

Engineering

Wu, Zhenqin, et al. "MoleculeNet: a benchmark for molecular machine learning." Chemical science 9.2 (2018): 513-530.

Department of Computer Science & Engineering

3D Graphs

3D graphs

- Graph structure
- Node-level positional info

Important for a lot of real-world applications

Protein structural representation

Quantum system simulation

Photos from Google Images

Research Obstacles

 d_3

- > No unified framework for 3D graphs
- > Structural representation is **not** complete

SchNet: distance

DimeNet: distance & angle

Only distance & angle is not enough!

Schütt, K. et al. Schnet: A continuous-filter convolutional neural network for modeling quantum interactions. In NIPS, pp. 991–1001, 2017. Klicpera, J. et al. Directional message passing for molecular graphs. In ICLR, 2020.

A Unified Framework: 3DGN

$$\mathbf{e}_{k}^{\prime} = \phi^{e} \left(\mathbf{e}_{k}, \mathbf{v}_{r_{k}}, \mathbf{v}_{s_{k}}, E_{s_{k}}, \mathbf{u}, \rho^{p \to e} \left(\{ \mathbf{r}_{h} \}_{h=r_{k} \cup s_{k} \cup \mathcal{N}_{s_{k}}} \right) \right),$$

$$\mathbf{v}_{i}^{\prime} = \phi^{v} \left(\mathbf{v}_{i}, \rho^{e \to v} \left(E_{i} \right), \mathbf{u}, \rho^{p \to v} \left(\{ \mathbf{r}_{h} \}_{h=i \cup \mathcal{N}_{i}} \right) \right),$$

$$\mathbf{u}^{\prime} = \phi^{u} \left(\rho^{e \to u} \left(E^{\prime} \right), \rho^{v \to u} \left(V^{\prime} \right), \mathbf{u}, \rho^{p \to u} \left(\{ \mathbf{r}_{h} \}_{h=1:n} \right) \right).$$

- A generic and unifying framework for 3D graphs
- An interface for manipulating 3D graphs at different levels of granularity

Liu, Yi, et al. "Spherical Message Passing for 3D Graph Networks." arXiv preprint arXiv:2102.05013 (2021). Peter W. Battaglia et al.: Relational inductive biases, deep learning, and graph networks. https://arxiv.org/abs/1806.01261

Spherical message passing

- ✓ An accurate and complete architecture for 3DGN
- ✓ Existing methods are special cases

Liu, Yi, et al. "Spherical Message Passing for 3D Graph Networks." arXiv preprint arXiv:2102.05013 (2021).

Results: SphereNet

QM9

Property	Unit	PPGN	SchNet	PhysNet	Cormorant	MGCN	DimeNet	DimeNet++	SphereNet
μ	D	0.047	0.033	0.0529	0.13	0.0560	0.0286	0.0297	0.0269
α	$a_0{}^3$	0.131	0.235	0.0615	0.092	0.0300	0.0469	0.0435	0.0465
$\epsilon_{\rm HOMO}$	meV	40.3	41	32.9	36	42.1	27.8	24.6	23.6
€LUMO	meV	32.7	34	24.7	36	57.4	19.7	19.5	18.9
$\Delta \epsilon$	meV	60.0	63	42.5	60	64.2	34.8	32.6	32.3
$\langle R^2 \rangle$	a_0^2	0.592	0.073	0.765	0.673	0.110	0.331	0.331	0.292
ZPVE	meV	3.12	1.7	1.39	1.98	1.12	1.29	1.21	1.12
U_0	meV	36.8	14	8.15	28	12.9	8.02	6.32	6.26
U	meV	36.8	19	8.34	-	14.4	7.89	6.28	7.33
H	meV	36.3	14	8.42	-	14.6	8.11	6.53	6.40
G	meV	36.4	14	9.40	-	16.2	8.98	7.56	8.0
$c_{\rm v}$	<u>cal</u> mol K	0.055	0.033	0.0280	0.031	0.0380	0.0249	0.0230	0.0215
std. MAE	%	1.84	1.76	1.37	2.14	1.86	1.05	0.98	0.94

OC20

		Energy 1	MAE [eV]↓		EwT↑			
Model	ID	OOD Ads	OOD Cat	OOD Both	ID	OOD Ads	OOD Cat	OOD Both
CGCNN	1.0479	1.0527	1.0232	0.9608	1.39%	1.38%	1.59%	1.57%
SchNet	1.0858	1.1044	1.0720	1.0391	1.34%	1.39%	1.42%	1.44%
DimeNet	1.0117	1.0734	0.9814	0.9767	1.45%	1.41%	1.53%	1.41%
DimeNet++	0.8819	0.9106	0.8357	0.8408	1.94%	1.69%	2.13%	1.84%
SphereNet	0.8352	0.8723	0.7959	0.7952	1.96%	2.02%	2.19%	1.90 %

