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Reinforcement Learning
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stochastic approximation

Markov decision processes

function representation
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Fixed point iterations

Classical result (Banach fixed point theorem): when H(·) : RN → RN is a contraction

‖H(u)−H(v)‖ ≤ δ‖u− v‖, δ < 1,

then there is a unique fixed point x? such that

x? = H(x?),

and the iteration
xk+1 = H(xk),

finds it
lim
k→∞

xk = x?.



Easy proof

Choose any point x0, then take
xk+1 = H(xk)

so

xk+1 − x? = H(xk)− x?
= H(xk)−H(x?)

and

‖xk+1 − x?‖ = ‖H(xk)−H(x?)‖
≤ δ‖xk − x?‖
≤ δk+1‖x0 − x?‖,

so the convergence is geometric



Relationship to optimization

Choose any point x0, then take
xk+1 = H(xk),

then

‖xk+1 − x?‖ = ‖H(xk)−H(x?)‖
≤ δk+1‖x0 − x?‖,

Gradient descent takes
H(x) = x− α∇f(x)

for some differentiable f .



Fixed point iterations: Variation

Take
xk+1 = xk + α(H(xk)− xk), 0 < α ≤ 1.

(More conservative, convex combination of new iterate and old.)

Then again

xk+1 = (1− α)xk + αH(xk)

and

‖xk+1 − x?‖ ≤ (1− α)‖xk − x?‖+ α‖H(xk)−H(x?)‖
≤ (1− α− δα)‖xk − x?‖.

Still converge, albeit a little more slowly for α < 1.



What if there is noise?

If our observations of H(·) are noisy,

xk+1 = xk + α (H(xk)− xk + ηk) , E[ηk] = 0,

then we don’t get convergence for fixed α,

but we do converge to a “ball” around at a geometric rate



Stochastic approximation

If our observations of H(·) are noisy,

xk+1 = xk + αk (H(xk)− xk + ηk) , E[ηk] = 0,

then we need to take αk → 0 as we approach the solution.

If we take {αk} such that
∞∑
k=0

α2
k <∞,

∞∑
k=0

αk =∞

then we so get (much slower) convergence

Example: αk = C/(k + 1)
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Markov decision process

At time t,

1 An agent finds itself in a state st
2 It takes action at = µ(st)

3 It moves to state st+1 according to
P (st+1|st,at)...

4 ... and receives reward R(st,at, st+1).
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2 It takes action at = µ(st)

3 It moves to state st+1 according to
P (st+1|st,at)...

4 ... and receives reward R(st,at, st+1).

Long-term reward of policy µ:

Vµ(s) = E

[ ∞∑
t=0

γtR(st, µ(st), st+1) | s0 = s

]



Markov decision process

At time t,

1 An agent finds itself in a state st
2 It takes action at = µ(st)

3 It moves to state st+1 according to
P (st+1|st,at)...

4 ... and receives reward R(st,at, st+1).

Bellman equation: Vµ obeys

Vµ(s) =
∑
z∈S

P (z|s, µ(s)) [R(s, µ(s), z) + γVµ(z)]︸ ︷︷ ︸
bµ+γP µV µ

This is a fixed point equation for Vµ
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Markov decision process

At time t,

1 An agent finds itself in a state st
2 It takes action at = µ(st)

3 It moves to state st+1 according to
P (st+1|st,at)...

4 ... and receives reward R(st,at, st+1).

State-action value for the optimal policy obeys

Q?(s,a) = E

[
R(s,a, s′) + γmax

a′
Q?(s′,a′) | s0 = s,a0 = a

]
and we take µ?(s) = arg maxaQ

?(s,a) ...
... this is another fixed point equation



Stochastic approximation for policy evaluation

Fixed point iteration for finding Vµ(s):

Vt+1(s) = Vt(s) + α

(∑
z

P (z|s) [R(s, z) + γVt(z)]− Vt(s)
)

︸ ︷︷ ︸
H(V t)−V t



Stochastic approximation for policy evaluation

Fixed point iteration for finding Vµ(s):

Vt+1(s) = Vt(s) + α

(∑
z

P (z|s) [R(s, z) + γVt(z)]− Vt(s)
)

︸ ︷︷ ︸
H(V t)−V t

In practice, we don’t have the model P (z|s), only observed data {(st, st+1)}
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Stochastic approximation iteration
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The “noise” is that st+1 is sampled, rather than averaged over
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Stochastic approximation for policy evaluation

Fixed point iteration for finding Vµ(s):

Vt+1(s) = Vt(s) + α

(∑
z

P (z|s) [R(s, z) + γVt(z)]− Vt(s)
)

︸ ︷︷ ︸
H(V t)−V t

Stochastic approximation iteration

Vt+1(st) = Vt(st) + αt (R(st, st+1) + γVt(st+1)− Vt(st))︸ ︷︷ ︸
H(V t)−V t+ηt

The “noise” is that st+1 is sampled, rather than averaged over

This is different from stochastic gradient descent, since H(·) is in general not a gradient map
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Function approximation

State space can be large (or even infinite) ...

