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My research focus is on understanding the influence of uncertainty in engineering systems and developing algo-
rithms to control them in the presence of such uncertainties. We consider uncertainty in dynamics, communication
and computation in our research. Fundamentals from optimization theory; approximation theory; control and
estimation theory; and information theory are applied to develop new modeling, analysis and synthesis tools for
uncertainty quantification and robust control. We primarily focus on applications related to aerospace systems
and robotics. Following are descriptions of my recent and future research work. Some of my research is also
commercializable.

1 Uncertainty Quantification (UQ) in Dynamical Systems

In this research effort, my research group works on developing new computational tools for propagating state
uncertainty due to nonlinear dynamics in arbitrary manifolds and develop novel state estimation techniques with
sparse measurement updates. The application focus is on planetary entry problems, space situational awareness
and robotic SLAM problems. Early work was supported by two grants from NASA where we studied uncer-
tainty in landing site on Mars, given uncertainty in dynamics, initial condition and atmospheric models. The UQ
techniques developed here were incorporated in new probabilistic robust control algorithms that would achieve
robust guidance in the presence of probabilistic uncertainty. The UQ algorithms developed in this project are now
included in NASADSENDS (by Bob. J. Balaram), which is a high-fidelity spacecraft simulator for Entry, Descent
and Landing on planetary and small-bodies. It is used by the JPL Mars Science Laboratory project to provide
a high-fidelity testbed for the test of precision landing and hazard avoidance functions for future Mars missions.

(a) Non Gaussian uncertainty
propagation in planetaryRentry
Problems.

(b) UQ in orbitalmechanics – ob-
ject location probabilities in orbit
(red:high, blue:low) based on un-
certain initial conditions.

Recently, I have been supported by AFOSR to de-
velop new algorithms for circular statistics that is crit-
ical for UQ in orbital mechanics. The funding is also
supporting a new estimation framework based on opti-
mal transport (OT) theory. My group has new results
on OT filtering techniques that is an order of mag-
nitude more accurate, with higher confidence, than
EnKF which is the current state-of-the-art for these
problems. Consequently, this allows us predict colli-
sions of orbiting objects with higher precision and in
near real-time. We have also showed that OT filtering
becomes equivalent to Kalman filtering for Gaussian
systems. The circular UQ is also critical for SLAM

applications where the orientation uncertainty breaks most algorithms.
I have also been supported by NSF to study UQ problems related with computational uncertainty in real-time

embedded systems, where computations related to the feedback control algorithms may not complete before pre-
scribed deadlines, thus resulting in uncertainty in the system behavior. The focus was on quantifying robustness
margins given the real-time task schedulers quality of service (QoS). This lead to a new class of control algo-
rithms, called anytime control algorithms, which can accommodate uncertainty in available CPU times. This is
particularly critical for cyber physical systems, which have tight coupling between physics, communication and
computation. This work is extending my Ph.D. thesis.

2 Integrated Structure and Control Design of Tensegrity Systems

Tensegrity systems are a network of compressive bars and tensile cables that realize a given structure. Spatio-
temporal stiffness is achieved by controlling the elastic properties of the cables. The tensegrity framework is also
known to achieve minimum mass and minimum control energy realization for a given structural topology. These
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Focus on solving PDEs

• Model based design
• Speed up

• Less expensive

• Digital twins
• Predict failures

• Refine design

• Uncertainty Propagation
• Nonlinear estimation
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Focus on solving PDEs

• Mesh
• Finite-difference

• Finite-element/volume
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Scientific Machine Learning

• Meshfree
• RBF

• Maximum-entropy basis functions

• Machine learning
• Address the representation problem
• Automate/learn basis functions (NN)
• Adapt to solution, etc.

• This talk
• Automate generation of finite-difference 

schemes
• PDE specific FD-scheme
• Optimize for boundary condition, geometry, 

and PDE.
• Needs pre-specified mesh



Current Approach

• Choose temporal and spatial discretization (mostly adhoc)

• Discretization is PDE independent!

