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Introduction

I We (humans, enterprises and organizations) are decision makers, making
various decisions every moment everywhere.

I Decision makers are driven by their interests, desires, preferences, or utility
in general, subject to different restrictions

I Decisions, represented in the form of choices, behaviors, operations et al.,
are generally observable
⇒ stored as data.

I For a service provider/manufacturer/supplier, developing a sound
understanding on decision makers (i.e., their interests, desires, preferences,
and/or restrictions) is critical and fundamental,
⇒ how to convert data into information or knowledge?

I Example: you notice from your office that people are using umbrella.
Using umbrella indicates people protect themselves from rain. So, an
inference is that it is raining now and people do not like wet clothes.
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Introduction

I We believe that decision makers are rational, i.e., they acquire and carry
out optimal decisions in their decision making problems.

I Decision makers are concerned with

– a single objective, e.g., the shortest distance
– multiple objectives, e.g., risk and returns

I To understand those decision makers, the fundamental issue:
how to recover the decision making problem (DMP) from observed
decisions, e.g., utility functions, restrictions and the overall decision
making scheme.

I Inverse Optimization – a data-driven learning approach from observed
decisions.
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What is inverse optimization problem (IOP)?

I Given a set of observations that are (probably noisy or suboptimal)
optimal solutions collected from the decision maker under different
external signals, the inverse optimization model is to infer the parameter θ
of the DMP with a single objective.

I Consider the consumer’s behavior problem in a market with n products.
The prices for the products are denoted by pt which varies over different
time t ∈ [T ]. The consumer’s decision making problem can be stated as
the following utility maximization problem1

max
x∈Rn+

u(x)

s.t. pTt x ≤ b
UMP

where pTt x ≤ b is the budget constraint at time t.

1mas1995microeconomic.
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Motivation of our research

I Tools of traditional IOP theory (typically for batch setting) have not
proven fully applicable to support recent attempts in AI to automate the
elicitation of human decision maker’s preferences.

– Recommender systems utilized by
online retailers to increase product
sales: they elicit a user’s preferences
or restrictions from a sequence of
historical records of her purchasing
behaviors, and then make predictions
about future shopping decisions.

– Access to large data sets
(online/sequential data).

I However, using traditional IOP to extract users’ preferences or restrictions
is time consuming, since it is NP-hard (computationally intractable)2.

2aswani2016inverse.
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Motivation of our research

I To fully unlock the potential of inverse optimization, elicit decision
maker’s preferences or restrictions through online learning.

I We formulate an IOP considering noisy data, develop an online learning
algorithm to derive unknown parameters in objective function and/or
constraints.

I One key feature: it should incorporates sequentially arrived observations
into this model, without keeping them in memory, to realize incremental
elicitation, revision and reuse of old inferences.
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Decision making problem

I We consider a family of parameterized optimization problem, in which
x ∈ Rn is the decision variable, u ∈ Rm is the external signal, and θ ∈ Θ
is the parameter.

min
x∈Rn

f(x, u, θ)

s.t. g(x, u, θ) ≤ 0
DMP

where f : Rn × Rm × Rp 7→ R is a real-valued function, and
g : Rn × Rm × Rp 7→ Rq is a vector-valued function.

I X(u, θ) = {x ∈ Rn : g(x, u, θ) ≤ 0}, the feasible region of DMP.

I Key concept: S(u, θ) = arg min{f(x, u, θ) : x ∈ X(u, θ)}, the optimal
solution set of DMP.

I Assumption
Set Θ is a convex compact set.
There exists D > 0 such that ‖θ‖2 ≤ D for all θ ∈ Θ. For each
u ∈ U , θ ∈ Θ, both f(x, u, θ) and g(x, u, θ) are convex in x.
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Inverse optimization problem in batch setting

As in conventional studies of3456, we consider a situation where a decision yi
(with respect to an external signal ui) for i ∈ [N ] are observed and recorded,
the IOP model is to infer the parameter θ in DMP by minimizing an empirical
loss

min
θ∈Θ

1

N

N∑
i=1

l(yi, ui, θ) (Batch-IOP)

where l(yi,ui, θ) is a loss function that captures the discrepancy between the
model inferred from data and the actual one.

