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Scientific Machine Learning

IFocus on solving PDEs

* Model based design
* Speed up
* Less expensive

* Digital twins

e Predict failures

* Refine design

* Uncertainty Propagation

e Nonlinear estimation
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Scientific Machine Learning

Focus on solving PDEs

* Mesh

e Finite-difference

e Finite-element/volume

e Meshfree
 RBF

« Maximum-entropy basis functions

* Machine learning

* Address the representation problem

* Automate/learn basis functions (NN)
« Adapt to solution, etc.

* This talk

Automate generation of finite-difference
schemes

PDE specific FD-scheme

Optimize for boundary condition, geometry,
and PDE.

Needs pre-specified mesh
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Discretization of PDEs

Current Approach

* Choose temporal and spatial discretization (mostly adhoc)
* Discretization is PDE independent!
« Work with dt, dx to get acceptable errors and stability

* Many moving parts!

This talk: Present a Unified Framework!



Automated Discretization of PDEs

IA Unified Framework - Convex optimization formulation
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Automated Discretization of PDEs (contd.)
Superior accuracy with low order approximation
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Summary

Treat coefficients of finite-difference scheme as unknowns

Over parameterize

Solve minimized error (spectral) subject to stability and accuracy constraints

Coefficients are "Control Variables”
 Formulation similar to State-Feedback control

Powerful connection
« We can formulate finite-difference schemes as a control problem

« Guarantee transient and steady-state behaviour of numerical method
« Robustness to uncertainties, quantization error, etc.
* Nonlinear extensions

1. Avunified framework to generate optimized compact finite difference schemes, Authors: Vedang M. Deshpande, Raktim Bhattacharya, Dieqo A. Donzis

2. AUnified Approach for Deriving Optimal Finite Differences, Authors: Komal Kumari, Raktim Bhattacharya, Dieqo A. Donzis
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