• Work with dt, dx to get  acceptable errors and stability

• Many moving parts!

Discretization of PDEs

This talk: Present a Unified Framework!



A Unified Framework – Convex optimization formulation

Automated Discretization of PDEs 
Synthesize Finite Difference Schemes via Convex Optimization

conferences and journals and will be translated into numerical libraries to be made freely available for the
entire scientific community.

1.5. Team. This is a 3 year multi-disciplinary project with Drs. Bhattacharya (PI) and Donzis (Co-PI). Dr.
Bhattacharya’s expertise is in convex optimization and robust control and is very active in the control and
dynamical systems community. He has applied the dynamical systems approach to numerical optimization
to develop solvers for large-scale quadratic programming problems for massively parallel system. These
new solvers are 160x speed up compared to existing solvers [10]. These optimization algorithms have
been applied to standard machine learning problems for benchmarking, and have resulted in significant
speedup [11].

Dr. Donzis’ expertise is in computational fluid dynamics. He has a long history of using massively
parallel platforms in HPC effectively and has also been very active in the HPC community as part of User
Advisory Committees for the largest NSF-supported machines and XSEDE. He has held world-records in
terms of size and fidelity of turbulence simulations [3, 12]. Dr. Donzis is also very involved in educational
activities and has introduced a graduate course entitled “High-performance Computational Fluid Dynamics”
which aims at preparing students to use efficiently large-scale cyber-infrastructure to solve important fluid
dynamic problems of scientific and societal impact. Results from research under this proposal will be also
introduced into class materials.

This project will require strong collaboration between the team members in formulating research ques-
tions and developing the foundational work in both theory and computation. The PIs have indeed collabo-
rated very tightly in other projects which organically led to the ideas presented here.

2. TECHNICAL APPROACH

We will develop the framework in a general setting for partial differential equations

Dtf = Dxf, (2)

where Dt and Dx represents a infinite-dimensional nonlinear operator based on temporal and spatial deriva-
tives respectively. Here we represent time with t 2 R+ and space with x 2 D ⇢ Rn, and assume D is
discretized with a structured non uniform grid. Time is assumed to be discretized with �t.

The overall objective in this proposal is to design a rigorous framework in which optimal discretizations
of (2) can be obtained based on multiple specific measurable performance metrics which can be selected
depending on the specific problem at hand. This is a novel yet natural approach to devise numerical schemes
which could provide a paradigm shift in the broader area of numerical analysis. In the following subsections,
we describe the specific research objectives to be addressed.

2.1. Representation of Discrete Partial Derivatives. The standard procedure starts with an approximation
of the derivative of a function f at a point xi of the form

f 0
i =

@f

@x

����
xi

⇡ 1

�x

⌘xX

m=�⌘x

amfi+m +O(�xp+1). (3)

The last term indicates that the truncation error of the approximation is of order p + 1. In a traditional
derivation [6] one first selects the stencil size, that is the number of neighboring points to use in the approx-
imation, which is (2⌘x + 1), and then finds the coefficients am such that p + 1, the order of the truncation
error, is largest. This is done by eliminating all terms of order lower than p+ 1 in a Taylor expansion of the
right-hand-side of (3).

A generalization of the approximation of the dth derivative is given by

f (d)
i =

1

(�x)d

⌘xX

m=�⌘x

am,dfi+m. (4)
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General PDE

Discretize Operator

Discrete Time Dynamical 
System

Determine coefficients  
by optimizing performance  
with stability constraints

and explicit schemes with uniform grid and symmetrical stencils. In that case, (8) simplifies to

@df

@xd
⇡ F

(d) =
1

(�x)d
AdF. (22)

For temporal derivative we consider, forward Euler, i.e.