... we need a natural way to parameterize/simplify



Linear function approximation

Simple (but powerful) model: linear representation

V (s;θ) =

K∑
k=1

θkφk(s) = φ(s)Tθ, φ(s) =

φ1(s)...
φK(s)


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Policy evaluation with function approximation

Bellman equation:

V (s) =
∑
z∈S

P (z|s) [R(s, µ(s), z) + γV (z)]

Linear approximation:

V (s;θ) =

K∑
k=1

θkφk(s) = φ(s)Tθ

These can conflict ....



Policy evaluation with function approximation

Bellman equation:

V (s) =
∑
z∈S

P (z|s) [R(s, µ(s), z) + γV (z)]

Linear approximation:

V (s;θ) =

K∑
k=1

θkφk(s) = φ(s)Tθ

These can conflict ....
... but the following iterations

θt+1 = θt + αt (R(st, st+1) + γV (st+1;θt)− V (st;θt))∇θV (st,θt)

= θt + αt
(
R(st, st+1) + γφ(st+1)

Tθt − φ(st)
Tθt
)
φ(st)

converge to a “near optimal” θ? Tsitsiklis and Roy, ‘97
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Network consensus

Each node in a network has a number x(i)

We want each node to agree on the average

x̄ =
1

N

N∑
i=1

x(i) = 1Tx

Node i communicates with its neighbors Ni
Iterate, take v0 = x, then

vk+1(i) =
∑
j∈Ni

Wijvk(i)

vk+1 = Wvk, W doubly stochastic

!



Network consensus convergence

Nodes reach “consensus” quickly:

vk+1 = Wvk

vk+1 − x̄1 = Wvk − x̄1
= W (vk − x̄1)

‖vk+1 − x̄1‖ = ‖W (vk − x̄1)‖

!
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Network consensus convergence

Nodes reach “consensus” quickly:

vk+1 = Wvk

vk+1 − x̄1 = Wvk − x̄1
= W (vk − x̄1)

‖vk+1 − x̄1‖ = ‖W (vk − x̄1)‖
≤ σ2‖vk − x̄1‖
≤ σk+1

2 ‖v0 − x̄1‖

!

σ larger σ smaller



Multi-agent Reinforcement Learning, Scenario 1:
Multiple agents in a single environment, common state, different rewards

What is the value of a particular policy?



Multi-agent reinforcement learning

N agents, communicating on a network

One environment, common state st ∈ S
transition probabilities P (st+1|st)

Individual actions ait ∈ Ai

Individual rewards Ri(st, st+1)

evaluate policies µi : S → Ai

!



Multi-agent reinforcement learning

N agents, communicating on a network

One environment, common state st ∈ S
transition probabilities P (st+1|st)

Individual actions ait ∈ Ai

Individual rewards Ri(st, st+1)

compute average cumulative reward

V (s) = E

[ ∞∑
t=0

γt
1

N

N∑
i=1

Ri(st, st+1) | s0 = s

]

!



Multi-agent reinforcement learning

N agents, communicating on a network

One environment, common state st ∈ S
transition probabilities P (st+1|st)

Individual actions ait ∈ Ai

Individual rewards Ri(st, st+1)

find V that satisfies

V (s) =
∑
z∈S

P (z|s)
[

1

N

N∑
n=1

Ri(s, z) + γV (z)

]

!



Distributed temporal difference learning

Initialize: Each agent starts at θi0
Iterations: Observe: st, take action to go to st+1,
get reward R(st, st+1)
Communicate: average estimates from neighbors

yit =
∑
j∈Ni

Wijθ
j
t

Local updates:

θit+1 = yit + αtd
i
tφ(st),

where

dit = Ri(st, st+1) + γφ(st+1)
Tθit − φ(st)

Tθit

!
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Previous work

Subset of existing results:

Unified convergence theory: Borkar and Meyn ’00

Convergence rates with “independent noise” (centralized):
Thoppe and Borkar ’19, Dalal et al ’18, Lakshminarayanan and Szepesvari ’18

Convergence rates under Markovian noise (centralized):
Bhandari et al COLT ’18. Srikant and Ying COLT ’19

