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High Entropy Alloys

High Entropy Alloys (HEA) are a new, circa 2004, class of materials
with unique properties
I Formed by mixing 5 or more elements
I Strength increased as temperature decreased to -321◦F.
I Hardness increased as material was rolled to 0.07 mm, from an

original thickness of 3mm
I Corrosion, oxidation resistance
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Atom Probe Tomography (APT)
Local structure via APT to reconstruct a 3D atomic map.
I This process recovers approximately 108 data points, BUT
I Approximately 65% of the original data is not captured
I Recovered data is corrupted by noise
I Uncover their true lattice structure from the APT dataset.

Aluminium Cobalt Chromium Copper Nickel Iron

Figure: Image of the HEA Al1.3CoCrCuFeNi as seen via APT (Santodonato et
al, 2015) with atomic neighborhoods shown in detail on the left. Certain
patterns with distinct crystal structures exist, e.g., the orange region is
copper-rich (left), but overall no pattern is identified.
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Aluminium Cobalt Chromium Copper Nickel Iron

Figure: Left: Same image of HEA from APT data with atomic neighborhoods
shown in detail on the left. Putting a single atomic cubic unit cell under a
microscope, the true crystal structure of the material, which could be either
Center: body-centered cubic (BCC) or Right: face-centered cubic (FCC) , is
not revealed. This distinction is obscured due to further experimental noise.
Notice there is an essential topological difference between the two structures:
The BCC structure has one atom at its center, whereas the FCC is hollow in
its center, but has one atom in the center of each of its faces.
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High Entropy Alloys

(a) Idealized FCC cell
(b) Distorted HEA FCC
lattice

(c) FCC cell from APT
experiment
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Machine Learning for Materials Science

Applications of Machine Learning in Materials Science:
I Regression Modeling Steel Fatigue Prediction (Argawal et al.,

2014)
I Materials Property Prediction (Zhou et al., 2018)
I Crystal Structure Classification (Zilletti et al., 2018)
I Microstructural Characterization of Neutron Scattering Data

(deAlbuquerque et al., 2008)

Materials
Data 

Machine
Learning

Predictive Model

I Crystal Structure of HEAs is the dominant factor in determining
the mechanical properties
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Classification of crystal structures

I Two classes representing the crystal structure embedded in local
neighborhoods of HEAs.

I Goal is to help material scientists to automatically classify into
FCC vs BCC
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I Merge statistics and topology to understand the geometry of data
and classify them.

I TDA/TAI has recently been introduced to several data problems.

I Moving into a quantum computing framework
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Introduction
High Entropy Alloys

Classification using Persistent Homology
Classifying with distances

Bayesian statistics and TDA

Results

Conclusion
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Simplicial Complex

I Simplicial complexes are discretizations of real-life shapes

I Generalization of graphs with higher order relationships among
the nodes.

I A simplicial complex is the union of simple pieces (simplices) i.e.
vertices, edges, triangles etc.

I A face of k−simplex are all the (k − 1)−simplex.

I Two simplices must intersect at a common face or not at all.
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Construction of Simplicial complexes for data

Start with a point-cloud Π and create an abstract representation of
vertices one for each point in your Π.

Figure: Left: Point Cloud; Center: Simplicial Complex; Right: Barcodes
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Construction of Simplicial complexes for data

Create circles of radius ε centered at each point.

Figure: Left: Point Cloud; Center: Simplicial Complex; Right: Barcodes
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Construction of Simplicial complexes for data

Increase radius ε

Figure: Left: Point Cloud; Center: Simplicial Complex; Right: Barcodes
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Construction of Simplicial complexes for data

Add edges between vertices vi and vj if the corresponding circles
intersect.

Figure: Left: Point Cloud; Center: Simplicial Complex; Right: Barcodes
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Construction of Simplicial complexes for data

I Add edges between vertices vi and vj if the corresponding circles
intersect.