@f

@t
⇡ fk+1

i � fk
i

�t
,

where index i is for spatial grid and index k is for temporal grid, and �x and �t define the spatial and
temporal discretization. With these finite-difference approximations, (21) can be written as

F
k+1 =

 
I+�t

DX

d=1

�d
(�x)d

Ad

!
F
k. (23)

Equation (23) is a discrete-time dynamical system parameterized by Ad and �t. Stability of (23) is guaran-
teed if the eigen-values of

⇣
I+�t

PD
d=1

�d
(�x)d

Ad

⌘
are within the unit circle. Therefore, this is an eigen-

value problem. Consequently, it is possible to determine discretization parameters Ad and resolution of
temporal grid �t, such that the scheme is numerically stable. Eigen-value constraints can be conservatively

satisfied by constraining the maximum singular value, or the two norm of the matrix, i.e.
�����

 
I+�t

DX

d=1

�d
(�x)d

Ad

!�����
2

 1, (24)

which is a convex constraint [16] in either Ad or �t, and quasi-convex in both. Lyapunov stability theory
for discrete-time systems can also be applied to enforce stability of (23).

Contribution to the Unified Formulation: The unified mathematical problem so far is the optimization (20)
subjected to order of accuracy (13) and now the stability constraint (24). As mentioned above this has never
been done before and combine three key aspects required of numerical schemes, but are currently done sepa-
rately and typically by trial-and-error a posteriori benchmarks. Our proposal unifies the approach, provides
optimal schemes subjected to all these constraints and allows naturally for specific trade-offs between the
different requirements. The specific research objectives are described below.

Specific Research Aim 7: We will investigate the tradeoff between time step �t and other accuracies via
the constraint in (24). In particular, we will determine the largest �t for which the system in (23) is stable
given A

⇤
d for, for example, minimum spectral errors. For explicit schemes, this is convex in �t and can

be easily solved numerically using interior-point methods. However, for the generalized finite-difference
formulation in both space and time, the problem is nonconvex in all the parameters, specifically bilinear.
For Padé approximations, or implicit schemes, we expect rational expressions with affine over affine terms,
which can be convexified using standard techniques [17]. The major research effort here will be to develop
convex relaxations, with quantified bounds on the relaxation gap, and solve the convex problem. The exam-
ple above is shown with first order Euler for time derivatives. However, in this project we will use temporal
derivative approximated also using methods described above. Such a generalization will admit multi-step
temporal integrations in the optimization.

Specific Research Aim 8: The 2-norm constraint to guarantee stability is conservative. In this thrust,
we will explore Lyapunov stability criterion to enforce stability. We will define a Lyapunov function
V (F) := F

T
PF, for some P = P

T > 0, such that V (Fk+1)  V (Fk). This introduces a new variable P

in the optimization and results in bilinear matrix inequalities. However, the structure of the nonconvex terms
is similar to those encountered in discrete-time control system design. In fact, if we treat F as states of the
discrete-time dynamical system in (23), the parameters Ad, Bd, cd, and dd appear as “gains” of a full-state
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A global figure of merit to assess how accurately the scheme captures spectral content can be defined as
the weighted L2 norm of the error e(w):

‖e(w)‖2L2
:=

∫ π

0
γ(w)e∗(w)e(w)dw =: 〈e∗(w)e(w)〉 . (19)

Here e∗(w) is the complex conjugate of e(w), and γ(w) is a weighting function which is introduced to provide
control over which wavenumbers are to be more accurately resolved. The selection of γ(w) would depend,
in general, on the physical characteristics of the system of interest. For example, for PDEs with multi-scale
broadband solutions a natural choice would be a constant γ(w) over the range of w of interest and zero
elsewhere. For a system with two well defined wavenumber bands, on the other hand, one can define γ(w)
presenting relatively large values around those bands but negligible values everywhere else. Examples on the
impact of this choice will be provided in section 3.

