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Part I: Groundwork





Intersectionality is a theoretical framework for understanding how 
social identities and categories combine and interact with systems of 
social, cultural, economic, and political power to create distinct, and 

unequal, lived experiences.



Intersectionality as Epistemology
1. Identities and institutions are relational
2. Identity is an embedded experience
3. Nested hierarchies are situationally specific
4. Context is key to knowing
5. Categories are mutually constitutive
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The tyranny of 
variable-based regression 

analysis
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Inferential Statistics
assume known relationships → assess fit

mathematical
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Enter: Machine Learning



Enter: Machine Learning

Machine learning is the algorithms and 
statistical models that computer systems use to 
perform a specific task without using explicit 
instructions, relying on patterns and inference 
instead.
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Machine Learning

Yup, even 
supervised 

machine 
learning!
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The mathematical assumptions of machine learning are 
perfectly aligned with intersectionality as epistemology.



The mathematical assumptions of machine learning are 
perfectly aligned with intersectionality as epistemology.

and even 
ontology!



Part II: The 19th Century U.S. South









N = 414
41 by white women

89 by white men
48 by Black women

243 by Black men or about Black persons
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Tolga Bolukbasi et al. “Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings.” 
NIPS 2016, Barcelona Spain.

de-biasing word embeddings
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Intersectionality using Word Embeddings
Map four combined social identities - Black and white men and 
women - and four social institutions - the polity, the economy, 
culture, and the domestic  - to produce four visualizations 
showing the specific and relational position of each identity 
embedded within the social institutions, as conveyed in the 
context of pro-abolitionist narratives from the 19th century U.S. 
South.
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Intersectionality using Word Embeddings
white women → dainty =  0.40
Black women → dainty =  0.26
white men → dainty =  0.25  
Black men → dainty =  0.11



Polity Economy Culture Domestic

country cash endowments babies

vassalage sum refinement girls

commonwealth debts thrift houseservants

municipalities refund acquirement houseful

nonslaveholding greenbacks intellectual fellowservants

graingrowing defray competence waitingmaids

afroamericans funds refinements milking

civilised pay attainments washerwoman

adjudication dues mediocrity sabbathday

bankruptcy savings talent fieldwork
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White Culture
“So far as regards myself, I should consider it a great trial to be obliged to live in 
this city under the present régime, for, according to my peculiar political ideas, 
all the refinement, all the intellect, which once constituted the charm of 
Washington society, has departed with my brethren of the South … ” (white 
woman, 1863)

“... erudite without pedantry, charitable without parade, soft of speech but duly 
assertive, stickler for the social proprieties but void of prudery, ever genial but 
never frivolous.” (white man, 1906)



White Culture
“The field hands, and such of them as have generally been excluded from the 
dwelling of their owners, look to the house servant as a pattern of politeness and 
gentility. And indeed, it is often the only method of obtaining any knowledge of 
the manners of what is called “genteel society;” hence, they are ever regarded 
as a privileged class; and are sometimes greatly envied, while others are bitterly 
hated.” (Black man, 1857)

“The great strides made by the Negro in these first fifty years, has opened his 
eyes to the possibilities of advancement and convinced him that merit can and 
will compel its reward. … They have taught him self-reliance and a desire for 
team work. They have taught him thrift. They have given lessons in integrity and 
high moral purpose. (Black man, 1917)



Black Economy
“At the time of her death, she had acquired, by her industry and care, more than 
four hundred dollars, the whole of which, after paying the expences of her last 
sickness and funeral, she left by will, to charitable purposes.”  (describing a 
Black woman, 1826)

“I thought I would work and put some money in a savings bank. Well, I lived with 
the best people in the city; and though I was only careful of my earnings, it came 
to me that I had robbed the poor. My industry had doubtless kept some poor 
wretches from paying work. I felt it, and I said, ‘Lord, I will give all back that ever 
I have taken away.’” (Black woman)



Black Economy
 “The mother of eleven children, all reaching maturity, except two that lived to 
eleven and twelve years, her industry, her management and her executive ability 
in caring for and carrying on her household affairs are still wonderful memories, 
and have continually lingered with me as examples in the progress of my own 
extended life.” (describing a white woman, 1919)





White men’s emotions
General Rodes was not only a comrade whom I greatly admired, but a friend 
whom I loved. To ride away without even expressing to him my deep grief was 
sorely trying to my feelings; but I had to go. His fall had left both divisions to my 
immediate control for the moment, and under the most perplexing and 
desperate conditions.” 

“But, reader, the death of a dear one in war does not bring with it the chastened 
sorrow of a peaceful death. It inflames and infuriates the passion for blood; it 
intensifies the thirst for another opportunity to see it flow.” 

(white man, 1904)



White men’s emotions
“I rambled on through the woods, wrapped in the shadows of gloom and 
misanthropy. “Why,” I asked myself, “can't I be a hog or dog to come at the call 
of my owner? Would it not be better for me if I could repress all the lofty 
emotions and generous impulses of my soul, and become a spiritless thing?” 
(white woman posing as a Black woman, 1857)



In sum
● Culture distinguished the races
● Domestic words distinguished by gender
● The economy had an interesting intersectional dynamic
● White men were closest to authority, Black women furthest, with white 

women and Black men an uneasy in-between
● White men had emotions
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● Culture distinguished the races
● Domestic words distinguished by gender
● The economy had an interesting intersectional dynamic
● White men were closest to authority, Black women furthest, with white 

women and Black men an uneasy in-between
● White men had emotions

White identities were afforded a social status via culture and a humanity via 
emotions not allowed Black identities, establishing a deep yet subtle discursive 
canyon between the races.



Part III: Machine Learning is Intersectional



Quantitative Method 
Qualitative Epistemology
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past knowledge and tomorrow’s 
breakthroughs in science and 
technology: The hotspot.” 
Science Advances 3(4).
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Barabasi AL (2009). “Scale-Free Networks: A Decade and Beyond.” Science 325(5939): 412-413.
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Better leverage the breakthrough alignment between 
machine learning and intersectionality.



Leverage the Alignment
● What are we studying? With what data?

○ Web of Science, patents, IMDB, Yelp
○ Call in populations (with care) that have been left out
○ Be aware of representation in data

● Context is critical
● Make big data small (e.g., Foucault Wells 2014)

○ Don’t silence intersecting experiences through statistical aggregation

● Approach it with a qualitative epistemology
○ Understand your data
○ Qualitative lenses



Leverage the Alignment
● Develop standards for model sensitivity
● Data accessibility and representation
● Privacy, ethical, human rights, and social justice issues



The Future of Machine Learning is 
Intersectional
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The Future of Machine Learning is 
Intersectional

Yup, even 
supervised 

machine 
learning!



Program for Interpretive Data Science
○ meaning-making not patterns
○ understanding not laws
○ contextual not universal
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