I Add triangles between vertices vi, vj and vk if all three circles
intersect, etc.

Figure: Left: Point Cloud; Center: Simplicial Complex; Right: Barcodes

V. Maroulas (UTK) Statistics, Topology and Data Analysis February 26, 2021 15 / 48



Introduction Classification using Persistent Homology Bayesian statistics and TDA Results Conclusion

Construction of Simplicial complexes for data
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Construction of Simplicial complexes for data

Add triangles between vertices vi, vj and vk if all three circles intersect,
etc.

Figure: Left: Point Cloud; Center: Simplicial Complex; Right: Barcodes

V. Maroulas (UTK) Statistics, Topology and Data Analysis February 26, 2021 19 / 48



Introduction Classification using Persistent Homology Bayesian statistics and TDA Results Conclusion

Persistence Diagrams

I Interested in is the persistence of the Betti numbers (number of
connected components; number of holes).

I When do different connected components/holes form and how
long do they last (with respect to ε)?

I The Betti numbers compactly encoded in a 2-dim plot which
provides the birth time vs death time of these features
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Vietoris-Rips Complex

(a) (b)

(c) (d)
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Persistence Diagrams for BCC and FCC Cells

(a) BCC neighborhood, from APT
experiment

(b) BCC Persistence Diagram

(c) FCC neighborhood, from APT
experiment

(d) FCC Persistence Diagram
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Wasserstein Distance

I Wasserstein Distance:

Wp(D1,D2) = (inf
γ

∑
x∈D1

||x−γ(x)||p∞)
1
p

where γ ranges over all bijections
from D1 to D2.

I Penalty of unmatched points:
distance to the diagonal.
Matching to the diagonal is
allowed in order to ensure
bijections γ between D1,D2 exist.

I Assume∞ many points along the
diagonal of each persistence
diagram with∞ multiplicity

I No explicit penalty for cardinality
differences between PDs
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Example I

(a)

mean = 208.3; std=11.22

(b)

mean = 240; std=19.48
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Example II

(a)

mean = 298.32; std=18.61

(b)

mean = 295.72; std=19.53
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Need a distance

I Accounts for different cardinalities among persistence diagrams

I Penalizes outliers as well as the Wasserstein distance, but

I Bypasses the matching to the diagonal of persistence diagrams

I Differences in cardinality and geometry plays a role in the
classification problem.

I The change in geometry between the two point cloud data is
captured in the different behavior of the small persistence points.

I Other studies similarly arguing: Xia and Wei (2014); Robins and
Turner (2016) ; Bubenik (2017)
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Different Distance

Lemma 2.1 (A. Marchese and VM, 2018)
I Given two persistence diagrams D1,D2 ∈ PW,k (space of PDs)

s.t. |D1| = n ≤ m = |D2|
I (x1, ..., xn) ∈ D1, (y1, ..., ym) ∈ D2

I Take c > 0 and 1 < p <∞ be fixed parameters and Πm is the set
of permutations of (1, ...,m).

dc
p(D1,D2) = (

1
m

( min
π∈Πm

n∑
i=1

min(c, ||xi − yπ(i)||∞)p + cp(m− n)))
1
p .

Then dc
p is a metric.

I A. Marchese and VM. Signal classification with a point process distance on the space of persistence diagrams. Advances in Data
Analysis and Classification 12 (3), pp 657-682, 2018.
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Different Distance

(a) Wasserstein Distance (b) dc
p Distance
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Different Distance

dc
p(D1,D2) = (

1
m

( min
π∈Πm

n∑
i=1

min(c, ||xi − yπ(i)||∞)p + cp(m− n)))
1
p

I As p increases, the penalty for matching points is higher.
I As c increases, differences in cardinality penalized more.