We can now frame the problem of the derivation of finite difference schemes combining spectral resolution
and order of accuracy. More formally, then, our goal is to determine a such that ‖e(w)‖2L2

is minimized,
subject to a given order of accuracy defined by (4), i.e.

min
a∈R2η+1

‖e(w)‖2L2
, subject to (4). (20)

Equation (20) provides the unifying formalism to find the coefficients in (2) that both provides a given
order of accuracy and minimizes error in spectral space. Note that if the number of unknowns (2η + 1) is
equal to the number of terms to be removed from the truncation error to achieve a given order, then (4) has
a unique solution and no optimization is possible. This is the case of standard finite difference schemes. If,
on the other hand, the stencil size makes the number of unknowns greater that those needed to achieve a
given order, the system will utilize those degrees of freedom to minimize ‖e(w)‖2L2

.
Thus, we see that by coupling the two mathematical systems into a unified formulation, the present

formulation effectively decouples the requirements for order of accuracy and spectral resolution. In standard
derivations, one uses the information from neighboring points to obtain the highest possible order of accuracy,
and then evaluates spectral resolution a posteriori. Here, by decoupling the requirements one can use the
additional degrees of freedom to either increase the order of the scheme or improve specific spectral behavior.
In section 3 we present specific examples of optimized low-order schemes that are shown to have better
spectral resolution standard than high-order finite differences.

To develop the theory further, one needs to distinguish between odd-order and even-order derivatives
which leads to different behavior in Fourier space. In both cases an analytical solution can be found. This
is done next.

2.2.1. Even derivatives
For d = 2q, q = {1, 2, · · · }, e(w) becomes

e(w) =
(

CT (w)ad − (−1)qwd
)

+ jS(w)Tad.

The L2 norm of the error is therefore,

‖e(w)‖2L2
:=

∫ π

0

[
(

CT (w)ad − (−1)qwd
)2

+
(

S(w)Tad
)2
]

dw, (21)

= aTd
(〈

C(w)CT (w)
〉

+
〈

S(w)ST (w)
〉)

︸ ︷︷ ︸

Qd

ad − 2aTd
〈

(−1)qwdC(w)
〉

︸ ︷︷ ︸

rd

+
〈

w2d
〉

, (22)

and the optimization problem (20) can be written as

min
ad∈R2η+1

(aTd Qdad − 2aTd rd), subject to (4), (23)
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standard finite differences in both accuracy as well as computational performance. The focus of current work
is to provide a general framework for derivation of spatial discretizations with low dissipative and dispersive
errors by utilization of optimization tools. Different optimizations have been carried out in literature by
[Bogey and Webb] but these are limited to first drivatives and high orders. These optimizations are also
restricted in the sense that the nature of unknown coefficients (symmetric or antisymmetric) is specified
apriori. [Zhang] utilizes maximum norm optimization but the algorithm requires several assumptions and
there is a limit on the maximum wavenumber that can be resolved. Thus, the motivation is to provide
a methodology that amalgamates stability, order and spectral accuracy into the derivation with strong
mathematical reasoning, without any assumptions about the coefficients. Sufficient flexibility is provided to
choose the maximum range of spectral accuracy, nature of spectral error, order of accuracy and the number
of grid points.

2. The framework for deriving finite differences

As explained above, in this work we derive finite differences in which three important design character-
istics, namely order of accuracy, spectral accuracy, and stability, are combined in a rigorous mathematical
framework. We now present each in turn.

2.1. Order of accuracy

A generalization of the approximation in Eq. (1) to the d-th derivative is given by

f (d)
i =

1

(∆x)d

η
∑

m=−η

amfi+m, (2)

where, as before, we have η points on either side of the i-th grid point. The stencil size is then S := 2η + 1.
A Taylor series for a term on the right-hand-side of (2) can be written as

fi+m = fi + (m∆x)f ′
i + (m∆x)2f ′′

i /2! + . . . .