SphereNet filters

All the distance, angle, and torsion make contributions

Neural Nets are Black Boxes

- They cannot be fully trusted!
 - It prevents their use in critical applications pertaining to fairness, privacy, and safety

- We need explanation techniques
 - Explain the relationships between input graph and output predictions

BLACK BOX

THE BLACK BOX IS AN ALGORITHIM THAT TAKES DATA AND TURNS IT INTO SOMETHING. THE ISSUE IS THAT BLACK BOXES OFTEN FIND PATTERNS WITHOUT BEING ABLE TO EXPAIN THEIR METHODOLOGY.

Reference: https://towardsdatascience.com/guide-to-interpretable-machine-learning-d40e8a64b6cf

Reference: https://en.wikipedia.org/wiki/Dense_subgraph

Explaining GNNs

- Existing methods focus on nodes, edges, and features.
 - Less intuitive, not human-intelligible
- Subgraph-level explanations
 - Subgraphs are highly related to the functionalities of graphs
 - More human-intelligible
 - Example: network motifs, the simple building blocks of complex networks

The Proposed SubgraphX

- Explain GNN predictions using subgraphs
 - Find the most important subgraph for a target prediction
- Explore subgraphs with the search algorithm
 - Monte Carlo Tree Search
 - Learn the trade-off between exploration and exploitation
- A Game-Theoretical Scoring Function
 - Shapley values to measure the importance of different subgraphs
 - Efficient approximation schemes to compute Shapley values by considering interactions within the information aggregation range

Hao Yuan....Shuiwang Ji: On Explainability of Graph Neural Networks via Subgraph Explorations. https://arxiv.org/abs/2102.05152

The Proposed SubgraphX

• Shapley values can capture the interactions in GNNs!

Department of Computer Science & Engineering

Results: SubgraphX

- Data are labeled by the motifs (house-like motif or cycle motif)
- First row: correct prediction; second row: incorrect prediction.

Results: SubgraphX

Engineering

Fidelity: the change of prediction by removing important substructures (higher is better)

From Graph Prediction to Generation

Molecular Graph Generation

- A fundamental problem in drug discovery is to find novel molecules with desired properties.
 - Search in the chemical space with molecular property prediction.
 - Extremely expensive since chemical space is huge.

- Generate molecules with desired properties directly.
 - Circumvent the expensive search.
 - Molecule generation is still in the preliminary stage.

Molecular Graph Generation

Given a molecule dataset, use it to train a molecule generator which can generate valid molecular graphs.

Property Optimization

Given a pretrained molecule generator, optimize it to generate molecules with high property scores.

A Discrete Flow Model

- > Decompose the molecular graph into a sequence of discrete tokens $S_G = (a_1, a_2, b_{21}, a_3, ...)$.
- Use the composition of multiple invertible modulo shift transforms to convert discrete latent variables z to the next discrete token x based on

 $x = (z + \mu) \mod t,$

where t is the number of categories of x.

 Conditional information is extracted with Relational Graph Convolutional networks (R-GCN)^{*} and incorporated into μ.

Youzhi Luo, Keqiang Yan, Shuiwang Ji: GraphDF: A Discrete Flow Model for Molecular Graph Generation. https://arxiv.org/abs/2102.01189

Optimize Property with Reinforcement Learning

 Formulate the sequential generation of molecular graph as a Markov Decision Process,

TEXAS A&M UNIVERSITY

Engineering

- * state --- currently unfinished sub-graph,
- * action --- new node or edge addition,
- reward --- property score of the finished molecular graph.
- Start from a model pretrained on a molecule dataset, then fine-tune the model with reinforcement learning by Proximal Policy Optimization (PPO)* algorithm.

Youzhi Luo, Keqiang Yan, Shuiwang Ji: GraphDF: A Discrete Flow Model for Molecular Graph Generation. https://arxiv.org/abs/2102.01189

Energy-Based Models

- Energy-based models (EBMs)
 - $E_{\theta}(x): X \to R$ is the energy function, e.g., a deep neural network.
 - The probability distribution given by an EBM is:

$$p_{\theta}(x) = \frac{e^{-E_{\theta}(x)}}{Z_{\theta}}.$$

- $Z_{\theta} = \int e^{-E_{\theta}(x)} dx$ for continuous data and $Z_{\theta} = \sum e^{-E_{\theta}(x)}$ for discrete data. Z_{θ} is usually intractable.
- EBMs have been used as generative models in various domains, e.g., images and videos.

