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Introduction  Classification using Persistent Homology ~Bayesian statistics and TDA Results Conclusion

High Entropy Alloys (HEA) are a new, circa 2004, class of materials
with unique properties

» Formed by mixing 5 or more elements

» Strength increased as temperature decreased to -321°F.

» Hardness increased as material was rolled to 0.07 mm, from an
original thickness of 3mm

» Corrosion, oxidation resistance
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Introduction

Local structure via APT to reconstruct a 3D atomic map.
> This process recovers approximately 10® data points, BUT
> Approximately 65% of the original data is not captured
> Recovered data is corrupted by noise
» Uncover their true lattice structure from the APT dataset.

©® Auminum @ Covat @ Chromium @ Copper @) Nickel @ Iron

Figure: Image of the HEA Al, ;CoCrCuFeNi as seen via APT (Santodonato et
al, 2015) with atomic neighborhoods shown in detail on the left. Certain
patterns with distinct crystal structures exist, e.g., the orange region is
coLPEer-rich (left), but overall no pattern is identified.
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Introduction

@ smoon @ Covat @ Cromium @ Corper @ Nkl @ o

Figure: Left: Same image of HEA from APT data with atomic neighborhoods
shown in detail on the left. Putting a single atomic cubic unit cell under a
microscope, the true crystal structure of the material, which could be either
Center: body-centered cubic (BCC) or Right: face-centered cubic (FCC) , is
not revealed. This distinction is obscured due to further experimental noise.
Notice there is an essential topological difference between the two structures:
The BCC structure has one atom at its center, whereas the FCC is hollow in
its center, but has one atom in the center of each of its faces.
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Introduction

B

b) Distorted HEA FCC FCC cell from APT
a) ldealized FCC cell Iattlce experlment
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Introduction

Applications of Machine Learning in Materials Science:

> Regression Modeling Steel Fatigue Prediction (Argawal et al.,
2014)

» Materials Property Prediction (Zhou et al., 2018)
» Crystal Structure Classification (Zilletti et al., 2018)

» Microstructural Characterization of Neutron Scattering Data
(deAlbuquerque et al., 2008)

IlillaChi_ne Predictive Model
Materials earnng

e | [ f1(A) = XB(A)

» Crystal Structure of HEAs is the dominant factor in determining
the mechanical properties
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Introduction

> Two classes representing the crystal structure embedded in local
neighborhoods of HEAs.

» Goal is to help material scientists to automatically classify into
FCC vs BCC
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Introduction

> Merge statistics and topology to understand the geometry of data
and classify them.

> TDA/TAI has recently been introduced to several data problems

TAI iS XAI * Data shape matters

* Latent topological features in data

Paleobiology (3D structures)

3. Mike, C.D. Sumrall, VM, and F. Schwartz (2016).
Paleobiology.

High Entropy Alloys (3D)
VM, C. Micucci, and A Spannaus (2020). Advances in

Data Analysis and Classification.
* VM,F. Nastin, and C. Oballe. (zozm 1AM Journal on
Image Processing (2D) Mathematics of Data Sclence.
Ao | o + VM,A Nebenfuehr (2015), Anndls of Applied
— Statistcs.
= = L gouras, A Nebenfuchrand M (Z017), SAM
WJ Imaging.
] L¥in,1. s.mmm and VM (2020), Foundations

| paa

e Classifcation .
Slgnal Processing (1D/2D

A Marchese and VM. (2018) Advances in Data

Analysis and Classification.
" F Nasri,C Oball D.Boathe, and v 201),

IEEE Proc. On Machine Learnir Gas Separation (4D)

Applications. + 1. Townsend, C. Micucd, J. H. Hymel, VM, and

ML Mk, ard . Oballe (2019 Journl o . Voglatai (2020). Nature Communications

Machine Learning Resear Convolutional Neural Networks

C. Oballe . Kerrick, D. ‘*’"‘“e P- Franaszcouk, + " E. Love, B. Fillpenko, VM), and G, Carlsson (2020)

and VM (2020).

» Moving into a quantum computing framework

V. Maroulas (UTK)
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Classification using Persistent Homology

» Simplicial complexes are discretizations of real-life shapes

» Generalization of graphs with higher order relationships among
the nodes.

> A simplicial complex is the union of simple pieces (simplices) i.e.
vertices, edges, triangles etc.

vertex A’ \ L

edge &' triangle A
tetrahedron A®

> A face of k—simplex are all the (k — 1)—simplex.

