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Graph or network data modeling important complex

systems are everywhere.

Communications
nodes are people/accounts
edges show info. exchange

Commerce

nodes are products
edges link co-purchased
products

Frequently bought together

Total price: $55.96

il

This item: 6-Pack LED Dimmable Edison Light Bulbs 40W Equivalent Vintage Light Bulb, 2200K-2400K Wai
Edison Light Bulbs, DORESshop 40Watt Antique Vintage Style Light Bulbs, E26 Base 240LM Dimmable... $
Led Edison Bulb Dimmable, Brightown 6Pcs 60 Watt Equivalent E26 Base Vintage Led Filament Bulb 6W...
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Physical proximity

nodes are people

edges link those that interact
in close proximity

Drug compounds

nodes are substances

edge between substances that
appear in the same drug



Network data analysis studies the model to gain insight
and make predictions about these systems.

1. Evolution / changes
What new connections will form? (email auto-fill suggestions, rec. systems)

2. Clustering / partitioning / community detection
How to find groups of related nodes? (similar products, protein functions)

3. Spreading and traversing
How does stuff move over the network? (viruses or misinformation)

4. Ranking
Which things are important? (PageRank and its variants)



Real-world systems are composed of “higher-order”
interactions that we often reduce to pairwise ones.

Communications 9’ Physical proximity
nodes are people/accounts nodes are people
emalls often have several ‘ peaple gather in groups

recipients, not Just one.

Commerce

\ Drug compounds
nodes are products é é

nodes are substances

Total price: $55.96

l h'l |y
This item: 6-Pack LED Dimmable Edison Light Bulbs 40W Equivalent Vintage Light Bulb, 2200K-2400K Wai

Edison Light Bulbs, DORESshop 40Watt Antique Vintage Style Light Bulbs, E26 Base 240LM Dimmable... $
Led Edison Bulb Dimmable, Brightown 6Pcs 60 Watt Equivalent E26 Base Vintage Led Filament Bulb 6W...
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What new insights does this give us?



We can ask the same network analysis questions while
taking into account the higher-order structure.

1. Evolution / changes
What new connections will form? (email auto-fill suggestions, rec. systems)

2. Clustering / partitioning / community detection
How to find groups of related nodes? (similar products, protein functions)

3. Spreading and traversing
How does stuff move over the network? (viruses or misinformation)

4. Ranking
Which things are important? (PageRank and its variants)
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1. Temporal evolution of higher-order interactions.
Simplicial Closure and Higher-order Link Prediction, PNAS 2018.

2. Clustering in large networks of higher-order interactions.
Minimizing Localized Ratio Cuts in Hypergraphs, KDD, 2020.

3. Diffusions over higher-order interactions in networks.
Random walks on simplicial complexes and the normalized Hodge 1-Laplacian, SIAM Review, 2020.



We collected many datasets of timestamped simplices,
where each simplex is a subset of nodes.

bit.ly/sc-holp-data

Coauthorship in different domains.
Emails with multiple recipients.
Tags on Q&A forums.

Threads on Q&A forums.
Contact/proximity measurements.
Musical artist collaboration.
Substance makeup and
classification codes applied to
drugs the FDA examines.

U.S. Congress committee
memberships and bill sponsorship.
Combinations of drugs seen in
patients in ER visits.

2 Answers
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For a strongly regular graph, there are exactly 3 eigenvalues, all nonzero (I believe). One has
multiplicity 1, which means the other two have pretty high multiplicities. There are tables that give
these eigenvalues and multiplicities:

http://www.win.tue.nl/~aeb/graphs/srg/srgtabi-50.html
For example, the Schlaefli graph is order 27 but has an eigenvalue of order 20.

My question is, are there other known graphs (families, types, or just single graphs) that have large
multiplicities of eigenvalues? When I check a random graph in Sage, it seems the max multiplicity is
mostly 1.

< linear-algebra) (graph-theory) (eigenvalues-eigenvectors) (algebraic-graph-theoryi >

share cite edit

asked Nov 8 '11 at 13:31

Graphth
) 9,253 ©2 W28 A66

Seen this? Or this?

@J.M. Thanks, | will ook at treeemkaneienTe
one. @

e second one applies. But, the first one seems to be a good

active  oldest votes

One class of examples are distance-regular graphs; strongly regular graphs are (essentially) distance-
regular graphs with diameter. Distance-regular graphs can be constructed from Hadamard matrices,
symmetric designs and linear codes.