LeCun, Yann, et al. "A tutorial on energy-based learning." Predicting structured data 1.0, 2006.

Song, Yang, and Diederik P. Kingma. "How to Train Your Energy-Based Models." Preprint, 2021.

Du, Yilun, et al. "Improved Contrastive Divergence Training of Energy Based Models." Neural Information Processing Systems, 2019.

GraphEBM

- Energy function is parameterized as a permutation invariant graph neural network.
- Maximum likelihood training with MCMC (e.g., Langevin dynamics).

$$loss = E_{\theta}(X^{\oplus}, A^{\oplus}) - E_{\theta}(X^{\odot}, A^{\odot})$$

• Goal-directed: push down energies with flexible degrees f(y) based on property values y

$$loss = f(y)E_{\theta}(X^{\oplus}, A^{\oplus}) - E_{\theta}(X^{\odot}, A^{\odot}).$$

• Multi-objective: combine multiple trained energy functions associated with different properties

$$E_{\theta^*}(X,A) = E_{\theta_1^*}(X,A) + E_{\theta_2^*}(X,A).$$

• Generating with MCMC sampling.

Meng Liu, Keqiang Yan, Bora Oztekin, Shuiwang Ji: GraphEBM: Molecular Graph Generation with Energy-Based Models. https://arxiv.org/abs/2102.00546

Results: GraphDF

Method	Validity %	Validity w/o check %	Uniqueness %	Novelty %	Reconstruct %
JT-VAE	100	n/a	100	100	76.7
GCPN	100	20	99.97	100	n/a
MoFlow	100	81.76	99.99	100	100
GraphCNF	96.35	n/a	99.98	99.98	100
GraphAF	100	68	99.1	100	100
GraphDF (ours)	100	89.03	99.16	100	100

Table 1 Molecule generation performance on ZINC 250K dataset. GraphDF can model the underlying chemical rule more accurately and achieve much higher validity w/o check rate.

Method		Penalized logP		QED			
	1st	2nd	3rd	1st	2nd	3rd	
JT-VAE	5.3	4.93	4.49	0.925	0.911	0.91	
GCPN	7.98	7.85	7.8	0.948	0.947	0.946	
MRNN	8.63	6.08	4.73	0.844	0.796	0.736	
MoFlow	n/a	n/a	n/a	0.948	0.948	0.948	
GraphAF	12.23	11.29	11.05	0.948	0.948	0.947	
GraphDF (ours)	13.70	13.18	13.16	0.948	0.948	0.948	

Table 2 Property optimization performance evaluated by top-3 property scores. GraphDF has stronger capacity to search molecules with high property scores.

Results: GraphEBM

- Random generation
 - can generate non-trivial molecules

- Goal-directed generation
 - can improve the property of generated molecules

- Multi-objective generation
 - can improve multiple properties

DIG: Dive into Graphs

- A research-oriented testbed for graph neural networks
- Includes unified implementation of common methods, datasets, evaluations
- A turn-key solution to easily test new ideas and compare with baselines
- Currently, DIG includes four major research directions for graphs
 - Graph generation
 - Self-supervised learning on graphs
 - Interpretability of graph neural networks
 - ➢ 3D graphs

https://github.com/divelab/DIG (Coming soon!)

Conclusion and Outlook

- Concerted efforts to solve challenging real-world problems
- Develop new methods, and use them to solve problems in biology, neuroscience, chemistry, physics, etc.
- Scales range from cellular, molecular, to atomic in quantum world
- Interested in fundamental methodology, and fundamental science

Team and Acknowledgements

- Lei Cai (Scientist, Microsoft)
- Hongyang Gao (Assistant Professor, Iowa State)
- Zhengyang Wang (Scientist, Amazon)
- Meng Liu (Active PhD student)
- Yi Liu (Active PhD student)
- Youzhi Luo (Active PhD student)
- Bora Oztekin (Active Undergrad)
- Limei Wang (Active PhD student)
- Yaochen Xie (Active PhD student)
- Zhao Xu (Active PhD student)
- Hao Yuan (Active PhD student, joining Facebook)

Image and Graph Deep Learning Methods for Cellular and Molecular Level Science Discoveries

sji@tamu.edu http://people.tamu.edu/~sji/ https://github.com/divelab/DIG/ coming in 3 weeks