I Smaller c important for small geometric differences
I Larger c vital for differentiating between large geometric difference

Proposition 2.1 (Stability of dc
p, VM, C. Micucci, and A. Spannaus,

ADAC, 2020)
Suppose A,Ai finite nonempty point clouds in Rn, dc

p(A,Ai)→ 0 as
i→∞. Then,

dc
p(D,Di)→ 0 as i→∞

where D,Di persistence diagrams created from the Vietoris-Rips
complex for A and Ai.
VM, C. Micucci, and A. Spannaus, A Stable Cardinality Distance for Topological Classification, Advances in Data Analysis and
Classification, 2020.
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dc
p Distance

Lemma 2.2 (A. Marchese and VM, 2018)
(PW,k, dc

p) is Polish.

I Given a complete metric space, we are interested in the notion of
the “mean” of a set of persistence diagrams.

I Consider means and variances in the Fréchet sense.

I Consider a probability measure D on the space of (PW,k,B(PW,k))
where B(PW,k) is the Borel σ−algebra on PW,k such that

FPW,k (D1) =

∫
PW,k

dc
p(D1,D2)2dD(D2) <∞ ∀D1 ∈ PW,k
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Fréchet Means

Definition 2.3
Given a probability space (PW,k,B(PW,k),D), the Fréchet variance of
D is

VarD = inf
D∈PW,k

[FPW,k (D) =

∫
PW,k

dc
p(D,D2)2D(dD2)]

and the Fréchet expectation or Fréchet mean of D is

E(D) = {D|FPW,k (D) = VarD}

I Fréchet means can be thought of as a generalization of centroids
to metric spaces.

Theorem 2.4 (A. Marchese and VM, 2018)
Let D be a probability measure on (PW,k,B(PW,k)). Then E(D) 6= ∅.
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Classification Algorithm

I Fix βl [β0(connected components), β1(holes), β2(voids)]
I Take the PD training sets Tβl

Y1
,Tβl

Y2
for each class.

I For new data x with corresponding βl−persistence diagram Dβl
x ,

its distance from D ∈ Tβl
Yk

is dc
p(Dβl

x ,D).
I The average distance

dβl(x,Yk) =
1

card(Tβl
Yk

)

∑
D∈Tβl

Yk

dc
p(Dβl

x ,D)

I Assign the data x a label Ŷ (one of Y1, Y2) defined by

Ŷ = argmin1≤k≤2

BM∑
l=0

rldβl(x,Yk)

where
∑BM

l=0 rl = 1 and rl’s are weights which determine how
much each Betti number βl is considered.
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10-fold cross validation

I Generated 1000 unit neighborhoods (500 of each type)

I Data is partitioned into 10 different sets

I 9 of the partitions are used for training purposes

I 1 partition is used for testing

I Done 10 times so that every partition acts as the testing data
exactly once

I The accuracy is averaged among all partitions
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Results on Synthetic APT data
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Statistics and Persistence Diagrams

I Summary statistics such as center and variance (Bobrowski et
al., 2014; Mileyko et al., 2011; Turner et al., 2014; Marchese and
VM, 2017)

I Birth and death estimates (Emmett et al., 2014)

I Confidence sets (Fasy et al., 2014)

I Need a framework to understand the above summary statistics
through a single viewpoint
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Bayesian framework for Persistence Diagrams

I First Bayesian discussion in TDA context: Y. Mileyko, S.
Mukherjee, and J. Harer (2011)

I A conditional probability setting on PDs where the likelihood for
the observed point cloud has been substituted by the likelihood
for its associated topological summary

Bayesian for RVs Bayesian for Random PDs
Prior Modeled by a density f ???

Likelihood Depends on observed data ???
Posterior Compute the posterior density ???