> Two simplices must intersect at a common face or not at all.
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Classification using Persistent Homology

Start with a point-cloud IT and create an abstract representation of
vertices one for each point in your II.

Epsilon= 0
e 4
~
-1 L .

2 . . . . . L]
g 4 . . . . . .
e | N
v T T T T T T T T T T T T T T T T T

-1 0 1 2 3 -1 0 1 2 3 00 05 10 15 20 25 30

Figure: Left: Point Cloud; Center: Simplicial Complex; Right: Barcodes
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Classification using Persistent Homology

Create circles of radius ¢ centered at each point.

3; OOOO -.. . E
3 OO O o o e E

-1 0 1 2 3 -1 0 1 2 3 00 05 10 15 20 25 30

Figure: Left: Point Cloud; Center: Simplicial Complex; Right: Barcodes
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Classification using Persistent Homology

Increase radius e

1 000 || -+ - | =

T
-1 0 1 2 3 -1 0 1 2 3 00 05 10 15 20 25 30

Figure: Left: Point Cloud; Center: Simplicial Complex; Right: Barcodes
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Classification using Persistent Homology

Add edges between vertices v; and v; if the corresponding circles

intersect.
Epsilon= 0.9

T T T T T T T T T T T T T T T T T
-1 0 1 2 3 -1 0 1 2 3 00 05 10 15 20 25 30

Figure: Left: Point Cloud; Center: Simplicial Complex; Right: Barcodes
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Classification using Persistent Homology

> Add edges between vertices v; and v; if the corresponding circles
intersect.

> Add triangles between vertices v;, v; and vy if all three circles
intersect, etc.

Epsilon = 1

o
o~

- . .
o | N . . —
g . . " . —
] — —
W T T T T T T T T T T T T T T T T T

-1 L] 1 2 3 -1 0 1 2 3 00 05 10 15 20 25 30

Figure: Left: Point Cloud; Center: Simplicial Complex; Right: Barcodes
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Classification using Persistent Homology

» Add edges between vertices v; and v; if the corresponding circles
intersect.

> Add triangles between vertices v;, v; and vy if all three circles
intersect, etc.

Epsilon = 1.2
(=3
S
1 . —
e 4 . . .
—
o —
a . . .
—
2 - ———
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! T T T T T T T T T T T T T T T T T
1 0 1 2 3 1 0 1 2 3 00 05 10 15 20 25 30

Figure: Left: Point Cloud; Center: Simplicial Complex; Right: Barcodes
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Classification using Persistent Homology

> Add edges between vertices v; and v; if the corresponding circles
intersect.

> Add triangles between vertices v;, v; and vy if all three circles
intersect, etc.

Epsilon = 1.25
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Figure: Left: Point Cloud; Center: Simplicial Complex; Right: Barcodes
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Classification using Persistent Homology

» Add edges between vertices v; and v; if the corresponding circles
intersect.

> Add triangles between vertices v;, v; and vy if all three circles
intersect, etc.

Epsilon = 1.42
e 4
N -
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Figure: Left: Point Cloud; Center: Simplicial Complex; Right: Barcodes
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Classification using Persistent Homology

Add triangles between vertices v;, v; and v, if all three circles intersect,

etc.
Epsilon = 1.75
o |
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Figure: Left: Point Cloud; Center: Simplicial Complex; Right: Barcodes

V. Maroulas (UTK) February 26, 2021 19/48



Classification using Persistent Homology

> Interested in is the persistence of the Betti numbers (number of
connected components; number of holes).

» When do different connected components/holes form and how
long do they last (with respect to €)?

» The Betti numbers compactly encoded in a 2-dim plot which
provides the birth time vs death time of these features

. o
o _| ™
™
. P £
241 e e o g3 2 28
| (m]
2 i e o . =
2 - 00 1.0 20 30

-1 0 1 2 3 Birth
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Introduction  Classification using Persistent Homology
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Classification using Persistent Homology
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(d) FCC Persistence Diagram
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Classification using Persistent Homology

» Wasserstein Distance:

1
W, (D, D) = mf Z [|x—(x)|[25)?
x€D;
where ~ ranges over all bijections Forssence Diagram for 7
from D, to D,. 1o ¢

» Penalty of unmatched points:
distance to the diagonal.
Matching to the diagonal is vl =e
allowed in order to ensure
bijections + between D,, D, exist.