If all eigenvalues of the adjacency matrix A of a graph are simple, then any matrix P that commutes
with A must be a polynomial in A. It follows from this that all automorphisms have order dividing
two, and also that the graph either is the complete graph K, or cannot be vertex transitive So any
vertex-transitive on more than two vertices has an eigenvalue which is not simple.

You can learn about these things in Biggs's " “Algebraic Graph Theory", for example.

share cite edit




Thinking of higher-order data as a weighted projected
graph with filled-in structures is a convenient viewpoint.

Data.

tll {1,2,3,4}

t: {1,3,5} 9
ts: {1,6} \3/
ty: {2,6}

ls: {1,7,8} >5
ts: {3,9) = /
t7: {5,8} 8
ts: {1,2,6} —

Projected graph W.
Wi; = # of simplices containing nodes / and j.



Graph Evolution: Densification and
Shrinking Diameters

JURE LESKOVEC
Carnegie Mellon University
JON KLEINBERG

Cornell University

and

CHRISTOS FALOUTSOS
Carnegie Mellon University
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Warm-up. What’s more common in data?

“Open triangle” “Closed triangle”
each pair has been in a simplex there is some simplex that
together but all 3 nodes have contains all 3 nodes

never been in the same simplex

11



There is lots of variation in the fraction of triangles that
are open, but datasets from the same domain are similar.

ol 1.00 - X coauth-DBLP B tags-stack-overflow
) ' ° ® H I..‘ ¢ ¥ coauth-MAG-geology B tags-math-sx
A 0.75 - * X coauth-MAG-history B tags-ask-ubuntu
— . . '
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‘S v & @ threads-stack-overflow < NDC-substances
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Edge density in projected graph ¢ contact-primary-school W music-rap-genius

See also Patania-Petri-Vaccarino (2017) for similar ideas in collaboration networks.



Dataset domain separation also occurs at the local level.

Fraction of triangles open
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Average degree

coauth-DBLP
coauth-MAG-Geology
coauth-MAG-History
tags-stack-overflow
tags-math-sx
tags-ask-ubuntu
threads-stack-overflow
threads-math-sx
threads-ask-ubuntu
email-Eu

email-Enron
contact-high-school
contact-primary-school

 Randomly sample 100 egonets per dataset and measure
log of average degree and fraction of open triangles.

* Logistic regression model to predict domain
(coauthorship, tags, threads, email, contact).

* 75% model accuracy vs. 21% with random guessing. 13



How do new simplices form?
Can we predict which simplices will form?

14



Groups of nodes go through trajectories until finally
reaching a “simplicial closure””

t1:{1,2,3,4}
t:{1,3,5}
tz:{1,6} .-
ty: {2,6} 2

ts: {1,7,8} \
te: {3,9} \
t7:{5,8} 6
tg:{1,2,6}

1 1.2.6 1
PANELELIN

v {1,2,3,4} 1 {1,6} 1 {2,6}
s 2—6

/ < e i

2 6 t1 2 6 t3

For this talk, we will focus on simplicial closure on 3 nodes.
15



Groups of nodes go through trajectories until finally
reaching a “simplicial closure event.”

Substances in marketed drugs recorded in the National Drug Code directory.

HIV protease

inhibit Kaletra Kaletra
IbILors — pevataz Reyataz ysicians Promacta Promacta DOH Central Evotaz
RedPharm \/ Squibb & Sons ></ Total Care ></ \/ GSK (25mg) 74/ \/ GSK (50mg) / Pharmacy ></ \ Squibb & Sons \
—— — ¢ N — e
2003 2003 2006 2008 2008 AR 2009 . A 2015
UGT1A1 Breast cancer 2+ 24

inhibitors resistance protein inhibitors

We bin weighted edges into “weak” and “strong ties” in the projected graph W.
Wi; = # of simplices containing nodes / and j.

* Weakties. W;=1 (one simplex contains /and )
* Strong ties. Wj; > 2 (at least two simplices contain / and j)

16



Simplicial closure depends on structure in projected graph.

* First 80% of the data (in time) — record configurations of triplets not in closed triangle.
* Remainder of data — find fraction that are now closed triangles.

Closure probability Closure probability _Closure probability
10‘2—% 102 5 10-2 J *
1073 5
] 10-3 1073
~\e 1073 ~/A¢ ~Ar
1073 - 1 104 _ T 10-
107° 5 10-5 107
107 107 107* 10~ 10~ 10 10 10 1072 100 10 107 1072
ZX VAY VAN
1 . 2% o
Increased edge density Increased tie strength Tension between edge
increases closure probability. increases closure probability. density and tie strength.

Left and middle observations are consistent with theory and empirical studies of soc/a/ networks.

