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Ingredients for Distributed RL

Distributed RL is a combination of:
@ stochastic approximation
@ Markov decision processes
@ function representation

@ network consensus
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Fixed point iterations

Classical result (Banach fixed point theorem): when H(-) : RY — R¥ is a contraction
[H(u) = Hv)| < dllu—wv], §<1,

then there is a unique fixed point x* such that

and the iteration
x1 = H(zk),
finds it

lim z; = =*.
k—o00



Easy proof

Choose any point xg, then take
Lp+1 = H(azk)
so
Ty — " = H(xzy) —
= H(xy) — H(x")

and

[@p1 — x| = || H () — H (")
< Oy, — ||

< 8 |zo — 27|,

so the convergence is geometric



Relationship to optimization

Choose any point xg, then take
T = H(zy),

then
|zki1 — || = [|H(zx) — H(z")|

< 8 |zo — 27|,

Gradient descent takes
H(x) =z — aVf(x)

for some differentiable f.



Fixed point iterations: Variation

Take
Tpr1 =xk +a(H(xg) —x), 0<a<l

(More conservative, convex combination of new iterate and old.)
Then again
Tpt1 = (1 — )z, + aH(xy)

and

I

<
<(1-a— )|z, —z*.

Still converge, albeit a little more slowly for o < 1.

(1 - a)llzx — 27| + ol H () — H(z")|



What if there is noise?

If our observations of H(-) are noisy,
Tppr =z + o (H(wp) —x + 1), Elny] =0,

then we don't get convergence for fixed «,

T

but we do converge to a “ball” around at a geometric rate



Stochastic approximation

If our observations of H(-) are noisy,

X1 = T + o (H(zr) — 1 + 1), E[ng] =0,

then we need to take ap, — 0 as we approach the solution.

If we take {ay} such that
oo o0
Sal<oo, S ap=oo
k=0 k=0

then we so get (much slower) convergence

T

Example: ap = C/(k+1)
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Markov decision process

At time ¢,
@ An agent finds itself in a state s;
@ It takes action a; = pu(sy)

© It moves to state sy41 according to
P (8t+1|8t, at)...

© ... and receives reward R(st, at, St+1)-




Markov decision process

At time ¢,

@ An agent finds itself in a state s;
@ It takes action a; = pu(s¢)

© It moves to state sy41 according to
P (St+1’8t, at)...

© ... and receives reward R(s;, at, St4+1)-

Long-term reward of policy u:

Vu(s) =E Z’YtR(St,M(St), st41) | S0 = S]
=0



Markov decision process

At time ¢,

@ An agent finds itself in a state s;
@ It takes action a; = pu(st)

© It moves to state sy4; according to
P (St+1|8t, G,t)...
Q ... and receives reward R(s, at, St41)-

Bellman equation: V), obeys

Vi(s) =Y P (z]s, uls)) [R(s, u(s), 2) + Vi (2)]
z€S

J/

bu+vPLV

This is a fixed point equation for V},



Markov decision process

At time ¢,

@ An agent finds itself in a state s;
@ It takes action a; = pu(s¢)

© It moves to state sy41 according to
P (St.l,.l’St, at)...

© ... and receives reward R(s, at, St+1)-

State-action value function (@ function):

QM(Sa a) =K Z’YtR(St;M(St)St—i-l) | So = S,ap9 = a]
t=0



Markov decision process

At time ¢,

© An agent finds itself in a state s;
@ It takes action a; = pu(s)

© It moves to state sy41 according to
P (8t+1|8t, CLt)...

© ... and receives reward R(s, at, Si+1)-

State-action value for the optimal policy obeys
Q*(5,0) = |R(s,a,8') + ymax Q*(s',a') | 80 = 5,00 = a]
al

and we take p*(s) = arg max, Q*(s,a) ...
... this is another fixed point equation



Stochastic approximation for policy evaluation

Fixed point iteration for finding V,(s):

Viti(s) = Vi(s) +a (Z P (z[s) [R(s, z) + yVi(2)] — Vt(S))

z

/

-

H(V)-Vy



Stochastic approximation for policy evaluation

Fixed point iteration for finding V,(s):

Viti(s) = Vi(s) +a (Z P (z[s) [R(s, z) + yVi(2)] — VZ(S))

