Scientific Machine Learning Resources at Texas A&M's High Performance Research Computing Facility

Scientific Machine Learning Workshop
October 27, 2020

TEXAS A&M UNIVERSITY
Division of Research
High Performance Research Computing

An interdisciplinary research environment that advances computational and data-enabled sciences, engineering, and scholarship

Our Mission:

- Enable research and discoveries that advance science and technology.
- Enable computational and data-enabled research activities of students, faculty, and staff at Texas A&M University.
- Provide consulting, technical documentation, and training to support users of these resources.
HPRC Profile

- Operates three HPC clusters over 900 TFlops total computing capacity and over 12 PB storage for active users
 - ViDaL, Terra, and Ada
- Access is **open** and **free** of charge to ALL faculty, research staff, students and external collaborators
- Allocation by proposal is required. Support is available to help new users get started with the application process.
- Staff consists of 14 professionals and 9 student workers.
- Funding for staff, operations and maintenance from the Division of Research
HPRC Key Services

- Computing cycles, storage and networking for researchers
- Allocations and new user start-up assistance
- Individual consulting and help desk user services
- Advanced support for sponsored research projects
- Liaison program (HPRC Enablement) with Colleges of Science, Engineering, and Geosciences
- Access to state and national advanced computing resources
- Expertise in many science and engineering research domains
- Training classes and workshops for novices and experts
- Seminars and various outreach events
HPRC Systems - Terra & Ada

https://hprc.tamu.edu/resources/

Terra:
8,512-core hybrid system
304 28-core compute nodes equipped with the INTEL 14-core 2.4GHz Broadwell processor
48 GPU compute nodes with one NVIDIA K80
Interconnect fabric is Intel OmniPath Architecture (OPA)

Ada:
17,340-core hybrid system
845 20-core nodes equipped with the INTEL 10-core 2.5GHz IvyBridge processor.
15 nodes are 1TB and 2TB memory, 4-processor SMPs configured with the Intel 10-core 2.7GHz Westmere processors
30 GPU compute nodes with 2 NVIDIA K20
4 GPU compute nodes with 2 NVIDIA V100
ViDaL: Secure & Compliant System

ViDaL: https://vidal.tamu.edu

- A 24-node **secure** and **compliant** computing environment that supports data intensive research using sensitive person-level data or proprietary licensed data to meet the myriad legal requirements of handling such data (e.g., HIPAA, Texas HB 300, NDA)
- 16 compute nodes with 192 GB Ram each and 4 large memory nodes with 1.5 TB Ram each, and 4 GPU nodes with 192 GB Ram and two NVIDIA V100 16GB GPUs each
- Both **Windows** and **Linux** environment.
- **2 PB** high performance DDN storage running IBM Spectrum Scale filesystem.
- Crowdstrike (antivirus/malware software) is used. Vidal systems are patched monthly. Splunk will be used for security information and event management
- Each Vidal server/VM is configured based on the CIS security benchmarks for Linux and Windows OSes and the TAMU Information Security Control Catalog.
- Housed in the secure West Campus Data Center
GRACE
Currently in Deployment

- The aggregate peak performance computing capacity is over 6 PFLOPS.
- 800 compute nodes equipped with 2 Intel 24-core 3.0 GHz processors and 384GB memory
- 100 GPU compute nodes have 2 NVIDIA A100 48GB GPUs with 2 Intel 24-core 3.0 GHz processors and 384GB memory
- 8 GPU compute nodes with 4 single precision T4 16GB
- 9 GPU compute nodes with 2 RTX6000 24GB GPUs, 2 Intel 24-core 3.0 GHz processors and 384GB memory
- 8 large memory compute nodes with 4 Intel 20-core 2.5GHz processors and 3.072 TB memory
- 5.12 PB of usable high-performance storage running Lustre parallel filesystem
FASTER
Fostering Accelerated Scientific Transformations, Education, and Research
To be deployed in Spring 2021

- Funded by NSF MRI grant ($3.09M + $1.32M TAMU match)
- Adopts the innovative LIQID **composable** software-hardware approach combined with cutting-edge technologies.
- Equipped with **NVIDIA A100**, and **T4/T4-Next** GPUs for AI/DL/ML workloads. Each node can access 16+ GPUs.
- Thirty percent of FASTER’s computing resources will be allocated to researchers nationwide by the NSF XSEDE (Extreme Science and Engineering Discovery Environment) program.