[Granovetter 73; Kossinets-Watts 06; Backstrom+ 06; Leskovec+ 03] ‘7



Simplicial closure on 4 nodes is similar to on 3 nodes,
just “up one dimension.”

Closure probability Closure probability Closure probability
3 1072 E ] +
/\ /\. 1073 A\ 1071 R
WV AVANISN: AV
- ) E 10773
\ = —> 10—5.é D :
\ 10_6 -; 10—4 _§
V2N o
AVA AV L
Increased edge density Increased simplicial tie strength ~ Tension b/w edge density
increases closure probability. increases closure probability. simplicial tie strength.
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We proposed “higher-order link prediction”as a
framework to evaluate models for closure.

Data.

t1:{1,2,3,4}

t,:{1,3,5}  Observe simplices up to time t.
ts: {1,6} * Predict which groups of > 2

ty: {2,6} nodes will appear after time t.
ts:{1,7,8}

te: {3,9} ;

t;: 15,8 We predict structure that graph
! models would not even consider!

time

19



Our structural analysis tells us what we should be
looking at for prediction.

1. Edge density matters!
— focus our attention on predicting which open
triangles become closed triangles ™m
(intelligently reduce search space.) I

2. Tie strength matters!
— various ways of incorporating this information

20



For every open triangle, we assign a score function on
first 80% of data based on structural properties.

Score s(i, ], k)...
1.

2.
5.

4.

Wij J

is a function of W, Wy, Wi,
arithmetic mean, harmonic mean, etc. Wi
looks at common neighbors of the three nodes.
generalized Jaccard, Adamic-Adar, etc.

uses “whole-network” similarity scores on projected graph
sum of PageRank or Katz scores amongst edges

is learned from data

logistic regression model with features

W,

scorep(l, J, k)
= (WF + Wﬁ( + l/\/ﬁ()l/p

900
Lo °
o )

N() ={j,k,,m,x,y,z}

After computing scores, predict that open triangles with NG) = {i,k, L, m,r}
highest scores will be closed triangles in final 20% of data.  N(k) ={i.j.(,.m}

21



Table 2: Open triangle closure prediction performance based on several score functions: random (Rand.); harmonic, geometric,
and arithmetic means of the 3 edge weights (Egs. (19) to (21)); 3-way common neighbors (Common, Eq. (22)); 3-way Jaccard
coefficient (Jaccard, Eq. (23)); 3-way Adamic-Adar (A-A, Eq. (24)); projected graph degree and simplicial degree preferential at-
tachment (PGD-PA, Eq. (25) and SD-PA, Eq. (25)); unweighted and weighted Katz similarity (Katz, Eq. (29) and W-Katz, Eq. (30));
unweighted and weighted personalized PageRank (U-PPR, Eq. (34) and W-PPR, Eq. (35)); simplicial personalized PageRank
(S-PPR, Eq. (42); the two missing entries are cases where computations did not finish within 2 weeks); and a feature-based su-
pervised method logistic regression (Log. reg.). Performance is AUC-PR relative to the random baseline. The random baseline
is listed in absolute terms and equals the fraction of open triangles that close.

Dataset Rand.  Harm. mean Geom.mean Arith. mean Common Jaccard A-A PGD-PA SD-PA U-Katz W-Katz U-PPR W-PPR S-PPR Log. reg.
coauth-DBLP 1.68e-03 1.49 1.59 1.50 1.33 1.84 160 074 074 097 151 162 183 121 3.37
coauth-MAG-History  7.16e-04 1.69 2.72 3.20 5.11 224 582 150 249 630 340 166 188 135 6.75
coauth-MAG-Geology 3.35e-03 2.01 1.97 1.69 243 1.84 271 131 097 199 174 106 126 094 474
music-rap-genius 6.82e-04 5.44 6.92 1.98 1.85 1.62 210 182 215 193 200 178 209 139 267
tags-stack-overflow 1.84e-04 13.08 10.42 3.97 6.45 943 6.63 337 274 295 360 1.08 1.85 - 3.37
tags-math-sx 1.08e-03 9.08 8.67 2.88 6.19 937 634 348 281 453 271 119 155 186 13.99
tags-ask-ubuntu 1.08e-03 12.29 12.64 4.24 7.15 496 751 748 563 7.10 415 175 254 119 7.48
threads-stack-overflow 1.14e-05 23.85 31.12 12.97 2.73 385 319 520 389 106 1154 1.66 4.06 - 1.53
threads-math-sx 5.63e-05 20.86 16.01 5.03 25.08 28.13 2332 1046 7.46 11.04 486 090 1.18 0.61 47.18
threads-ask-ubuntu 1.31e-04 78.12 80.94 29.00 21.04 280 3082 7.09 6.62 16.63 3231 094 151 178 9.82
NDC-substances 1.17e-03 4.90 5.27 2.90 5.92 336 597 476 446 535 293 139 183 186 8.17
NDC-classes 6.72e-03 443 3.38 1.82 1.27 1.19 099 094 214 092 134 078 091 245 0.62
DAWN 8.47e-03 443 3.86 213 473 3.76 477 376 145 461 204 157 137 155 286
congress-committees  6.99e-04 3.59 3.28 2.48 4.83 249 504 106 131 321 259 150 389 213 7.67
congress-bills 1.71e-04 0.93 0.90 0.88 0.65 1.23 0.66 060 055 060 0.78 316 1.07 6.01 107.19
email-Enron 1.40e-02 1.78 1.62 1.33 0.85 0.83 087 127 083 099 128 369 316 2.02 0.72
email-Eu 5.34e-03 1.98 2.15 1.78 1.28 269 137 088 155 1.01 179 159 175 1.26 347
contact-high-school 2.47e-03 3.86 4.16 2.54 1.92 361 200 09 113 172 253 139 241 0.78 2.86
contact-primary-school 2.59e-03 5.63 6.40 3.96 2.98 295 321 092 094 163 402 141 431 093 691

