A Convex Optimization Framework for Generating Finite Difference Schemes for Arbitrary PDEs (Discovered or Derived)

Raktim Bhattacharya

Associate Professor, Aerospace Engineering, Texas A&M University

Joint work with Vedang Deshpande^{*}, Komal Kumari⁺, Diego Donzis

Research Summary

Uncertainty Propagation Nonlinear & non Gaussian

State Estimation Sparse & multi-rate sensor fusion

Integrated Design Optimization Sensing & control architecture

Control with Uncertainty Nonlinear robust control

Numerical Algorithms High performance computing

Scientific Machine Learning

Focus on solving PDEs

- Model based design
 - Speed up
 - Less expensive
- Digital twins
 - Predict failures
 - Refine design
- Uncertainty Propagation
 - Nonlinear estimation

Scientific Machine Learning

Focus on solving PDEs

• Mesh

- Finite-difference
- Finite-element/volume

Machine learning

- Address the representation problem
- Automate/learn basis functions (NN)
- Adapt to solution, etc.

Meshfree

- RBF
- Maximum-entropy basis functions

• This talk

- Automate generation of finite-difference schemes
- PDE specific FD-scheme
- Optimize for boundary condition, geometry, and PDE.
- Needs pre-specified mesh

Discretization of PDEs

Current Approach

- Choose temporal and spatial discretization (mostly adhoc)
- Discretization is PDE independent!
- Work with dt, dx to get acceptable errors and stability
- Many moving parts!

Automated Discretization of PDEs (contd.)

A Support to a cinitate of the order Scheroxignation

Summary

- Treat coefficients of finite-difference scheme as unknowns
- Over parameterize
- Solve minimized error (spectral) subject to stability and accuracy constraints
- Coefficients are "Control Variables"
 - Formulation similar to State-Feedback control
- Powerful connection
 - We can formulate finite-difference schemes as a control problem
 - Guarantee transient and steady-state behaviour of numerical method
 - Robustness to uncertainties, quantization error, etc.
 - Nonlinear extensions

2. A Unified Approach for Deriving Optimal Finite Differences, Authors: Komal Kumari, Raktim Bhattacharya, Diego A. Donzis

^{1.} A unified framework to generate optimized compact finite difference schemes, Authors: Vedang M. Deshpande, Raktim Bhattacharya, Diego A. Donzis