Upon constructing the entire sum in (2), a (p + 1)-th order approximation of the d-th derivative requires
that the term with the d-th derivative be equal to d! and that the rest of the terms up to order p be zero.
After some algebra these constraints are given by

η
∑

m=−η

mqam =

{

0 q != d,

d! q = d,
(3)

for q ≤ d+ p, or more compactly as

aTd Xd = yd, (4)

where

ad :=
[

a−η a−η+1 · · · aη−1 aη
]T

, (5)

m :=
[

−η −η + 1 · · · η − 1 η
]T

, (6)

Xd :=
[

1S×1 m · · · md−1 md · · · md+p
]

, (7)

yd :=
[

01×d d! 01×p

]

. (8)

with 1S×1 is an S × 1 vector with ones as its elements and 01×d a 1× d vector with zeros as its elements.
Equation (4) is the linear system that, for a given stencil size η, results in a finite difference scheme of

order p+ 1.
This is essentially the method ....
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Figure 7: Spectral error for various γ(ω). Standard eighth order scheme (black), γ(ω) = 1 (magenta), γ(ω) = exp(−ω)/0.1
(blue) and γ(ω) = exp(−ω)/0.06 (red) for ω ∈ [0, 2.5] and ω = 0 otherwise.

for a given η, a stable scheme of given order with the best spectral resolution possible for wavenumbers of
interest.

Consider the general linear partial differential equation

∂f

∂t
=

D
∑

d=1

βd
∂df

∂xd
. (28)

Let us assume there are N := 2ηmax + 1 grid points in the domain. The stencil size is S = 2η + 1, for
η = {1, · · · , ηmax}. The dth derivative at the ith grid point is parameterized by ai,d ∈ RS . Define Ad ∈ RN×S

to be the vertical stacking of aTi,d, i.e.

Ad :=






aT1,d
...

aTN,d




 . (29)

Therefore, the order accuracy constraint (4) for every ai,d, can be compactly written as

AdXd = Yd, (30)

for d = 1, · · · , D; and Yd := 1N×1 ⊗ yd.
For L2 optimal spectral error, the cost function to be minimized is the sum of the spectral error (19) at

all locations i:

N
∑

i=1

‖ei(w)‖2L2
:=

N
∑

i=1

D
∑

d=1

(

aTi,dQdai,d − 2aTi,drd
)

+N
〈

w2d
〉

,

=
D
∑

d=1

vT
d (IN ⊗Qd)vd − 2vT

d (1N×1 ⊗ rd), (31)

where vd := vec(AT
d ), and vec(· · · ) vectorizes a matrix by vertically stacking the columns.

We next introduce a shift operator Φk, which is an N ×N matrix, with elements

Φkij
:= δ((i− j − k) mod N), (32)
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Order

Stability

was given to all wavenumbers within [0, 3]. We can use γ(η) to weight some preferred wavenumbers more
than others, and the choice is typically motivated by the physics involved in the PDE. This essentially
means that, we can keep the error lower at preferred wavenumbers at the expense of higher errors at other
wavenumbers that are not vital to the physics of problem.

To study the effect of weighting function on spectral behavior of the optimized schemes, let us consider
a candidate function γ(η) = exp(αη) ≥ 0 where α ∈ R. By choosing different values of α, one can assign
different weightage for different wavenumbers. For example, α < 0 weights lower wavenumbers more than
the higher ones, α = 0 i.e., γ(η) = 1 weights all wavenumbers equally, and α > 0 weights higher wavenumbers
more that the lower ones. This spectral behavior of optimized schemes is illustrated in Fig.7.

Figure 7: Spectral error for O
3
3(4) approximating the second derivative for different γ(η) = exp(αη) for

η ∈ [0, 3], and γ(η) = 0 otherwise.

The choice of exponential for weighting function is purely for the purpose of illustration in Fig.7. One
can also weight wavenumbers only over a finite number of intervals, e.g., γ(η) = sin(η) for η ∈ [0, 1], γ(η) = 1
for η ∈ [2, 3], and γ(η) = 0 otherwise. From this discussion it is evident that, the flexibility of choosing γ(η)
can be leveraged to improve the accuracy of solution at wavenumbers that are relevant to the physics of
problem.

The unified framework presented in this section allows us to derive central compact schemes with specified
order of accuracy. The schemes are also optimized using γ(η) to have desired spectral accuracy over the
wavenumber space. The third important aspect of discretization, in addition to order of accuracy and
spectral error, is the temporal stability, which is discussed next.