22



A few lessons learned from applying these ideas.

1. We can predict pretty well on all datasets using some simple method.
— 4x to 107x better than random w/r/t mean average precision
depending on the dataset/method
(only predicting on open triangles)

2. Thread co-participation and co-tagging on stack exchange are
consistently easy to predict with the harmonic mean. W. W
if

5. Simple averaging W, Wj,and W, consistently performs well. W

23



Generalized means of edges weights are often good
predictors of new 3-node simplices appearing.

]
Y 80 1 8 12.5 1
[ 1 c 1 :
g : g 10.0 i : Wi k
e 60 T d f- " ] | ( )
o : o 7.5 | 5
a 40 4 1 o 1 { : p p p 1/p
1 1 | H —
: : s L. 1 = (WP + WP + WP)
E 20 1 E H .\!!i"llxaxalu j j
2 g 2.5 | 133
0 T T T I | T T T
-4 -3-2-10 1 2 3 4
p
--- harmonic ——geometric - arithmetic ?
o 3.5 °
g X coauth-DBLP B tags-stack-overflow k ﬁ
g 3.0 % coauth-MAG-geology  [Jl] tags-math-sx
S 25 X coauth-MAG-history B tags-ask-ubuntu
£ 2.
g % congress-bills gk email-Eu
v 2.0 % congress-committees sl email-Enron
% 1.5 @ threads-stack-overflow <« NDC-substances
K @ threads-math-sx <« NDC-classes
~ 1.0 | : @ threads-ask-ubuntu
_I4 _|3 _|2 _|1 0 :i_ 2| :.I; 41 ‘ contact-high-school @& DAWN
p Q contact-primary-school v music-rap-genius

Good performance from this local information is a deviation from classical link prediction, where
methods that use long paths (e.g., PageRank) perform well [Liben-Nowell & Kleinberg 07].
For structures on k nodes, the subsets of size k-1 contain rich information only when k > 2.
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If we only need the top-k weighted triangles, &% ,
we have fast algorithms for finding them. W R Kumas PLi, M. Char

score, (i, j, k) Simple (incorrect) algorithm.
= (WP + WE + Wo)HP 1. Throw out edg.es With.weight <t
2. Find triangles in remainder.

W, W.

l j/( Dataset: wikipedia

1072 Hl best fit powerlaw

. 10-3 Bl empirical fraction
Wik Better (correct) algorithm. § 10+
1. Dynamically choose threshold. £
2. Careful pruning. Z

107 10° 10° 10° 106 107 10°

edge weight

25



We often only need the top-k weighted triangles, and

we have fast algorithms for finding them.

dataset # nodes # edges Fast enumeration Fasttop-k (k= 1000)
(running time in seconds)
Spotify co-listens 3.6M 1.93B too long 30
MAG co-authorship  173M 544M 596 16
AMINER co-authorship 93M 324M 255 10
Ethereum transactions 38M 103M 91 33

26



Higher-order data is pervasive!