FASTER project is supported by NSF award number 2019129
HPRC Training Short Courses
https://hprc.tamu.edu/training

Introduction to the Linux
Introduction to Using Ada & Terra
Introduction to NGS Data Analysis
RNA Sequencing
NGS Metagenomics
NGS RADSeq/GBS
NGS Assembly
Introduction to HPRC Galaxy
Introduction to R
Introduction to Perl
Introduction to Databases
Introduction to Python
Introduction to Scientific Python
Slurm Job Scheduling

Data Management Practices
Using the HPRC Portal: ParaView
Introduction to CUDA
Intermediate CUDA Programming
Introduction to the MATLAB Parallel Toolbox

Introduction to Deep Learning with PyTorch
Introduction to Deep Learning with TensorFlow

Introduction to Code Parallelization using OpenMP
Introduction to Code Parallelization using MPI
Introduction to Fortran
Introduction to MATLAB Programming
Python for MATLAB Users
Bring Your Own Code Workshops
and more...
Upcoming HPRC training

Technology Lab: Using AI Frameworks in Jupyter Notebook

Instructor: Jian Tao
Time: Friday, October 30, 1:30PM-4:00PM
Registration: https://hprc.tamu.edu/training

This short course contains a set of four sessions to help a new user start with his/her machine learning projects on HPRC systems

- **Lab 1 - Jupyter Notebook** - Set up a Python virtual environment and run JupyterLab on the HPRC Portal.
- **Lab 2 - Data Exploration** - Go through simple examples with two popular Python modules: Pandas and Matplotlib for simple data exploration.
- **Lab 3 - Machine Learning** - Learn to use scikit-learn for linear regression and classification applications.
- **Lab 4 - Deep Learning** - Learn to use Keras to create and train a simple image classification model with deep neural networks (DNN)
YouTube training videos
Welcome to the TAMU HPRC Wiki

Announcements

- **New GPU nodes in the Ada cluster**: Four new GPU nodes are now available in the Ada Cluster. Each GPU node has two Intel Skylake Xeon Gold 5118 20-core processors, 192 GB of memory and two NVIDIA 32GB V100 GPUs. To use these new GPU nodes, please submit jobs to the `v100` queue on Ada by including the following job directive in your job scripts:

```bash
#PBS -q v100
```

Getting an Account

- **Understanding HPRC**: New to High Performance Computing (HPC)? This [HPC Introduction](https://hprc.tamu.edu/wiki) page explains the "why" and "how" of high performance computing. Also see the [Policies](https://hprc.tamu.edu/wiki/Policies) page to better understand the rules and etiquette of cluster usage.
- **Accessing the clusters**: All computer systems managed by the HPRC are available for use to TAMU faculty, staff, and students who require large-scale computing capabilities. The HPRC hosts the Ada and Terra clusters at TAMU. To apply for or renew an HPRC account, please visit the [Account Applications](https://hprc.tamu.edu/wiki/AccountApplications) page. For information on how to obtain an allocation to run jobs on one of our clusters, please visit the [Allocations Policy](https://hprc.tamu.edu/wiki/AllocationsPolicy) page. All accounts expire and must be renewed in September of each year.

Using the Clusters

- **QuickStart Guides**: For just the "need-to-know" information on getting started with our clusters, visit our QuickStart pages. Topics discussed include cluster access, file management, the batch system, setting up a software environment using modules, creating your own job files, and project account management. Ada [QuickStart](https://hprc.tamu.edu/wiki/AdaQuickStart) and Terra [Quickstart](https://hprc.tamu.edu/wiki/TerraQuickstart) guides.
- **Batch Jobs**: As a shared resource between many users, each cluster must employ a batch system to schedule a time for each user's job to run. Without such a system, one user could use a disproportionate amount of resources, and cause other users' work to stall. Ada's batch system is called LSIF, and Terra's batch system is called SLURM. While similar in function, they differ in their finer details, such as job file syntax. Information relevant to each system can be found below.