3bertsimas2015data.
4aswani2016inverse.
5keshavarz2011imputing.
6esfahani2017data.
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Online setting

I In our online learning setting, the signal-noisy decision pair becomes
available to the learner one by one.

I The learning algorithm produces a sequence of hypotheses (θ1, . . . , θT ).

I Let l(yt, ut, θt) denote the loss the learning algorithm suffers when it tries
to predict the tth decision given ut based on {(u1,y1), · · · , (ut−1,yt−1)}.

I The goal of the learner is to minimize the regret: the cumulative loss∑
t∈[T ] l(yt, ut, θt) against the possible loss when the whole batch of

decisions are available

RT =
∑
t∈[T ]

l(yt, ut, θt)−min
θ∈Θ

∑
t∈[T ]

l(yt, ut, θ).

8
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Loss function and implicit update rule

I Given a (signal,noisy decision) pair (u,y) and a hypothesis θ, we set the
loss function as the minimum (squared) distance between y and the
optimal solution set S(u, θ) in the following.

l(y, u, θ) = min
x∈S(u,θ)

‖y − x‖22. (1)

I Once receiving the tth (signal,noisy decision) pair (ut,yt), θt+1 can be
obtained by solving the following optimization problem:

θt+1 = arg min
θ∈Θ

1
2
‖θ − θt‖22 + ηtl(yt, ut, θ), (2)

where ηt is the learning rate in round t, and l(yt, ut, θ) is defined in (1).

I Seek to balance the tradeoff between ”conservativeness” and
”correctiveness”.

I As there is no closed form for θt+1 in general, we call (2) an implicit
update rule.

9
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Algorithm

Algorithm 1 1 Implicit Online Learning for Generalized Inverse Optimization

1: Input: (signal,noisy decision) pairs {(ut,yt)}t∈[T ]

2: Initialization: θ1 could be an arbitrary hypothesis of the parameter.
3: for t = 1 to T do
4: receive (ut,yt)
5: suffer loss l(yt, ut, θt)
6: if l(yt, ut, θt) = 0 then
7: θt+1 ← θt
8: else
9: set learning rate ηt ∝ 1/

√
t

10: update θt+1 = arg min
θ∈Θ

1
2
‖θ − θt‖22 + ηtl(yt, ut, θ) (i.e., solve (2))

11: end if
12: end for

10



Theoretical analysis

Theorem (Regret bound)

Suppose some technical assumptions hold. Then, choosing ηt = Dλ

2
√

2(B+R)κ

1√
t
,

RT ≤
4
√

2(B +R)Dκ

λ

√
T .

wher λ and κ are related to the smoothness of the objective functions.

Theorem (Risk consistency)

Suppose some technical assumptions hold. Then, choosing ηt = Dλ

2
√

2(B+R)κ

1√
t
,

1

T

∑
t∈[T ]

l(yt, ut, θt)
p−→ E l(y, u, θ∗)

as T approaches to infinity. Here, θ∗ minimizes the true risk E [l(y, u, θ)].

11



Learning consumer behavior

Consider the consumer’s behavior problem in a market with n products. The
prices for the products are denoted by pt ∈ Rn+ which varies over different time
t ∈ [T ].

I The consumer’s decision making problem can be stated as the following
utility maximization problem (UMP)7

max
x∈Rn+

u(x)

s.t. pTt x ≤ b
UMP

where pTt x ≤ b is the budget constraint at time t.

I For this application, we will consider a concave quadratic representation
for u(x). That is, u(x) = 1

2
xTQx + rTx, where Q ∈ Sn− (the set of

symmetric negative semidefinite matrices), r ∈ Rn.

7mas1995microeconomic.
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Learning utility function
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Figure: Learning the Utility Function
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Learning budget
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Learning transportation cost

We now consider the transshipment network G = (Vs ∪ Vd, E), where nodes Vs
are producers and the remaining nodes Vd are consumers.
Variables xe and yv represent transportation quantity and production quantity,
respectively. The transshipment problem is

min
∑
v∈Vs

Cv(yv) +
∑
e∈E

cexe

s.t.
∑

e∈δ+(v)

xe −
∑

e∈δ−(v)

xe = yv ∀v ∈ Vs∑
e∈δ+(v)

xe −
∑

e∈δ−(v)

xe = dtv ∀v ∈ Vd

0 ≤ xe ≤ ue, 0 ≤ yv ≤ wv ∀e ∈ E,∀v ∈ Vs

TP

where we want to learn the transportation cost ce for e ∈ E.