1. There are commonalities in temporal evolution. Generative models?
2. There is lots of signal in subsets! Unique to higher-order...
3. Please develop neural embeddings to out-perform our baselines. ' ©

« Simplicial Closure and Higher-order Link Prediction. Austin R. Benson, Rediet Abebe, Michael T. Schaub, Ali
Jadbabaie, and Jon Kleinberg. Proc. Natl. Acad.Sci.US.A, 2018. & github.com/arbenson/ScHoLP-Tutorial
* Retrieving Top Weighted Triangles in Graphs. Raunak Kumar, Paul Liu, Moses Charikar,and Austin R.Benson.

Proc.Of WSDM, 2020. & github.com/raunakkmr/Retrieving-top-weighted-triangles-in-graphs 77
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Higher-order Network Data Analysis —

1. Temporal evolution of higher-order interactions.
Simplicial Closure and Higher-order Link Prediction, PNAS 2018.

2. Clustering in large networks of higher-order interactions.
Minimizing Localized Ratio Cuts in Hypergraphs,KDD, 2020.

3. Diffusions over higher-order interactions in networks.
Random walks on simplicial complexes and the normalized Hodge 1-Laplacian, SIAM Review, 2020.

28



Graph minimum s-t cuts are fundamental.

minimizes-y cut(S)
subject to seS, t¢S.

poly-time algorithms!

Maximum flow / min s-t cut [Ford, Fulkerson, Dantzig 1950s]

Densest subgraph [Goldberg 84; Shang+ 18]

Graph-based semi-supervised learning algorithms [Blum-Chawla 01]
Local graph clustering [Andersen-Lang 08; Oreccchia-Zhu 14; Veldt+ 16]

29



Real-world systems are composed of “higher-order”
interactions that we can model with hypergraphs.

H =(V,E), edge e € E is a subset of V (e C V)

V=1{12.345)
(5 E=1{{1,2,3),{2,4,5})

50



What is a hypergraph minimum s-t cut?

edge in a graph
Must be split 1/1.

Should we treat the split
differently from the split?

Historically, no. [Lawler 73, Ihler+ 93]

More recently, yes.
[Li-Milenkovic 17, Veldt-Benson-Kleinberg 20]

\
\
\

-

size-3 hyperedges

“Only one way to split a triangle”
[Benson+ 16; Li-Milenkovic 17; Yin+ 17]

51



We model hypergraph cuts with splitting functions.

Given a cut defined by S,
we incur penalty of We(eNS)
at each hyperedge e.

Hypergraph minimum s-t cut problem.

minimizescy .. We(e N S) = cuty(S)
cuty(S) = f(2) + f(1) subject to seS, t¢Ss.

Cardinality-based splitting functions.
Non-negativity we(A) > 0.
Non-split ignoring we(€e) = we(0) = 0.

CB weld) = fimin(iAl [A\e)).



Cardinality-based splitting functions appear
throughout the literature.

All-or-nothing
Linear penalty
Quadratic penalty

Discount cut

L.-M submodular

wod)= 10 TASLEDE [Lawter 73; Ihters 93; Yins 17)
) 1 otherwise

W.(A) = min{|A|, [e\A|} [Hu-Moerder 85; Heuer+ 18]
We(A) = |A| - [e\A] [Agarwal+ 06; Zhou+ 06; Benson+ 16]
We(A) = min{|A|%, |[e\A|* } [Yaros- Imielinski 13]

W(A) = [Li-Milenkovic 18]

N

1 AL e
+2-min {1’ alel]” Talel] }

535



We solve hypergraph cut problems with graph reductions.

Gadgets (expansions) model a hyperedge with a small graph.

’ ooll 1 \OO
OO/'[EI_’!;} \‘OO
o o 0.5

hyperedge cllque expansion star expansion Lawler gadget [1973]

In a graph reduction, we first replace all hyperedges with graph gadgets...

Quadratic penalty Linear penalty All-or-nothing
fi)=i(lel-1) f(i) = f(0) = 0,0/w f(i) = 1
... then solve the (min s-t cut) problem exactly on the graph,
and finally convert the solution to a hypergraph solution.

34



We made a new gadget for C-B splitting functions.

oI‘« i GB we(A) = f(min(A], [€\A]).
— ,'\,.E/x‘ This gadget models min(JAl, |e\Al, b).
e O e 0

Theorem [Veldt-Benson-Kleinberg 20a]. Nonnegative linear combinations of the

C-B gadget can model any submodular cardinality-based splitting function.

(F is submodularon X if FANB)+ F(AU B) < F(A) + F(B) forany A,B C X))

See also Graph Cuts for Minimizing Robust Higher Order Potentials, Kohli et al., 2008.
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Submodularity is key to efficient algorithms./
®

Cardinality-based splitting functions.
Non-negativity we(A) > 0.
Non-split ignoring we(e) = we(0) = 0.
C-B we(4) = f(min(|Al, |A\el).