» Assume oo many points along the o e e
diagonal of each persistence
diagram with co multiplicity

» No explicit penalty for cardinality
differences between PDs
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Classification using Persistent Homology

20 -15 10 5 0 5 10
* k=0
. = k=1
01 02 03 04 05 08 07 08

mean = 208.3; std=11.22

V. Maroulas (UTK)
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Classification using Persistent Homology
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mean = 298.32; std=18.61 mean = 295.72; std=19.53
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Classification using Persistent Homology

> Accounts for different cardinalities among persistence diagrams
> Penalizes outliers as well as the Wasserstein distance, but
> Bypasses the matching to the diagonal of persistence diagrams

» Differences in cardinality and geometry plays a role in the
classification problem.

> The change in geometry between the two point cloud data is
captured in the different behavior of the small persistence points.

> Other studies similarly arguing: Xia and Wei (2014); Robins and
Turner (2016) ; Bubenik (2017)
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Classification using Persistent Homology

> Given two persistence diagrams D, D, € Py, (space of PDs)
s.t. |]D1| =n<m= |]D2|

> (xb ..‘,)Cn) € Dy, (ylv ~-~7ym) eD,

> Takec >0 and1 < p < oo be fixed parameters and 11, is the set
of permutations of (1, ...,m).

n
1

. I _ !
(D1 D2) = (G (min 3 mine, [ =yl + ¢ n = )

Then d¢ is a metric.
N p J

> A. Marchese and VM. Signal classification with a point process distance on the space of persistence diagrams. Advances in Data
Analysis and Classification 12 (3), pp 657-682, 2018.
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Classification using Persistent Homology

Persistence Diagram for g=1 Persistence Diagram for 3=1
1 =9 1 1 LN
0.8 08
£ 06 £ 06
£ £
3 3
04 .1_. 04 .T.
0.2 02
0 0
0 02 04 06 08 1 0 02 04 06 08
birth birth
(a) Wasserstein Distance

(b) d, Distance
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Classification using Persistent Homology

n

. . . 1
(01D2) = (mip S =y € n =)

> As p increases, the penalty for matching points is higher.
> As c increases, differences in cardinality penalized more.

» Smaller ¢ important for small geometric differences
> Larger c vital for differentiating between large geometric difference

Suppose A, A; finite nonempty point clouds in R", dj(A,A;) — 0 as
i — o0. Then,

d,(D,D;) — 0 asi— oo
where D, D; persistence diagrams created from the Vietoris-Rips
complex for A and A;.

VM, C. Micucci, and A. Spannaus, A Stable Cardinality Distance for Topological Classification, Advances in Data Analysis and
Classification, 2020.
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Classification using Persistent Homology

| (Pw..dy) is Polish. |

» Given a complete metric space, we are interested in the notion of
the “mean” of a set of persistence diagrams.
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Classification using Persistent Homology

| (Pw..dy) is Polish. |

» Given a complete metric space, we are interested in the notion of
the “mean” of a set of persistence diagrams.

» Consider means and variances in the Fréchet sense.
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Classification using Persistent Homology

| (Pw..dy) is Polish. |

» Given a complete metric space, we are interested in the notion of
the “mean” of a set of persistence diagrams.

» Consider means and variances in the Fréchet sense.

» Consider a probability measure D on the space of (Pw x, B(Pw«))
where B(Py ) is the Borel c—algebra on Py , such that

FPW,/‘(IDI) = A d;(]Dl,]Dz)de(]DQ) < o0 VD, € PW,k
Wk
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Classification using Persistent Homology

Given a probability space (Pw, B(Pw ), D), the Fréchet variance of
Dis

Varp = _inf [Fp, (D) = d5(D,D,)*D(dD
> = yinf [Fr,, (D)= | &;(0.D2D(D)

and the Fréchet expectation or Fréchet mean of D is

E(D) = {D|Fp, (D) = Varp}

V. Maroulas (UTK) February 26, 2021 31/48



Classification using Persistent Homology

Given a probability space (Pw, B(Pw ), D), the Fréchet variance of
Dis

Varp = inf [pr(]D):/ d;(]D,]Dz)ZD(dlDzﬂ
DePw « ' Pw i

and the Fréchet expectation or Fréchet mean of D is

E(D) = {D|Fp, (D) = Varp}

= J

> Fréchet means can be thought of as a generalization of centroids
to metric spaces.
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Classification using Persistent Homology

Given a probability space (Pw, B(Pw ), D), the Fréchet variance of
Dis

Varp = inf [pr(]D):/ d;(]D,]Dz)ZD(dlDzﬂ
DePw « ' Pw i

and the Fréchet expectation or Fréchet mean of D is

E(D) = {D|Fp, (D) = Varp}

r

J

> Fréchet means can be thought of as a generalization of centroids
to metric spaces.