Multi-agent RL: Mathkar and Bokar ’17, Zhang et al ’18, Kar et al ’13, Stankovic and
Stankovic ’16, Macua et al ’15



Rate of convergence for distributed TD

Fixed step size αt = α, for small enough α

E
[
‖θit − θ?‖

]
≤ O(σt−τ ) +O(ηt−τ ) +O(α)

where σ < 1 is network connectivity, η < 1 are problem parameters, and
τ is the mixing time for the underlying Markov chain

Time-varying step size αt ∼ 1/(t+ 1)

E
[
‖θit − θ?‖

]
≤ O(σt−τ ) +O

(
T

(1− σ2)2
log(t+ 1)

t+ 1

)
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Distributed Stochastic Approximation: General Case

Goal: Find θ? such that F̄ (θ?) = 0, where

F̄ (θ) =

N∑
i=1

E[Fi(Xi;θ)],

using decentralized communications between agents with access to Fi(Xi;θ).

Using the iteration

θk+1
i =

∑
i∈N (i)

Wi,jθ
k
j + εFi(X

k
i ,θ

k
i )

gives us

max
j

E
[
‖θki − θ?‖22

]
→ O

(
ε log(1/ε)

1− σ22

)
at a linear rate

when the Fi are Lipschitz, F̄i are strongly monotone, and the {Xk
i } are Markov



Multi-agent Reinforcement Learning, Scenario 2:
Multiple agents in different environments (dynamics, rewards)

Can we find a jointly optimal policy?



Policy Optimization, Framework

We will set this up as a distributed optimization program with decentralized communications

One agent explores each environment

Agent collaborate by sharing their models

Performance guarantees:
number of gradient iterations
sample complexity (future)



Policy Optimization, Framework

Environments i = 1, . . . , N , each with similar state/action spaces

Key quantities:

π(·|s): policy that maps states into actions

ri(s, a): reward function in environment i

ρi(s): initial state distribute in environment i

Li(π): long-term reward of π in environment i

Li(π) = E

[ ∞∑
k=0

γkri(s
k
i , a

k
i )

]
, aki ∼ π(·|sk−1i ), s0i ∼ ρi

We want to solve

maximize
π

N∑
i=1

Li(π)



Decentralized Policy Optimization, Challenges

maximize
π

N∑
i=1

Li(π) → maximize
θ

N∑
i=1

Li(θ), πθ(a|s) =
eθs,a∑
a′ e

θs,a′

Natural parameterization (softmax) is ill-conditioned at solution

Even for a single agent, this problem in nonconvex ...
... ability to find global optimum tied to “exploration conditions” (Agarwal et al ’19)

Agents have competing interests (global solution suboptimal for every agent)

Gradients can only be computed imperfectly for large or partially specified problems



Decentralized Policy Optimization, Challenges

maximize
π

N∑
i=1

Li(π) → maximize
θ

N∑
i=1

Li(θ)−λRE(θ), πθ(a|s) =
eθs,a∑
a′ e

θs,a′

Natural parameterization (softmax) is ill-conditioned at solution

Even for a single agent, this problem in nonconvex ...
... ability to find global optimum tied to “exploration conditions” (Agarwal et al ’19)

Agents have competing interests (global solution suboptimal for every agent)

Gradients can only be computed imperfectly for large or partially specified problems



Decentralized Policy Optimization, Challenges

maximize
π

N∑
i=1

Li(π) → maximize
θ

N∑
i=1

Li(θ)−λRE(θ), πθ(a|s) =
eθs,a∑
a′ e

θs,a′

Natural parameterization (softmax) is ill-conditioned at solution

Even for a single agent, this problem in nonconvex ...
... ability to find global optimum tied to “exploration conditions” (Agarwal et al ’19)

Agents have competing interests (global solution suboptimal for every agent)

Gradients can only be computed imperfectly for large or partially specified problems



Decentralized Policy Optimization, Challenges

maximize
π

N∑
i=1

Li(π) → maximize
θ

N∑
i=1

Li(θ)−λRE(θ), πθ(a|s) =
eθs,a∑
a′ e

θs,a′

Natural parameterization (softmax) is ill-conditioned at solution

Even for a single agent, this problem in nonconvex ...
... ability to find global optimum tied to “exploration conditions” (Agarwal et al ’19)

Agents have competing interests (global solution suboptimal for every agent)

Gradients can only be computed imperfectly for large or partially specified problems