- /

-~

H(V)-Vy

In practice, we don't have the model P (z|s), only observed data {(s;, s;+1)}
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The "noise” is that s;y1 is sampled, rather than averaged over
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Stochastic approximation for policy evaluation

Fixed point iteration for finding V,,(s):

Viti(s) = Vi(s) +a (Z P (z|s) [R(s, z) +yVi(2)] - Vt(S))

[\ J/
-~

H(V)-Vy

Stochastic approximation iteration

Vit1(8t) = Vi(se) + ar (R(st, 8t41) + 7Vi(8t41) — Vi(se))

~

-~

H(V)-Vit+n,

The "noise” is that s;y1 is sampled, rather than averaged over

This is different from stochastic gradient descent, since H(-) is in general not a gradient map



Ingredients for Distributed RL

Distributed RL is a combination of:
@ stochastic approximation
@ Markov decision processes
e function representation
@ network consensus

@ (complicated probabilistic analysis)



State space can be large (or even infinite) ...

. we need a natural way to parameterize/simplify




Linear function approximation

Simple (but powerful) model: linear representation

K $1(s)
V(s;0) = Z9k¢k(3) =¢(s)'0, ¢(s) = :
k=1 b (8)



Linear function approximation

Simple (but powerful) model: linear representation

K $1(s)
V(s;0) = Z9k¢k(3) =¢(s)'0, ¢(s) = :
k=1 ¢K(S)




Policy evaluation with function approximation

Bellman equation:

V(s) =) P(z|s)[R(s,u(s).2) +7V(2)]
zeS

Linear approximation:
K
V(s:0) =) 0ui(s) = d(s)"6
k=1

These can conflict ....



Policy evaluation with function approximation

Bellman equation:

V(s) =) P(z]s)[R(s,u(s).2) + 7V (2)]
z€eS

Linear approximation:
K
V(s:0) = brdr(s) = d(s)76
k=1

These can conflict ....
... but the following iterations

0111 =0+ oy (R(8¢, St41) + YV (81413 01) — V(54 64)) VoV (s, 04)
=0, + oy (R(st, 8141) +79(5141) "0 — d(50)70;) D(s1)

converge to a “near optimal” 0* Tsitsiklis and Roy, ‘97
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Network consensus

e Each node in a network has a number z(7)

@ We want each node to agree on the average

1N
= N\ T
z= ;Zla:(z)—l x

Node i communicates with its neighbors N;

@ lterate, take vy = x, then
ver1(i) = > Wijon(i)
JEN;
V41 = Wog, W doubly stochastic




Network consensus convergence

Nodes reach “consensus” quickly:

Vi1 = Wy
Vi1 — 21 = Wo, — 21
= W(’Uk - .’1_3].)
[Vk1 = 21| = [W (v — Z1)|




Network consensus convergence

Nodes reach ‘“consensus” quickly:

Vi1 = W
Vi1 — 21 = Wo, — 21
=W (v, — z1)
g1 — 21| = [[W (vi — 21)||
< ozflvy — 71|

< oy |lvg — 71|




Network consensus convergence

Nodes reach “consensus” quickly:

Vg1 = Woy
Vi1 — 21 = Wo, — 21
= W(’Uk — .fl)
[ve+1 — 21| = [|[W (v, — Z1)]
< og||v, — Z1||

< o5t [lvg — 71|

o larger o smaller



Multi-agent Reinforcement Learning, Scenario 1:
Multiple agents in a single environment, common state, different rewards

What is the value of a particular policy?



Multi-agent reinforcement learning

@ N agents, communicating on a network

@ One environment, common state s; € S
transition probabilities P (s¢11|s¢)

Individual actions a € A’

Individual rewards R'(s;, s441)

evaluate policies p’ : S — A’




Multi-agent reinforcement learning

@ N agents, communicating on a network

@ One environment, common state s; € S
transition probabilities P (s¢41]|s¢)

Individual actions a € A’

Individual rewards R'(s;, s411)

@ compute average cumulative reward

o0

Z %Z (8t,8t+1) | s0=s5

t=0




Multi-agent reinforcement learning

N agents, communicating on a network

One environment, common state sy € S
transition probabilities P (s¢41]|s¢)