Theorem [Veldt-Benson-Kleinberg 20a]. The hypergraph min s-t cut problem
with a cardinality-based splitting function is graph-reducible (via gadgets)
if and only if the splitting function is submodular.

What happens when the splitting function isn’t submodular?
Can we use some other algorithm?

36



Unlike graph min s-t cut,
hypergraph min s-t cut can be NP-hard.

Theorem [Veldt-Benson-Kleinberg 20a]. For C-B splitting functions, =w; +1
wy=1 AW3 Wy
s
3
[ NP-hard 25 d
I Reducible/Submodular 5 2
|:| Unknown 15 1
1 0
Hard Reducible ”
| j— 05

W >
0 L 2 2 0.5 1 1.5 2 25 W,

max hyperedge size 4 or 5 max hyperedge size 6 or / max hyperedge size 8 or 9

Open Question: For 4-uniform hypergraphs, is there an efficient algorithm

to find the minimum s-t cut with no 2-2 splits (w; = 1, w, = ™),
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How can we use this framework to enable new data science algorithms?

38



Background. Local clustering has been studied
extensively in graphs, but not much in hypergraphs.

G = (V,E) is a graph.
R € V (Reference or seed set).

Finds a “good” cluster S “near” R.

s

39



Background. Flow-based methods minimize a
localized variant of conductance.

Rewardg
/ contained clugterg
minimize 4, () = cut(S) )
node sets S vol(S N R)|—|evol(S N R_)l
/ \ Penalizeg nodeg
vol(T) = sum of ~ Rewards high outside &

degreesin 7. overlap with R

Max Flow. Quot. Imp. (Lang, Rao, 2004)
Flow-Improve (Andersen, Lang 2008)

FAST ALGORITHMS FOR Local-Improve (Orecchia, Allen-Zhou 2014)

EXACT MINIMIZATION! SimpleLocal (Veldt, Gleich, Mahoney 2016)
" FlowSeed (Veldt, Klymko, Gleich 2019)

Great survey paper! (Fountoulakis et al. 2020)
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Background. Flow methods repeatedly solve min-cut
prOblemS on an aUXiliary graph. [Andersen-Lang 08, Orecchia-Zhou 14, Veldt+ 16]

Is pr(S) < a for any S?

Connect R to a source node (5); edges weighted with respect to a.

Connect VAR to a sink node (©); edges weighted with respect to B = ae.

Compute min s-t cut of G.

$r(S) < @ & min s-t cut of G’ < avol(R)

41



We generalized local flow-based techniques to

the hypergraph setting @
e —

We introduce localized hypergraph conductance
We can minimize it exactly with our hypergraph min s-t cuts framework

Strongly-local runtime! (Only depends on size of seed set)

The analysis provides even new

Normalized cut improvement guarantees ———
guarantees for the graph case!

4)



We define hypergraph s-t cut problems similar to the
ones used in the graph case.

Hypergraph cut function

(cuty(5)

£(5) =@l”}-{(5 m&&volﬂ(s N RD

Encourage overlap with ~ Discourage overlap

reference set. outside reference set
d; = # hyperedges node r is in
— voly(5) = Z di
ieS

Theorem [Veldt-Benson-Kleinberg 20b]. We can repeatedly solve min

hypergraph s-t cut problems with different a to exactly minimize the
hypergraph localized conductance (HLC) exactly.
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We carefully apply graph reduction techniques
to growingRsubsets of the hypergraph.

Theorem [Veldt-Benson-Kleinberg 20b]. Strong locality.
Can make this algorithm run in time proportional to the
3 size of seed set (does not look at the full hypergraph). 14




We prove new normalized cut quarantees
that are new even for the graph case.

Normalized cut is another ratio-cut

_cut(S) s cut(S)
objective related to conductance.

P0) = Lol(S) vol(S5)

Theorem [Veldt-Benson-Kleinberg 20b]. Normalized cut improvement.
If a target set T C V satisfies

vol(TNR) _ vol(TNR) If T overlaps enough
> _ + :
vol(7) vol(T7) with seed set R...

Then|gp(S) < %gb(T) where S is the set returned by our algorithm.

..then our output has normalized cut almost as good as T.
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F1 Scores
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15M StackOverflow questions (nodes), answered by 1.1M users (hyperedges).

mean hyperedge size 23.7,max hyperedge size ~ 60k.
Tags provide ground truth cluster labels.
Delta-linear splitting function w; = min(i, 5000).
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F1 recovery scores given a handful of nodes from the ground truth cluster 7.