15



Learning transportation cost
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What is inverse multiobjective optimization problem (IMOP)?

I A decision is often a trade-off among multiple criteria.

I Decision makers generally share similar evaluation criteria but have
different priorities/preferences

I With various responses towards a same input, we are interested in
(1) the common ground (i.e., multiple evaluation criteria) shared by
decision makers, and
(2) how varying they are in this decision maker population.

I Given a set of observations that are noisy efficient (Pareto optimal)
solutions collected from a population of decision makers, the inverse
multiobjective optimization model is to infer parameter θ of a
multiobjective DMP.
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An example of multiobjective optimization

Consider a portfolio selection problem, where investors need to determine the
fraction of their wealth to invest in each security in order to maximize the total
return and minimize the total risk. The classical Markowitz mean-variance
portfolio selection8 is

min
x

(
f1(x) = −rTx
f2(x) = xTQx

)
s.t. 0 ≤ xi ≤ bi, ∀i ∈ [n],

n∑
i=1

xi = 1,

8markowitz1952portfolio.
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Pareto optimality

Example

Consider the following multiobjective quadratic programming problem.

min
x∈R2

+

(
f1(x) = 1

2
xTQ1x + cT1 x

f2(x) = 1
2
xTQ2x + cT2 x

)
s.t. Ax ≥ b,

where parameters of the objective functions and the constraints are

Q1 =

[
1 0
0 2

]
, c1 =

[
3
1

]
, Q2 =

[
2 0
0 1

]
, c2 =

[
−6
−5

]
, A =

[
−3 1
0 −1

]
,b =

[
−6
−3

]
.

0 1 2 3 4

0

1

2

3

4
Pareto optimal set

19



Pareto optimal solution

A common way to derive a Pareto optimal solution is to solve the following
problem9.

min wT f(x, θ)
s.t. x ∈ X(θ)

WP

where w = (w1, . . . , wp)T is the nonnegative weight vector in the
(p− 1)-simplex Wp ≡ {w ∈ Rp+ : 1Tw = 1}.

9Saul et al. 1955
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Motivation of our research

I Can we use inverse optimization as a surrogate for inverse multiobjective
optimization?

I

Consider the bi-objective LP
problem

min

(
x1

x2

)
s.t. ax1 + bx2 ≥ 0,

bx1 + ax2 ≥ 0,

x1 + x2 ≤ c.

where a > b > 0 and c > 0.
Right figure displays the
feasible region of an instance
with a = 6, b = 1, c = 1, i.e.,
the triangle AOB.

0 0.5 1

0

0.5

1

Figure: OA and OB are the efficient (solution) set
for the bi-objective linear programming problem.

I The answer is NO! We would get the obj = −x1 − x2 using IOP, which
reflects opposite information regarding decision makers’ intentions.
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IMOP is an unsupervised learning task

The only data we have for IMOP is the noisy decisions {yi}i∈[N ].

w

θ

y
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Loss function of unsupervised learning type
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Loss function of unsupervised learning type

l(y, θ) = min
x∈XP (θ)

‖y − x‖22,
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Loss function of unsupervised learning type
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lK(y, θ) = min
xk,zk∈{0,1}

‖y −
∑

k∈[K]

zkxk‖22

s.t.
∑

k∈[K]

zk = 1,

xk ∈ S(wk, θ).

surrogate loss function
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Convergence rate

Theorem
Under certein assumptions, we have that
∀y ∈ Y, ∀θ ∈ Θ,

0 ≤ lK(y, θ)− l(y, θ) ≤ 16e(B +R)ζ

λ
· 1

K
1
p−1

.

Example

When p = 2, i.e., a bi-objective decision making problem, theorem shows that
lK(y, θ)− l(y, θ) is of O(1/K).
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Model for IMOP

I Given a set of observations that are noisy efficient solutions {yi}i∈[N ],
construct an optimization model to infer parameter θ of a multiobjective
DMP.

I Loss function. We adopt a sampling approach to generate weights
wk ∈ Wp for each k ∈ [K] and approximate XE(θ) as the union of their
S(wk, θ)s. Then, by utilizing binary variables, the loss function is

lK(y, θ) = minxk,zk∈{0,1} ‖y −
∑

k∈[K]

zkxk‖22

s.t.
∑

k∈[K]

zk = 1, xk ∈ S(wk, θ).

