Data Science for Organizational Modeling
Understanding Organizations and Their Relationships

Traditional DOD (Nation State)

Unexplored Territory

Historic Military Counter-Insurgency
Transnational Networks with Camouflaged Participants

- $153B market for opiates and cocaine
- Profits fuel terrorism, violence, corruption

(UNODC World Drug Report 2011)

Integrated Data Sources Enhance Comprehensive Picture

1. Traditional Intel
2. Law enforcement
3. Online data
4. Commercial

Overlapping data creates hyper-local observations and strategic insights not available through one source or one resolution alone.
Reveal Organizations: Mismatch between expected and observed behavior

Detect exact and inexact patterns in networks to determine when predicted organizational behaviors match observations.

\[
\min P(S|D, M) \approx \frac{1}{Z(D, M)} \prod_{ki} \left[p(a_{i,i}^D | a_{k,k}^M) \right]^{S_{ki}} \prod_{kmi} \left[p(a_{i,j}^D | a_{k,m}^M) \right]^{S_{ki}S_{mj}}
\]

Detectable communication pattern from Enron data. A clique surrounded by leaves keeps illegal information contained within a small group.

Pattern matching detects exact and noisy matches to ultimately detect illegal communication patterns.
Enron communication networks: corruption consistently produces visible differences in individual communication.
Distinguishing between corrupt and noncorrupt communication requires complex network signatures.

Examining a single metric such as in-degree is insufficient. Structural information appears to be required.
Signature aggregation improves probability of detection

Given

- S_x and S_y independent data sources
- $P(S_y|H) \geq P(S_y)$

Then $P(H|S_x \cap S_y) \geq P(H|S_x)$.

Thus, the probability of detecting an event improves when you have more than one independent data source.
Outlier detection for identifying anomalies:

- Underlying hypothesis is that anomalies are statistical outliers along some dimension.
- Commonly assume distributions are Gaussian – not necessarily true.
- Low false positive rates are easily achievable AT THE EXPENSE of high false negative rates.

Insight: Many anomalies are outliers along multiple dimensions; high false negative rates can be ameliorated:

- Develop different outlier detection algorithms for multiple dimensions.
- Lower the threshold for each outlier detection algorithm \(\rightarrow \) increases false positives but decreases false negatives.
- Convolving the different outlier detection algorithms lowers false positives without undue impact on false negatives.
- Outlier detection algorithms can be combined with more sophisticated anomaly detection techniques for further enhancement.
Detect Behavior: Autoregressive Integrated Moving Average (ARIMA)

- Useful for behavior detection and prediction
- Incorporates seasonal trends and patterns

\[
\left(1 - \sum_{i=1}^{p} \phi_i L^i\right) (1 - L)^d X_t = \left(1 + \sum_{i=1}^{q} \theta_i L^i\right) \varepsilon_t
\]
Detect Behavior: Signature Detection via Dynamic Tracking

Power plant output/hour modeled as an HMM

Clustering HMM models identifies classes of qualitatively similar signatures:

\[d_{i,j} = D(\lambda_i, \lambda_j) = \frac{1}{T_i} \left[\log(P(O^i | \lambda_i)) - \log(P(O^i | \lambda_j)) \right] \]

Observation, inferred state

Predicted output and HMM state

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.
Detect Behavior: Unsupervised feature learning yields minimal basis for complex signals

\[
\min_{W_1, W_2} \sum_{i=1}^{m} \left(\|W_2 W_1^T x^{(i)} \|_2^2 + \lambda \sum_{j=1}^{k} \sqrt{\epsilon + H_j (W_1^T x^{(i)})^2} \right)
\]

- Edges
- Patterns in single data sources
- Face Parts
- Organization parts (Teams)
- Faces
- Organizations

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.
Reveal Organizations: Modularity

Automated community detection based on structural characteristics
- Detects groups of nodes with high density connections amongst themselves
- Allows **hierarchical extraction of organizational** characteristics

Example modularity analytic shown on trace-route data. Each color shows a detected community, which ends up being closely aligned with a country / countries of interest.

\[
Q = \frac{1}{2m} \sum_{i,j} \left[A_{ij} - \frac{k_i k_j}{2m} \right] \delta(c_i, c_j)
\]

Zoom Out!

Ability to summarize data at an organizational level and provide higher levels of abstraction / characterization.
Generative Model Framework: Connecting Organizations to Observables

- New Technology
 - Constructing patterns of organizational activity via:
 - Generative models connecting organizations to observables
 - Network grammars constraining interactions between organizations
 - Transfer function views of organizations highlighting inputs and outputs

- Open Questions
 - What dimensions of an organization affect its structure, communication patterns, resources, and products?
 - How do the structure and processes affect the expected distributions of observables?
 - How do the expected observables and artifacts vary?
Organizational templates from social science provide top-down information, but observed signatures differ from theoretical predictions.

Hierarchical generative models provide mathematics for formalizing organizational theories and connecting them to realistic signatures.

Models encode expert knowledge

Plausible observables generated via noise models

\[P(Org, Structure | Obs) \propto P(Obs | Structure)P(Structure | Org)P(Org) \]

- Organizational templates from social science provide top-down information, but observed signatures differ from theoretical predictions.
- Hierarchical generative models provide mathematics for formalizing organizational theories and connecting them to realistic signatures.
Organizational Modeling System

Streaming data → Process multi-modal datasets → Detect behaviors → Reveal illicit organizations and relationships

- Terabit/sec streaming data

- ETL Processing and Refinement

- Data Transformations and Filtering

- Dynamic Tracking

- Unsupervised Feature Learning

- Autoregressive Integrated Moving Average (ARIMA)

- Coreset Compression

- Expected & Unexpected Observables

- Correlated behaviors

- Organizational patterns

- Hierarchical generative models

- if \(P(S_y|H) \geq P(S_y) \), then \(P(H|S_x \cap S_y) \geq P(H|S_x) \)

 Hierarchical generative models

\[
(1 - \sum_{i=1}^{p} \phi_i L^i) (1 - L)^d X_t = \left(1 + \sum_{i=1}^{q} \theta_i L^i\right) \varepsilon_t
\]

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.