Recall: f (x| data ) ∝ `( data |x)f (x)
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Prior Distribution

Figure: Sample PD from the prior

I Consider PDs as samples from a
point process

I Poisson point process
I Need the intensity density λ(·) to

characterize it
I Cardinality distribution: c(n) = e−µ µ

n

n!
where µ :=

∫
X λ(x)dx

I Spatial distribution:
p(x1, . . . , xn) =

∏n
i=1

λ(xi)
µ

I Another approach is to consider random set theory and establish
kernels on the space of persistence diagrams

I VM, J. Mike, C. Oballe, Nonparametric Estimation of Probability Density Functions of Random Persistence Diagrams. Journal of
Machine Learning Research, 20 (151), pp.1-49, 2019.

V. Maroulas (UTK) Statistics, Topology and Data Analysis February 26, 2021 37 / 48



Introduction Classification using Persistent Homology Bayesian statistics and TDA Results Conclusion

Likelihood

Figure: A sample DX from prior
Poisson PP DX and an observed
persistence diagram DY

I Marked point process
I Point process ΨM consists of points

(xi,m(xi)) ∈ X×M, where m(xi) are called
marks.

I Ψ is a Poisson PP.
I Marks are drawn independently from a

kernel ` : X×M→ R≥0.
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Likelihood

Figure: (a) A sample DX from prior Poisson PP DX and an observed persistence diagram DY . (b)
and (c) are the decomposition of DX into DXO & DXV and DY into DYO & DYU .
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Bayes Theorem for Persistent Homology

Theorem 3.1 (VM, F. Nasrin, C. Oballe, SIMODS, 2020)
Let λDX be the prior intensity, and ` the likelihood which is associated
with the stochastic kernel of the marked point process. The posterior
intensity is given by

λDX |DY1:m
(x)=

(
1− α(x)

)
λDX (x) +

α(x)
m

m∑
i=1

∑
y∈DYi

`(y|x)λDX (x)

λDYU
(y)+

∫
W `(y|u)α(u)λDX (u)du

.

(1)

VM, F. Nasrin, and C. Oballe. A Bayesian Framework for Peristent Homology. SIAM Journal on Mathematics of Data Science, 2(1), pp.
48-74, 2020.
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Conjugate family of priors

Corollary 3.2 (VM, F. Nasrin, C. Oballe, SIMODS, 2020)
Let the prior intensity λDX be a Gaussian mixture, the likelihood `
associated with the stochastic kernel of the marked point process is a
Gaussian density, then the posterior intensity,

λDX |DY1:m
(x) = (1− α)λDX (x) +

α

m

m∑
i=1

∑
y∈DYi

N∑
j=1

cx|y
j N ∗(x;µ

x|y
j , σ

x|y
j I);

VM, F. Nasrin, and C. Oballe. A Bayesian Framework for Peristent Homology. SIAM Journal on Mathematics of Data Science, 2(1), pp.
48-74, 2020.
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Example 2 (Trusting Data Less vs More)
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Example 3
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HEAs Classification

I Considered 100,000 of each crystal structure (synthesized at
Liaw’s research group and ORNL)

Figure: Left: BCC: Al1.3CoCrCuFeNi vs Right: FCC: Al0.3CoCrFeNi. Note that
the copper-rich FCC regions have been removed from the Al1.3CoCrCuFeNi
as a preprocessing step
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HEAs Classification

Figure: Flowchart for Classification Scheme

I Used 50% of data as training sets and 10-fold cross–validation
I Accuracy: 94%
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Conclusion

I Classification of crystal structure of HEAs using statistical
learning and topology

I Use dc
p distance, or

I Use a Generalized Bayesian perspective allowing the flexibility to
use historical data/or purely data driven approach via a uniform
prior

I Computing ratios of posterior distributions of PDs.

TABLE: The parallels between the Bayesian for RVs and for random PDs.

Bayesian for RVs Bayesian for Random PDs
Prior Modeled by a density f Modeled by a PPP with intensity λ

Likelihood Depends on observed data ` that depends on observed PDs
Posterior Compute the posterior density A PPP with posterior intensity

I Install from Github using maroulaslab/BayesTDA.
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