I Model for IMOP10

min
θ∈Θ

MN
K (θ) ≡ 1

N

∑
i∈[N ]

‖yi −
∑

k∈[K]

zikxk‖22

s.t. xk ∈ S(wk, θ), ∀k ∈ [K],∑
k∈[K]

zik = 1, ∀i ∈ [N ],

zik ∈ {0, 1}, ∀i ∈ [N ], k ∈ [K].

IMOP

10dong2018inferring.
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Statistical properties of IMOP

Theorem (Consistency of IMOP )

MN
K (θ) MN (θ)

MK(θ) M(θ)

P

P

P
P

Figure: Uniform convergence diagram for empirical risks.
P−→ means convergence in

probability. −→ indicates the convergence of a sequence of numbers.
P
99K means

convergence in probability for double-index random variable.
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K-means Clustering

K-means clustering aims to partition the observations into K clusters (or
groups) such that the average squared distance between each observation and
its closest cluster centroid is minimized. Given observations {yi}i∈[N ]

11,

min
xk,zik

1
N

∑
i∈[N ]

‖yi −
∑

k∈[K]

zikxk‖22

s.t.
∑

k∈[K]

zik = 1, ∀i ∈ [N ],

xk ∈ Rn, zik ∈ {0, 1}, ∀i ∈ [N ], k ∈ [K],

K-means clustering

where K is the number of clusters, and {xk}k∈[K] are the centroids of the
clusters.

11bagirov2008modified; aloise2009branch.
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Connection between IMOP and Clustering

Theorem
Given any K-means clustering problem, we can construct an instance of IMOP,
such that solving K-means clustering is equivalent to solving the IMOP.

The key to prove the theorem:

min
θ∈Θ

MN
K (θ) ≡ 1

N

∑
i∈[N]

‖yi −
∑

k∈[K]
zikxk‖22

s.t. xk ∈ S(wk, θ),∑
k∈[K]

zik = 1,

zik ∈ {0, 1}.

min
xk,zik

1
N

∑
i∈[N]

‖yi −
∑

k∈[K]
zikxk‖22

s.t. xk ∈ Rn,∑
k∈[K]

zik = 1,

zik ∈ {0, 1}.

where K is the number of clusters, and {xk}k∈[K] are the centroids.
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Complexity of IMOP

Lemma (NP-hardness of K-means clustering)

K–means clustering is NP-hard to solve even for instances in the plane12, or
with two clusters in the general dimension13.

Theorem (NP-hardness of IMOP)

IMOP is NP-hard to solve.

12Meena et al. 2012
13Daniel et al. 2009
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Connection between IMOP and Clustering

I Clearly, in both IMOP and K-means clustering, one needs to assign
{yi}i∈[N ] to certain clusters in such a way that the average squared
distance between yi and its closest xk is minimized.

I The difference is whether xk has restriction or not. In IMOP, each xk is
restricted to belong to S(wk, θ), while there is no restriction for xk in
K-means clustering.

I We partition {yi}i∈[N ] into K clusters {Ck}k∈[K]. Let
yk = 1

|Ck|
∑

yi∈Ck
yi be the centroid of cluster Ck.

min
θ,xk′

1
N

∑
k∈[K]

|Ck|‖yk −
∑
k′∈[K] zkk′xk′‖

2
2

s.t. xk′ ∈ S(wk′ , θ), ∀k′ ∈ [K],∑
k′∈[K]

zkk′ = 1, ∀k ∈ [K],

zkk′ ∈ {0, 1}, ∀k ∈ [K], k′ ∈ [K].

Kmeans-IMOP
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Algorithm

Algorithm 2 2 Solving IMOP through a Clustering-based Approach

1: Input: Noisy decisions {yi}i∈[N ], weight samples {wk}k∈[K].
2: Initialize Partition {yi}i∈[N ] into K clusters using K-means clustering. Cal-

culate {yk}k∈[K]. Solve Kmeans-IMOP and get an initial estimation of θ
and {xk}k∈[K].

3: while stopping criterion is not satisfied do
4: Assignment step: Assign each yi to the closest xk to form new clusters.