Individual actions a € A’
Individual rewards R'(s;, s411)
find V' that satisfies

N
=3 P (als) %Z 2) 44V (2)

z€eS




Distributed temporal difference learning

Initialize: Each agent starts at 6}

Iterations: Observe: sy, take action to go to s;+1,
get reward R(s¢, S¢+1)

Communicate: average estimates from neighbors

yi =Y W6

JEN;
Local updates: =
=yl udid(sy),

where

i = R'(st, 8t41) + 79(8141) 70, — p(s1)7 0]




Ingredients for Distributed RL

Distributed RL is a combination of:
@ stochastic approximation
@ Markov decision processes
o function representation
@ network consensus

e (complicated probabilistic analysis)



Previous work

Subset of existing results:

@ Unified convergence theory: Borkar and Meyn '00

e Convergence rates with “independent noise” (centralized):
Thoppe and Borkar '19, Dalal et al '18, Lakshminarayanan and Szepesvari '18

e Convergence rates under Markovian noise (centralized):
Bhandari et al COLT '18. Srikant and Ying COLT '19

o Multi-agent RL: Mathkar and Bokar '17, Zhang et al '18, Kar et al '13, Stankovic and
Stankovic '16, Macua et al '15



Rate of convergence for distributed TD

o Fixed step size a; = «, for small enough «
E[|6; —6*[] < O(c" ")+ 0" ")+ O(a)

where o < 1 is network connectivity, 77 < 1 are problem parameters, and
T is the mixing time for the underlying Markov chain



Rate of convergence for distributed TD

o Fixed step size a; = a, for small enough «
E[|6; - 6*[] < O(c"")+0@'"")+0(a)

where ¢ < 1 is network connectivity, 7 < 1 are problem parameters, and
T is the mixing time for the underlying Markov chain

o larger o smaller



Rate of convergence for distributed TD

o Fixed step size a; = a, for small enough «
E[|; — 6] < O(c" ) +0(n'"")+0(a)
where o < 1 is network connectivity, 7 < 1 are problem parameters, and
T is the mixing time for the underlying Markov chain
0,

24l



Rate of convergence for distributed TD

o Fixed step size a; = «, for small enough «
E[|6; —6*[] < O(c" ")+ 0" ")+ O(a)

where o < 1 is network connectivity, 77 < 1 are problem parameters, and
T is the mixing time for the underlying Markov chain

e Time-varying step size ay ~ 1/(t + 1)

E ([0} - 6%|] sow—r)m( T log(t+1))

(1—0’2)2 t+1



Rate of convergence for distributed TD

o Fixed step size oy = «, for small enough «
E[|6; —6*[] < O(c"")+0@'"")+0(a)

where ¢ < 1 is network connectivity, n < 1 are problem parameters, and
7 is the mixing time for the underlying Markov chain

e Time-varying step size ay ~ 1/(t + 1)

E (6] — 6] SO(at_T)+O( T log(t+1))

(1—-092)? t+1

0



Distributed Stochastic Approximation: General Case

Goal: Find 6* such that F'(6*) = 0, where
N
=Y E[F(X;0)],
i=1

using decentralized communications between agents with access to F;(X;;0).

Using the iteration
;" = Y Wi,6 +cFi(X[.67)
1€N(4)
gives us

max E [Hef — 0*”%] -0 (M
j

5 at a linear rate
1—-o03

when the F; are Lipschitz, F; are strongly monotone, and the {X¥} are Markov



Multi-agent Reinforcement Learning, Scenario 2:
Multiple agents in different environments (dynamics, rewards)

Can we find a jointly optimal policy?



Policy Optimization, Framework

We will set this up as a distributed optimization program with decentralized communications

@ One agent explores each environment
@ Agent collaborate by sharing their models é — R — =

x|
R T e

@ Performance guarantees: ..,z,..
number of gradient iterations
sample complexity (future)

Maze 0 Maze 1
= >
. n




Policy Optimization, Framework

Environments i = 1,..., N, each with similar state/action spaces

Key quantities:

@ 7(-|s): policy that maps states into actions
° n( s, ) .r(?ward un(ftlo-n in e.nV|ron.ment 1 ' — ol '-
° p,(s) initial state distribute in environment ¢ 8

