Reservoir Life-Cycle – Integrated Reservoir Management

Reservoir Life-Cycle

Exploration
- Regional Reviews
- Play Definition
- 3D Basin Modeling
- 2D/3D Seismic
- Acquisition
- Processing
- Interpretation
- Drilling
- Prospect Identification
- Strategic Entries
- Data Rooms

Development
- Detailed Geology
- 3D Seismic
- Acquisition
- Processing
- Interpretation
- Drilling
- Petrophysics
- Reservoir Engineering
- Reservoir Simulation
- Well Technology
- Economics
- Conceptual Engineering

Production
- Asset Management
- Reservoir Management
- Reservoir Monitoring
- History Matching
- Formation Damage
- Stimulation
- Production Optimization
- Enhanced Recovery

Storage
- Underground Gas Storage
- CO2 Sequestration

Source: Google Images

Large-Scale Models + Uncertainty
Real-Time Closed-Loop Reservoir Management (CLRM)

- Well Control Optimization
- Well Placement/Well sequence Optimization
- Drilling/Well Trajectory Optimization

Drilling

- Fast Reservoir Simulation
- Data assimilation

Optimizer

Real Oil Reservoir

Reservoir models

Measurements

Update permeability/porosity field

Uncertainty + Multiple Realizations

Source: http://www.imm.dtu.dk/~jbjo/oilproduction.html
Reservoir Simulation – Key Component in CLRM

[Reservoir Simulation Diagram]

[Sorek & Gildin Comp. Geosciences, 2018]

[Reservoir Simulation Diagram]

[Zalavadia & Gildin et al., ATCE, 2019]

[Reservoir Simulation Diagram]

[Florez and Gildin Comp. Geosciences, 2019]
Part 1

Fast Proxies for Reservoir Simulation

By
Eduardo Gildin, Marcelo Dall’Aqua, Emilio Coutinho, Yalchin Efendiev, past students
How to reduce the computational time?

- Fine Scale Model
 (High Complexity)

- Reduced Order Model
 (Minimum number of parameters)

- Data-driven models

Inputs

Well Controls (BHP, q_o, q_w, ...)

Fine Model

$N \approx 10^6$

Measurements (BHP, q_o, watercut, ...)

Outputs

Coarse/Reduced Model

$N \approx 10^2$

Approximately Equal

Outputs

Slow, Computationally expensive

Model Fidelity

High accuracy, Needs less data to calibrate
Explanatory, Can often extrapolate

Complexity (Physics)

Computational Speed

Data to train
Black box, Limited or no extrapolation

Harold Vance Department of Petroleum Engineering
Numerical Petroleum Reservoir Simulation

• Widely used from the initial stages to the end of the development of an oil field lifecycle;

• Combination:
 - Geological rock properties \((k, \phi)\)
 - Fluid properties \((\rho, \lambda)\)
 - Fluid flow physics

\[
\nabla \left[\kappa \lambda_j \rho_j \nabla P_j \right] + q_j - \frac{\partial}{\partial t} (\phi S_j \rho_j) = 0
\]

Where \(j\) can be oil and water

SPE RSC 2020, SPEJ 2015-2019, Comp Geosc 2017-2019
System Representation

\[g(x^{n+1}, u^{n+1}) = F(x^{n+1}) + Acc(x^{n+1}, x^n) + Q(x^{n+1}, u^{n+1}) = 0 \]

- Can be written as a linear system:

\[
\begin{align*}
x^{n+1} &= A(t)x^n + B(t)u^n \\
y^{n+1} &= C(t)x^{n+1} + D(t)u^n
\end{align*}
\]

- Building matrices A, B, C and D:
 - Need access to simulator code (to get Jacobians and states)
 - Storage state and Jacobian snapshots (very large memory request for real applications) \(\Rightarrow\) NEED MODEL REDUCTION!