Calculate their centroids {yk}k∈[K].
5: Update step: Update θ and {xk}k∈[K] by solving Kmeans-IMOP.
6: end while
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Manifold learning

(a) High dimension space (b) Low dimension space

Formally, given a set of high-dimensional data points {yi}i∈[N ] in Rn, we are
required to find a mapping f : Rd → Rn and an embedding set {xi}i∈[N ] in a
low-dimensional space Rd (d < n) such that

yi = f(xi) + εi, i ∈ [N ],

and the local manifold structure formed by {yi}i∈[N ] is preserved in the
embedded space14. Here, εi represents random noise.

14Joshua et al. 2000; Sam et al. 2000
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Pareto manifold

Theorem (Pareto manifold)

Suppose certain regularity assumptions hold. For each θ ∈ Θ, the Pareto
optimal set is a (p− 1)-dimensional piecewise continuous manifold.

Corollary

Suppose that both f(x, θ) and g(x, θ) are linear functions in x for all θ ∈ Θ.
Then, XP (θ) is a (p− 1)-dimensional piecewise linear manifold for all θ ∈ Θ.
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min
x∈R2

+

(
f1(x) = 1

2
xTQ1x + cT1 x

f2(x) = 1
2
xTQ2x + cT2 x

)
s.t. Ax ≥ b,
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Pareto manifold

Theorem (Pareto manifold)

Suppose certain regularity assumptions hold. For each θ ∈ Θ, the Pareto
optimal set is a (p− 1)-dimensional piecewise continuous manifold.

Corollary

Suppose that both f(x, θ) and g(x, θ) are linear functions in x for all θ ∈ Θ.
Then, XP (θ) is a (p− 1)-dimensional piecewise linear manifold for all θ ∈ Θ.

min {−x1,−x2,−x3}
s.t. x1 + x2 + x3 ≤ 5,

x1 + x2 + 3x3 ≤ 9,

x1, x2, x3 ≥ 0.

2

4

1

3

5

0
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An enhanced algorithm with manifold learning

Algorithm 3 3 Initialization with manifold learning

1: Input: Noisy decision {yi}i∈[N ], evenly sampled weights {wk}k∈[K].
2: Apply any nonlinear manifold learning algorithm: yi ∈ Rn → xi ∈

Rp−1, ∀i ∈ [N ].
3: Group {xi}i∈[N ] into K clusters by K-means clustering.

Denote IK the set of labels of {xi}i∈[N ].
Find the clusters {Ck}k∈[K] and centroids {yk}k∈[K] of {yi}i∈[N ] according
to IK .

4: Solve (Kmeans-IMOP) and get θ̂ and {xk}k∈[K].
5: Run Step 3 - 6 in Algorithm 2.
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Learning the expected returns

The classical Markovitz mean-variance portfolio selection in the following is
often used by analysts.

min
x

(
f1(x) = −rTx
f2(x) = xTQx

)
s.t. 0 ≤ xi ≤ bi, ∀i ∈ [n],

n∑
i=1

xi = 1,
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Inverse optimization

I Propose the first general framework for eliciting decision maker’s
preferences and restrictions using inverse optimization through online
learning.

I Learn general convex utility functions and restrictions with observed noisy
signal-decision pairs.

I Prove that the online learning algorithm has a O(
√
T ) regret under certain

regularity conditions. Hence, this method has a fast convergence rate.

I The algorithm can learn the parameters with great accuracy and is very
robust to noises, and achieves drastic improvement in computational
efficiency over the batch learning approach.

I Future work for the inverse optimization will mainly focus on the
application of the online learning methods, e.g., in designing recommender
systems.
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Inverse multiobjective optimization

I Develop a new inverse multiobjective optimization problem (IMOP) that is
able to infer multiple criteria (or constraints) over which the Pareto
optimal decisions are made.

I Provide a solid analysis to ensure the statistical significance of the
inference results from our IMOP model.

I Reveal a hidden connection between our IMOP and the K-means
clustering problem, and leverage the connection and its manifold structure
in designing powerful algorithms to handle many noisy data.

I On-going work

– Developing online learning algorithms for IMOP
– Investigation of the robustness of IMOP
– Applications to address real problems: Dong and Vanguard’s work on

learning time varying risk preferences from investment portfolios
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Thank you! Any question?

Contact: bzeng@pitt.edu
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