L;(7): long-term reward of 7 in environment 4

o0

k—
Zv’“n(sf,aﬂ], af ~aClsf ), s~
k=0

We want to solve

N
maximize Z L;(m)
™
i=1



Decentralized Policy Optimization, Challenges

N N 0
e s,a
maximize E Li(m) — maximize E Li(0), molals) = <5
™ 2 0 ‘ Z ;e s,a’
=1 =1 a

o Natural parameterization (softmax) is ill-conditioned at solution
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Decentralized Policy Optimization, Challenges

N N Os.a
maximize E Li(m) — maxiomize E L;(0)—ARE(0), mg(als) = ﬁ
™ . . ’ e s,a
=1 i=1 a

o Natural parameterization (softmax) is ill-conditioned at solution
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Decentralized Policy Optimization, Challenges

N N Os.a
maximize E Li(m) — max‘igmize E L;(0)—-ARE(0), mp(als) = {—9
™ . . ’ e s,a/
=1 i=1 a

Natural parameterization (softmax) is ill-conditioned at solution

@ Even for a single agent, this problem in nonconvex ...
. ability to find global optimum tied to “exploration conditions” (Agarwal et al '19)

Agents have competing interests (global solution suboptimal for every agent)

Gradients can only be computed imperfectly for large or partially specified problems



Algorithm: Decentralized Policy Optimization

N R
imize Y _ L;(6;), subject to 6; =0;, (i,j) € € *g*/ \ **\?*//

maximize +\U;), subject to v; = 04, (2, — S '
o 2 ) J J =

e Each agent stores a local version of policy 6;, initialized to 69

@ At each node, iterate from policy mye

» Compute “advantage function” A(s,a) = Q(s,a) — V(s)
» Compute gradient

VL;(0F) = (complicated function of Tgr and A(s, a))

» Meanwhile, exchange 6% with neighbors
» Update policy
Gf“ = Z W%JH;C + akVLl(Gf)
JEN ()



Algorithm: Mathematical Guarantees

— g

— (((vi

05t = > Wi 08 + 0 VLi(6F)

| /
JEN () *z* — “”3‘”\

For small enough step sizes oy, after k iterations we have

o)

e Convergence to stationary point (not global max)

N 2

VL)

i=1

@ Graph properties expressed in C,
@ Other constants come from A, N, and MDP properties



Algorithm: Mathematical Guarantees

9?4—1 = Z Wi,jef + OékVLz(ef)

~
JEN (i) = — = o
If common states are “equally explored” across environments, then after k iterations
al C
mjax{z Li(6%) — LZ(H;“)} < € when k> =2
i=1

Convergence to global optimum
Requires careful choice of regularization parameter A

“Equal exploration” hard to verify

Can make this stochastic, but not with finite-sample guarantee



Simulation: GridWorld

MultiTask RL4 — Unconflicted Goals

i
£




Simulation: GridWorld

MultiTask RL4 — Resolvable Conflicted Goals 1

N O [ e o
I ot : T Ea—
"W e | W . = o]

| i”) ]

Maze 2

B




Simulation: GridWorld

MultiTask RL4 — Un-resolvable Conflicted Goals 1

:—,L ,

Maze 0







Simulation: Drones in D-PEDRA

60
50
40
30
20
10

120
100
80
60
40
20

Mean Safe Flight in Env0

Mean Safe Flight in Envl

160
—— SA 140 SA
DCPG 120 DCPG
100
W‘ 80
W 60 |
40
20
0
0 1000 2000 3000 4000 0 1000 2000 3000 4000
Episode Episode
Mean Safe Flight in Env2 Mean Safe Flight in Env3
—— SA 120 — SA
~ pepG 1001 pcpg
80
60
40
20

0

Table 1: MSF of the learned policy

Policy Env0O Envl Env2 Env3

Sum

SA-0
SA-1
SA-2
SA-3

159 45 41 36
30 554 9.7 8.1
1.5 08 21.1 2.0
23 08 8.6 40.1

DCPG 252 679 40.5 61.8
Random 2.5

39 47 37

28.1
76.2
254
51.8
1954
14.8

0 1000 2000 3000 4000
Episode

Interesting, unexplained result:
Learning a joint policy is easier than learning individual policies

0 1000 2000 3000 4000
Episode



Thank you!
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