LLetD be a probability measure on (Py x, B(Pwx)). Then E(D) # (. J

V. Maroulas (UTK) February 26, 2021 31/48



Classification using Persistent Homology

> Fix 3, [Bo(connected components), 3;(holes), 5,(voids)]
Take the PD training sets T}, T} for each class.

\4

» For new data x with corresponding /3,—persistence diagram D?,
its distance from D € T} is d5(D{", D).
> The average distance

ds (x, Y ds(DY, D
il 1) = card T)@k[ Z

» Assign the data x a label ¥ (one of Y, Y,) defined by

By

Y = argmin, _, ., Z ridg, (x, Yz)
=0

where 3"/ r; = 1 and r/'s are weights which determine how
much each Betti number 3, is considered.
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Classification using Persistent Homology

» Generated 1000 unit neighborhoods (500 of each type)

» Data is partitioned into 10 different sets

v

9 of the partitions are used for training purposes

v

1 partition is used for testing

\4

Done 10 times so that every partition acts as the testing data
exactly once

v

The accuracy is averaged among all partitions
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Classification using Persistent Homology

1.00 ° = o
0.95 1
> 0907 : Z I
@) Y r % A
©
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O
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080 1 —— dg, P = 2,6 =0.05
—— Counting
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Standard Deviation
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Bayesian statistics and TDA

» Summary statistics such as center and variance (Bobrowski et
al., 2014; Mileyko et al., 2011; Turner et al., 2014; Marchese and
VM, 2017)

> Birth and death estimates (Emmett et al., 2014)
» Confidence sets (Fasy et al., 2014)

> Need a framework to understand the above summary statistics
through a single viewpoint

V. Maroulas (UTK) February 26, 2021 35/48



Bayesian statistics and TDA

> First Bayesian discussion in TDA context: Y. Mileyko, S.
Mukherjee, and J. Harer (2011)

> A conditional probability setting on PDs where the likelihood for
the observed point cloud has been substituted by the likelihood
for its associated topological summary

Bayesian for RVs Bayesian for Random PDs
Prior Modeled by a density f 777
Likelihood Depends on observed data 777
Posterior | Compute the posterior density 777

Recall: f(x| data ) o« ¢( data |x)f(x)
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Bayesian statistics and Tl

» Consider PDs as samples from a
] point process

» Poisson point process

Need the intensity density A(-) to
characterize it

- Cardinality distribution: ¢(n) = e~/ 4"
S where 11 := [ A(x)dx
> Spatial distribution:

P, x) = [T, 28

» Another approach is to consider random set theory and establish
kernels on the space of persistence diagrams

> VM, J. Mike, C. Oballe, Nonparametric Estimation of Probability Density Functions of Random Persistence Diagrams. Journal of
Machine Learning Research, 20 (151), pp.1-49, 2019.

Persistence
N w B
[ ]
v

-
s

v

o 1 2
Birth

Figure: Sample PD from the prior
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Bayesian statistics and TDA

» Marked point process
» Point process ¥, consists of points

Persistence
N
)

1 . (xi;,m(x;)) € X x M, where m(x;) are called
y mm, marks.
0 [ ] [ ]
L : J ! J » U is a Poisson PP.

Birth » Marks are drawn independently from a

Figure: A sample Dy from prior kernel £: X x M — Rxo.

Poisson PP Dy and an observed
persistence diagram Dy
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Bayesian statistics and TDA

41 n m Dy 41 = © (Dx,Dyy) 41 . © (Dx,,Dy,)
|| e Dy DXV | | Dx.,
Q3 . Q 3 Dy, Q3 Dy,
c { = =
L 2 2
0 2 0 2 0 2
& = 4 n &
[0) [0) [0}
o 14 L4 o 14 o 14
a EE ‘
01 L4 (] 01 (] 01 L]
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
Birth Birth Birth

Figure: (a) A sample Dy from prior Poisson PP Dy and an observed persistence diagram Dy . (b)
and (c) are the decomposition of Dx into Dx,, & Dx,, and Dy into Dy, & Dy, .
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Bayesian statistics and Tl