Offline → Training runs
- Run fine scale simulator using a set of training controls
- Store snapshots of state and Jacobian

\[X = [X_1 \ X_2 \ \cdots \ X_n] \quad X = \begin{bmatrix} X_p \\ X_{Sw} \end{bmatrix} \]

Online → Given \(x^n \) and \(u^n \), would like to calculate \(x^{n+1} \)
- Linearize around timestep \(n \)
- Choose the training run snapshot \(x^i \) that is closest to \(x^n \)
- Use the snapshots and Jacobian stored for \(i \) and \(i+1 \) to calculate \(x^{n+1} \)

\[
x^{n+1} = x^{i+1} - (J^{i+1})^{-1} \left[F^{i+1} + Acc^{i+1} + \frac{\partial Acc^{i+1}}{\partial x^i} (x^n - x^i) + Q(x^{i+1}, u^{n+1}) \right]
\]

Take \(SVD(X) \) → POD/PCA → Latent/Reduced space: \(z = \Phi x \)

\[
z^{n+1} = z^{i+1} - (J_r^{i+1})^{-1} \left[F_r^{i+1} + Acc_r^{i+1} + \left(\frac{\partial Acc^{i+1}}{\partial x^i} \right)_r (z^n - z^i) + Q_r(x^{i+1}, u^{n+1}) \right]
\]

Model Reduction → E2CO – Embed to control and observe

\[
\begin{align*}
 x^{n+1} &= A(t)x^n + B(t)u^n \\
y^{n+1} &= C(t)x^{n+1} + D(t)u^n
\end{align*}
\]

Projection

\[
\begin{align*}
 z^{n+1} &= A_r(t)z^n + B_r(t)u^n \\
y^{n+1} &= C_r(t)z^{n+1} + D_r(t)u^n
\end{align*}
\]

POD, POD-DEIM, POD-TPWL, DMD

Our Hypotheses → system ID

Use a “proxy” model to calculate these matrices to predict model output based on dynamical evolution of the states

- Proposed for modeling learn and control of a non-linear dynamical system using as input raw pixel images.
- It uses a convolutional autoencoder coupled with a control linear system approach in order to be able to predict the time evolution of the system state.

Embed to Control – E2C – How to Train?

Input: State Snapshots
• Pressure
• Water Saturation

Recall TPWL

Offline → Training runs
• Run fine scale simulator using a set of training controls
• Store snapshots of state and Jacobian

\[X = [X_1 \ X_2 \ \cdots \ X_n] \quad X = \begin{bmatrix} X_p \\ X_{sw} \end{bmatrix} \]

Physics – porous media flow?

3 Loss functions:
\[\mathcal{L}_{rec} \rightarrow \text{reconstruction} \]
\[\mathcal{L}_{pred} \rightarrow \text{prediction} \]
\[\mathcal{L}_{trans} \rightarrow \text{transition} \]
Proposition 1 - E2C to build a reservoir simulation proxy

Physical Loss Function

\[
(L_{\text{flux,rec}})_i = K \{ \| \nabla p_t - \nabla \hat{p}_t \|_2 \}^2_i, \\
(L_{\text{flux,pred}})_i = K \{ \| \nabla p_{t+1} - \nabla \hat{p}_{t+1} \|_2 \}^2_i.
\]

Predicted fluid flow between grid blocks has to be close to the input values.
Proposition 2 - E2C to build a reservoir simulation proxy

Physical Loss Function – 2 Phase

\[
(L_{\text{flux2Ph,rec}})_i = K \left\{ \left\| K_{ro}(S_{w,t}) \nabla p_t - K_{ro}(\hat{S}_{w,t}) \nabla \hat{p}_t \right\|^2 + \left\| K_{rw}(S_{w,t}) \nabla p_t - K_{rw}(\hat{S}_{w,t}) \nabla \hat{p}_t \right\|^2 \right\}_i,
\]

\[
(L_{\text{flux2Ph,pred}})_i = K \left\{ \left\| K_{ro}(S_{w,t+1}) \nabla p_{t+1} - K_{ro}(\hat{S}_{w,t+1}) \nabla \hat{p}_{t+1} \right\|^2 + \left\| K_{rw}(S_{w,t+1}) \nabla p_{t+1} - K_{rw}(\hat{S}_{w,t+1}) \nabla \hat{p}_{t+1} \right\|^2 \right\}_i.
\]
Proposition 3 - E2CO – Embed to control and observe

- Calculate output data from the reduced space state

\[
\begin{align*}
\Delta t_t & \rightarrow \text{Transition} \\
A_t, B_t & \rightarrow \hat{z}_{t+1} = A_t z_t + B_t u_t \\
\approx & \hat{y}_{t+1} = C_t \hat{z}_{t+1} + D_t u_t \\
\approx & y_{t+1} \\
\end{align*}
\]
Data Set