3 Stability

Let us consider the general linear partial differential equation

∂f

∂t
=

D
∑

d=1

βd
∂df

∂dx
. (20)

Suppose the spatial periodic domain is discretized in Np grid points. The optimized coefficients for the ith

grid point are derived using Eq.(2). Since i is arbitrary, it is obvious that the optimized coefficients must be
identical for all i in the domain. Approximation of the dth derivative at all grid points using Eq.(2) results
in a cyclic linear system of equations [2]. These linear equations can be written compactly in the following

12
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Superior accuracy with low order approximation
Automated Discretization of PDEs (contd.)

New Approach to Finite Difference Schemes

solution in the specified band and suppresses solutions outside those bands.

Prework: This framework was applied to generate various finite difference approximations using regular
explicit and implicit formulations, i.e. �m(xi) =  m(xi) = 1. Fig.2(a) and (b) show the spectral accuracy
of the finite difference approximation of the first derivative with second order accuracy, using explicit and
implicit finite difference formulations, with symmetric stencils over uniform grid. We see the accuracy is
remarkably good, even better than compact schemes widely used in the literature [7]. Here kei,d(w)kL2 was
minimized with order equality constraint in (13). Fig.2(c) illustrates the ability of the proposed framework
to achieve high spectral accuracy over two disjoint bands.
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ŵ

η = 2

0 0.5 1 1.5 2 2.5 3

w ∈ [0, π]

-1

-0.5

0

0.5

1

R
ea
l
e
(w

)

0 0.5 1 1.5 2 2.5 3

w ∈ [0, π]

-3

-2

-1

0

Im
ag

e
(w

)

0 0.5 1 1.5 2 2.5 3

w ∈ [0, π]

0

1

2

3

ŵ
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a) Explicit Scheme: Minimum spectral error with  
7 point stencil. First derivative, with second order  
accuracy.

b) Implicit Scheme: Minimum spectral error with  
7 point stencil. First derivative, with second  
order accuracy.

c) Multi-band Spectral Accuracy:  
Explicit scheme  with 11 point stencil.  
First derivative, with second order  
accuracy.
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FIGURE 2. xxc Modified wave numbers of various schemes with minimum spectral error.

We expect the specific research aims, described above, will enable us to develop a mathematically rig-
orous methodology for generating spectrally accurate finite-difference approximations in a more general
setting.

2.3. Stability. Numerical schemes are not useful unless they are numerically stable. Traditionally, one
selects discretizations for different terms in the PDE, and a posteriori determine the stability characteristics
of the resulting combination [15], which often becomes unstable especially when multiple physical process
(with different derivatives) enter the PDE. Clearly this is a suboptimal process and, beyond coincidental
choices, leads typically to suboptimal schemes. Our objective is to incorporate stability into the framework
described above which includes both order and spectral accuracy. Thus, it is the combination of these aspects
which makes our proposal approached new and needed.

For simplicity, consider the generalized first order PDE

ft =
DX

d=1

�d
@df

@xd
, (21)
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A unified framework for finite-difference schemes, K. Kumari, R. Bhattacharya, D. Donzis, Journal of  Computational Physics (submitted)



Summary

• Treat coefficients of finite-difference scheme as unknowns

• Over parameterize

• Solve minimized error (spectral) subject to stability and accuracy constraints

• Coefficients are “Control Variables” 
• Formulation similar to State-Feedback control

• Powerful connection
• We can formulate finite-difference schemes as a control problem
• Guarantee transient and steady-state behaviour of numerical method
• Robustness to uncertainties, quantization error, etc.
• Nonlinear extensions

1. A unified framework to generate optimized compact finite difference schemes, Authors: Vedang M. Deshpande, Raktim Bhattacharya, Diego A. Donzis

2. A Unified Approach for Deriving Optimal Finite Differences, Authors: Komal Kumari, Raktim Bhattacharya, Diego A. Donzis
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