Let \p, be the prior intensity, and ¢ the likelihood which is associated
with the stochastic kernel of the marked point process. The posterior
intensity is given by

¥ — alx B alx) ¢ £(y[x) Apy (x)
Aoy o, (0 (1= @) Ao )+ ZZ |

(1))

=
4 ™ m Dy 4 ™ © (Dx, Dy, 4 . © (Dx,,Dy,)
= ® Dy Dy, L] Dy,
Q 3 . Q 3 L Dy | @34 Dy,
c = =
3 2 2
@D 2 @22 @ 2
7] 7] 7
o . o} - [
[a ] L4 o 119 o 1A
0 o ° 04 o * 04 (]
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
Birth Birth Birth

VM, F. Nasrin, and C. Oballe. A Bayesian Framework for Peristent Homology. SIAM Journal on Mathematics of Data Science, 2(1), pp.
48-74, 2020.
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Bayesian statistics and Tl

Let the prior intensity Ap, be a Gaussian mixture, the likelihood ¢
associated with the stochastic kernel of the marked point process is a
Gaussian density, then the posterior intensity,

m N

« x|y * x|y x|y
Ay, () = (1= @Ay (x) + =37 % e N (o)D)
i=1 y€Dy, j=1
- J

VM, F. Nasrin, and C. Oballe. A Bayesian Framework for Peristent Homology. SIAM Journal on Mathematics of Data Science, 2(1), pp.
48-74, 2020.
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Example 1

Informative Prior Posterior

.100

075
050

025
. 0.00

Persistence

Persistence

00 05 1.0 15 20
Birth

February 26, 2021 42 /48



o5

Persistence

Results
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Introduction  Classificatic sing sian statistics and TDA Results Conclusion

2 Unimodal Uninformative Prior Posterior
20 20-
’ 15 15-
o
g g 1.00
" E H 2. 078
]
g e 050
« I & . 025
! o 057 000
T - 00 00-
a0 95 o 05 1 0 o5 o 15 2o v o do 15 2
. Birth Birth
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Introduc ofF cation using Bayesian statist d TDA Results Conclusion

o Bimodal Uninformative Prior Posterior
20- y 20-
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Introduction

Persistence

Posterior

1.0
Birth
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Classification using Persistent Homology Bayesian statistics and TDA Results Conclu

Example 2 (Trusting Data Less vs More)
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Weakly Informative Prior

Persistence
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1d TDA  Results

[ e e E— Unimodal Uninformative Prior

Persistence
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Pel nt Homology Baye 1d TDA Results usion

Example 2‘(Trusting Data Less vs More)
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cation using Persistent Homolog E C A Results Conclusion

Example 3

° Weakly Informative Prior Posterior
20~
. / 15-
f 1 3 100
{ o H
~ g4 H ] | 075
| o i 010
| / 0 H o
o . & I l 0%
3 05~ 000
? 00~

a0 os 00 05 10

February 26, 2021 44/ 48



cation using ), d TDA Results Conc

e Unimodal Uninformative Prior Posterior
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e Bimodal Uninformative Prior Posterior
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Results

» Considered 100,000 of each crystal structure (synthesized at
Liaw’s research group and ORNL)

Figure: Left: BCC: Al 5CoCrCuFeNi vs Right: FCC: Aly3sCoCrFeNi. Note that
the copper-rich FCC regions have been removed from the Al, ;CoCrCuFeNi
as a preprocessing step
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Classification using Persistent Homology

esian statistics and T|

Results
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Figure: Flowchart for Classification Scheme

> Used 50% of data as training sets and 10-fold cross—validation
> Accuracy: 94%
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Conclusion

» Classification of crystal structure of HEAs using statistical
learning and topology

> Use d, distance, or

» Use a Generalized Bayesian perspective allowing the flexibility to
use historical data/or purely data driven approach via a uniform
prior

» Computing ratios of posterior distributions of PDs.

TABLE: The parallels between the Bayesian for RVs and for random PDs.

Bayesian for RVs Bayesian for Random PDs
Prior Modeled by a density f Modeled by a PPP with intensity A
Likelihood Depends on observed data ¢ that depends on observed PDs
Posterior | Compute the posterior density A PPP with posterior intensity

> Install from Github using maroulaslab/BayesTDA.
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https://github.com/maroulaslab/BayesTDA
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