- 60 x 60 x 1 Oil-Water Model (CMG Imex)
- Wells:
 - 5 producers (controlled by BHP)
 - 4 injectors (controlled by Injection Rate)
- Fixed permeability field
- Field operating through 2000 days changing controls at each 100 days
- Controls: We generated 300 control sets, where each control set will have the information for 20 timesteps (full simulation time)
 - Producers: BHP $\sim U(260, 275) \text{ kgf/cm}^2 \ (U(3700, 3900) \text{ psi})$
 - Injector:
 - for each control set (i) we sample $q_{\text{inj,base}} \sim U(300, 950) \text{ m}^3/\text{d} \ (U(1900, 6000) \text{ bbl/d})$
 - for each timestep (t) we sample a $q_{\text{inj, pert}} \sim U(-80, 90) \text{ m}^3/\text{d}$
 - $q_{\text{inj}}(i, t) = q_{\text{inj, base}}(i) + q_{\text{inj, pert}}(i, t)$

Adapted from Jin, et. al 2020
Control set examples
NN implementation

• We built E2C and E2CO network using Python and Tensorflow v 2.4/Keras
• Using **GPUs** during the training procedure reduces its time by a factor of 10

<table>
<thead>
<tr>
<th>Processor</th>
<th># of Cores</th>
<th>Memory</th>
<th>100 Epochs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CPU Intel Xeon CPU E4-1660 v3 @ 3.00 GHz</td>
<td>8</td>
<td>64 GB</td>
<td>465 min</td>
</tr>
<tr>
<td>GPU NVIDIA GeForce GTX 1050</td>
<td>640 Cuda</td>
<td>2 GB</td>
<td>152 min</td>
</tr>
<tr>
<td>2 GPUs NVIDIA Tesla K80 (TAMU HPRC Terra)</td>
<td>4,992 Cuda</td>
<td>24 GB</td>
<td>142 min</td>
</tr>
<tr>
<td>2 GPUs NVIDIA Tesla V100 (TAMU HPRC Ada)</td>
<td>10,240 Cuda</td>
<td>32 GB</td>
<td>38 min</td>
</tr>
</tbody>
</table>

• Optimization algorithm:
 - Adam with learning rate: 1E-4
 - 100 epochs
 - Batch size: 4
Results

Next steps - uncertainty

\[
\begin{align*}
z^{n+1} &= A(t, \theta)z^n + B(t, \theta)u^n \\
y^{n+1} &= C(t, \theta)z^{n+1} + D(t, \theta)u^n
\end{align*}
\]

Reservoir Characterization
Discussions + Q&A

- How to “close the loop”?
- Open question: Which ML Architecture should be used?
- **Consensus so far → no magic bullet - there is not a single approach to be used**
- **Iterative process → No “push button” approach so far**

 - Reservoir/Hydraulic fracture characterization and simulation/prediction
 - Data/model compression/reduction
 - How to incorporate physics (Scientific Machine Learning)
 - Borrow ideas from reservoir simulation
 - Other areas
 - Deep Learning
 - **Open to collaborations/ideas/etc**

Harold Vance Department of Petroleum Engineering
Background/ Additional Slides
Part 2

Drilling Automation, Drilling Simulation and Applications of ML in Drilling Processes

By
Eduardo Gildin, Narendra V. and Enrique Z.
Looking ahead - Drilling Dysfunctions Detection

- Drilling sensors at or near Bottomhole Assembly (BHA) generate data at high frequency
- Dysfunctions → are they really bad?
 - Bit Balling, Stick-Slip, Whirl

Can we predict the onset of dysfunctions?

Optimal Control parameters?
- Rate of Penetration (ROP)
- Weight on bit (WOB)
- RPM
Drilling Automation – Instrumented Miniaturized Drilling Rigs (test-beds)

Source: TAMU Drillbotics Team/NASA Team
Drilling Automation – Drilling on Mars/Moon (Tensegrity-based Drilling Rig)

Source: TAMU Drillbotics Team/NASA Team
• Other dysfunctions could be developed following similar methodology with the availability of big data consisting of high-frequency downhole drilling information.

• Develop a real-time computer advisory system to help drillers make more effective decisions and optimize the Rate of Penetration (ROP) achieved during geothermal drilling operations

 ▪ Looking ahead the bit – identify lithology X Dysfunctions X drilling performance