Cluster T time (s) HyperLocal Baselinel Baseline2
Amazon Fashion 31 3.5 0.83 0.77 0.6
All Beauty 85 30.8 0.69 0.60 0.28
Appliances 48 9.8 0.82 0.73 0.56
Gift Cards 148 6.5 0.86 0.75 0.71
Magazine Subscriptions 157 145 0.87 0.72 0.56
Luxury Beauty 1581 261 0.33 0.31 0.17
Software 802 341 0.74 0.52 0.24
Industrial & Scientific 5334 503 0.55 0.49 0.15
Prime Pantry 4970 406 0.96 0.73 0.36

* 2.3M Amazon products (nodes), reviewed by 4.3M users (hyperedges).
* mean hyperedge size > 17,max hyperedge size ~9.3k.

* Product categories provide ground truth cluster labels.

* All-or-nothing penalty (w;= 1).



Gadget reductions sometimes create dense graphs,
which can make computations expensive.

O
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Theorem [Veldt-Benson-Kleinberg 20c]. Any submodular C-B splitting function can
be e-approx with log r/ € splitting functions (instead of r,r = hyperedge size).

And one specific case...
« r=60k clique expansion only need O(r / V¢) instead of O(r?)
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We can now model and use hypergraph min s-t cuts.

1. A model for hypergraph cuts.
C-B splitting functions that depend on # of nodes on small side of the cut

2. Algorithm for min s-t cuts with submodular C-B splitting functions.
Graph-reducible if and only if C-B splitting function is submodular

3. Applications to local hypergraph clustering.
Strong locality lets us scale to large hypergraphs with large hyperedges

e Wz = 0.5 p ‘ .—\. P W2 = 1.5 ;/ g
® o (NP-hard) o D ® @ (poly-time via graph ‘
) | _®,/® 0g¢ reduction)

 Hypergraph Cuts with General Splitting Functions. Nate Veldt, Austin R. Benson,and Jon Kleinberg.
arXiv:2001.02817,2020.
* Localized Flow-Based Clustering in Hypergraphs. Nate Veldt, Austin R. Benson, and Jon Kleinberg.
Proc.Of KDD,2020. & github.com/nveldt/HypergraphFlowClustering
» Augmented Sparsifiers for Generalized Hypergraph Cuts. Nate Veldt, Austin R.Benson,and Jon Kleinberg.
arXiv:2007.08075, 2020. 49
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Higher-order Network Data Analysis 6 Lippner,and P Hor

1. Temporal evolution of higher-order interactions.
Simplicial Closure and Higher-order Link Prediction, PNAS 2018.

2. Clustering in large networks of higher-order interactions.
Minimizing Localized Ratio Cuts in Hypergraphs, KDD, 2020.

3. Diffusions over higher-order interactions in networks.
Random walks on simplicial complexes and the normalized Hodge 1-Laplacian, SIAM Review, 2020.
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Background. Graph Laplacians, diffusions, and spectral
graph theory underly many graph data methods.

D = diagonal degree matrix, A = adjacency matrix,L = D — A is graph Laplacian..

Low-dimensional embeddings Personalized PageRank
[Belkin-Niyogi 02; Coifman-Lafon 06] [Andersen-Chung-Lang 08; Gleich 15]
Nx1 x| = [Ax1 Ax] (BI+LD YHx=v
Norm. Lap. N = D'¥2LD/2, Random walk Lap. LD
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What is a “higher-order” Laplacian?
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Background. By interpreting our data as a simplicial
complex, we can get higher-order Laplacians.

See Hodge Laplacians on Graphs by Lek-Heng Lim.

* (Abstract) simplicial complex X:if A€ Xand B € A,then B € X.
* Graph G=(V,E) as a simplicial complex: X=V U E.
 (Caninduce a complex from higher-order interactions.

0 1, 2]
A 1, 2] 2, 6] 1|3 B 1 (2) 6
0 [2, 3]
0 (2, 4] )
|1 |2, 6] 3 4 )
C= 0 |I[8,4] /

—2{[4, 5] no k-simplices
0 |[4,7 with k > 1

. . . 72 [576]

Simplicial Complex 05,7 Graph

Lo=0"0+B;B] =D — A graph Laplacian operates on nodes
Ly =BlB; +B;B) Hodge Laplacian operates on oriented edges

B, maps edges to nodes, B, maps triangles to edges.
53



We spent a lot of time getting the normalization and
connections to random walks right.