Decentralized Policy Optimization, Challenges

maximize
π

N∑
i=1

Li(π) → maximize
θ

N∑
i=1

Li(θ)−λRE(θ), πθ(a|s) =
eθs,a∑
a′ e

θs,a′

Natural parameterization (softmax) is ill-conditioned at solution

Even for a single agent, this problem in nonconvex ...
... ability to find global optimum tied to “exploration conditions” (Agarwal et al ’19)

Agents have competing interests (global solution suboptimal for every agent)

Gradients can only be computed imperfectly for large or partially specified problems



Algorithm: Decentralized Policy Optimization

maximize
{θi}

N∑
i=1

Li(θi), subject to θi = θj , (i, j) ∈ E

Each agent stores a local version of policy θi, initialized to θ0i

At each node, iterate from policy πθki
I Compute “advantage function” A(s, a) = Q(s, a)− V (s)
I Compute gradient

∇Li(θki ) = (complicated function of πθki and A(s, a))

I Meanwhile, exchange θki with neighbors
I Update policy

θk+1
i =

∑
j∈N (i)

Wi,jθ
k
j + αk∇Li(θki )



Algorithm: Mathematical Guarantees

θk+1
i =

∑
j∈N (i)

Wi,jθ
k
j + αk∇Li(θki )

For small enough step sizes αk, after k iterations we have∥∥∥∥∥ 1

N

N∑
i=1

∇Li(θki )

∥∥∥∥∥
2

≤ O

(
1√
k

+
Cg
k

)

Convergence to stationary point (not global max)

Graph properties expressed in Cg

Other constants come from λ, N , and MDP properties



Algorithm: Mathematical Guarantees

θk+1
i =

∑
j∈N (i)

Wi,jθ
k
j + αk∇Li(θki )

If common states are “equally explored” across environments, then after k iterations

max
j

{
N∑
i=1

Li(θ
∗)− Li(θkj )

}
≤ ε when k ≥ C

ε2

Convergence to global optimum

Requires careful choice of regularization parameter λ

“Equal exploration” hard to verify

Can make this stochastic, but not with finite-sample guarantee



Simulation: GridWorld
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Simulation: Drones in D-PEDRA



Simulation: Drones in D-PEDRA

Figure 2: MSF collected during training

Table 1: MSF of the learned policy

Policy Env0 Env1 Env2 Env3 Sum

SA-0 15.9 4.5 4.1 3.6 28.1
SA-1 3.0 55.4 9.7 8.1 76.2
SA-2 1.5 0.8 21.1 2.0 25.4
SA-3 2.3 0.8 8.6 40.1 51.8

DCPG 25.2 67.9 40.5 61.8 195.4
Random 2.5 3.9 4.7 3.7 14.8

only performs well in i-th environment. On the other hand, the policy returned by DCPG performs260

very well in all environments. Surprisingly, DCPG performs even better than each SA-i in the i-th261

environment. We observe that this superior result is due to the benefits of learning common features262

and representation among the agents.263

5.3 Simulations on Atari games264

Since [25], Atari games have been a popular test bed for reinforcement learning algorithms. For265

our experimentation, we consider the following 3 games: Breakout, Space Invaders, and Pong. SA266

and DCPG policies are trained for 4000 episodes, with a 4-layer neural network as the function267

approximation. To stablize training, we set positive rewards to +1 and negative rewards to -1. This is268

a common practice introduced in [26]. To evaluate the policies, we also use the clipped returns.

Table 2: Average clipped return of the learned policy

Policy Breakout Space Invaders Pong Sum

SA in Breakout 26.3 10.3 -20.3 16.3
SA in Space Invaders 0.9 28.7 -20.7 8.96

SA in Pong 0.8 10.8 19.3 30.9
DCPG 19.8 26.1 10.3 56.2

Random 0.9 10.1 -20.2 -9.2

269

Unlike the drone experiments, DCPG learns slower than the SAs trained individually in each game.270

We observe that this comes from the lack of correlation between the games. Instead of facilitating the271

learning process, conflicts are created that compromise the performance of the consensus policy on272

every game. Nevertheless, DCPG performs reasonably well in all the games, while each SA can only273

play their own game.274

6 Conclusion275

By combining consensus optimization with the policy gradient algorithm, we propose a decentralized276

method that aims to learn a unified policy on multi-task RL problems. We theoretically show that the277

convergence of multi-task algorithm achieves the same convergence rate as the single task algorithm278

within constants depending on the connectivity of the network, and support our analysis with a series279

of experiments. Some interesting future directions left from this work include verifying the necessity280

of Assumption 2 in achieving the global optimality and improving the rate O(1/
p

K) in Theorem 1.281

8

Interesting, unexplained result:
Learning a joint policy is easier than learning individual policies



Thank you!
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