THEOREM 3.4 (stochastic lifting of the normalized Hodge 1-Laplacian). The ma-
tric —L1/2 has a stochastic lifting, i.e., there exists a column stochastic matriz p
such that —%ﬁlVT =VTP. Specifically, P = %Pﬁowe, + %Pupper, where Piower 15 the
transition matrix of a random walk determined by the lower-adjacent connections and
Pypper 15 the transition matriz of a random walk determined by the upper-adjacent con-
nections. The transition matric Piower 1S defined by a “forward walk” and a “backward
walk” component moving in the orientation of the edges or against it, respectively:

(3.9) Pioyer := % (Plower forward + Plower,backward) »

(3.10) Plower forwara = Mydiag(M1)7", Random Walks on Simplicial Complexes
(3.11) Plower,backwara = Midiag(M,1) ™", and the normalized Hodge 1-Laplacian.
where My = Dy(By)T B} and My, = Do(BY)T By are (weighted) lower-adjacency Michael T.Schaub, Austin R. Benson, Paul

matrices corresponding to forward and backward walks along the edges (see Lemma 3.2) : . .
and Dy = diag(D2, D3). The transition matriz Pypper describes a random walk along Horn’ Gab.or Llppner’ and Ali Jadbabaie.
upper-adjacent faces as follows: SIAM REVIQW, 2020.

~

~ 1 /1 I
(3'12) PuPPer = A“D4 ' + 5 (I I) Ds,

where A, = §2+ (ﬁ;)—'— + Ez_ (E{)T is the matriz of upper-adjacent connections as
defined in Lemma 3.2 and Dy is a diagonal matriz:

R 1 if deg([i,4]) =0,
3.13 D)0 = ;g ‘
( ) (Da)i.j1,fi.9) {3 -deg([i,j]) otherwise.

Here ﬁ5 is the diagonal matriz selecting all edges with no upper-adjacent faces:

~ 1 if deg(li,j]) =0,
3.14 Ds)tistia =
(3.14) (Ds)i5).[s.i] {0 otherwise.
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Flow embeddings are the higher-order analog of

diffusion maps.

Ni[x1 x3] = [A1x1 Axxy| for normalized Hodge 1-Laplacian Nj.

O

Projection onto h,
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0.2 e
L (F)
0.0- :-':l.uz ; ee,t e "av, 80 o r
-0.2 —E,
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Projection onto h;

harmonic flow h;
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Flow embeddings are the higher-order analog of
diffusion maps.

Ni [x1 X3] = [Aix1  Azxy| for normalized Hodge 1-Laplacian Nj.

B 0.75 A ’
£ o
o 0.50
c
o
c 0.25 4 :
Q f
S 0.00 - PP e
o 2 e 3
Qo _025 4.7 ,///
o7
—0.25 0.00 0.25 0.50

Projection onto h;
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The holes correspond to the idea of homology
in algebraic topology.

0.75 A
0.50 A
0.25 A

0.00 A —

=
_____________

Projection onto h, @

—0.25 42 ="

—-0.25 0.00 0.25 0.50
Projection onto h;

First eigenvectors of the First eigenvectors of the
graph Laplacian capture Hodge Laplacian capture
(near) connected components, or (near) topological holes, or
zeroth-order homology. first-order homology

A good reference is Hodge Laplacians on Graphs by Lek-Heng Lim.
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We also have simplicial Personalized PageRank.

(BI + L1)x = v for (asymmetric) normalized Hodge 1-Laplacian £;.

1 || har
. @ liberal B ® liberal 71| harm
K I ® conservative o conservative os
* neutral () neutral
e
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** 0.2
0.1

00 01 02 03 04

harmonic PageRank
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Abstract simplicial complexes are another way to model
and analyze higher-order network data.

1. Algebraic topology provides the computational framework.

2. The hard part is getting a normalization scheme that connects the
Hodge Laplacian to diffusions and “respects the topology’

3. We can apply these ideas to graph algorithms based on random walks.

C

lower adjacent walk

¢ )
forward backward
¢) ¢
¢ @,
¢2)

upper adjacent walk

(1,21Q) initial position

 Random Walks on Simplicial Complexes and the normalized Hodge 1-Laplacian. Michael T. Schaub, Austin R.
Benson, Paul Horn, Gabor Lippner,and Ali Jadbabaie. SIAM Review, 2020.

* Graph-based Semi-Supervised & Active Learning for Edge Flows. Junteng Jia, Michael T. Schaub, Santiago
Segarra,and Austin R.Benson. Proc.of KDD,2019. & github.com/000Justin000/ssl_edge
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