Ada / LSIF Batch Pages
- Complete Ada Batch Page
- Job Submission (example)
- Ada Queue Structure

Terra / SLURM Batch Pages
- Complete Terra Batch Page
- Job Submission (example)
- Terra Queue Structure
Available Software Modules

SOFTWARE MODULES ON THE TERRA CLUSTER

Last Updated: Mon Oct 12 00:00:02 CDT

The available software for the Terra cluster is listed in the table. Click on any software package name to get more information such as the available versions, additional documentation if available, etc.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPflow</td>
<td>GPflow is a package for building Gaussian process models in python</td>
</tr>
<tr>
<td>Horovod</td>
<td>Horovod is a distributed training framework for TensorFlow. URL: https://horovod.readthedocs.io/</td>
</tr>
<tr>
<td>Keras</td>
<td>Keras is a minimalist, highly modular neural networks library, written of either TensorFlow or Theano. URL: https://keras.io/</td>
</tr>
<tr>
<td>segmentation-models</td>
<td>Python library with Neural Networks for Image Segmentation basec https://github.com/qubvel/segmentation_models</td>
</tr>
<tr>
<td>TensorFlow</td>
<td>An open-source software library for Machine Intelligence URL: http://tensorflow.org</td>
</tr>
</tbody>
</table>

Showing 1 to 5 of 5 entries (filtered from 1,636 total entries)

https://hprc.tamu.edu/wiki/SW:Modules
Advanced Support Program

HPRC offers collaborations in research projects with a large computational component. Under the ASP, one or more HPRC analysts will contribute expertise and experience in several areas of high performance computing in a sustained and focused way.

- Porting applications to our clusters
- Optimizing and analyzing serial code performance
- Developing parallel code from serial versions and analyzing performance
- Optimizing serial and parallel I/O code performance
- Assisting in the optimal use of mathematical libraries
- Assisting with code development and design
- Assisting with the improvement of workflow automation in scientific processes

If you are interested in a collaboration through our ASP program, please send us an e-mail at, help@hprc.tamu.edu.

ASP is supported in part by NSF award #1925764, CC* Team: SWEETER -- SouthWest Expertise in Expanding, Training, Education and Research.
Open OnDemand (OOD) is open source software developed at the Ohio Supercomputing Center. Enables HPC centers to deploy advanced web and graphical interface for their users.

HPRC Portal
YouTube tutorials

https://portal-ada.hprc.tamu.edu
https://portal-terra.hprc.tamu.edu
HPRC Open OnDemand Portal
https://portal.hprc.tamu.edu
HPRC Account: PI Eligibility

For the purpose of HPRC allocations, only **active faculty** members and **permanent research staff** (subject to HPRC-RAC Chair review and approval) of Texas A&M System Members headquartered in Brazos County can serve as a PI.

Adjunct and Visiting professors do not qualify themselves, but can use HPRC resources as part of a sponsoring PI’s group.

Note that:

- A PI can have more than one allocation.
- A user can work on more than one project and with more than one PI

https://hprc.tamu.edu/policies/allocations.html
HPRC Account Allocations

https://hprc.tamu.edu/policies/allocations.html

<table>
<thead>
<tr>
<th>Allocation Type</th>
<th>Who can apply?</th>
<th>Minimum SUs per Allocation per Machine</th>
<th>Maximum SUs per Allocation per Machine</th>
<th>Maximum Total SUs per Machine</th>
<th>Maximum Number of Allocations per Machine</th>
<th>Allowed to spend more than allocation?</th>
<th>Reviewed and approved by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic</td>
<td>Faculty, Post-Docs*, Research Associates, Research Scientists, Qualified Staff, Students*, Visiting Scholars/Students*</td>
<td>5,000</td>
<td>5,000</td>
<td>5,000</td>
<td>1</td>
<td>No</td>
<td>HPRC Staff</td>
</tr>
<tr>
<td>Startup</td>
<td>Faculty, Research Associates, Research Scientists, Qualified Staff</td>
<td>5,000</td>
<td>200,000</td>
<td>400,000</td>
<td>2</td>
<td>No</td>
<td>HPRC Director</td>
</tr>
<tr>
<td>Research (Ada)</td>
<td>Faculty, Research Scientists, Qualified Staff</td>
<td>300,000</td>
<td>8,000,000</td>
<td>8,000,000</td>
<td>Determined by HPRC-RAC</td>
<td>No</td>
<td>HPRC-RAC</td>
</tr>
<tr>
<td>Research (Terra)</td>
<td>Faculty, Research Scientists, Qualified Staff</td>
<td>300,000</td>
<td>5,000,000</td>
<td>5,000,000</td>
<td>Determined by HPRC-RAC</td>
<td>No</td>
<td>HPRC-RAC</td>
</tr>
</tbody>
</table>

Note: * - requires a PI
More information is available at:
https://hprc.tamu.edu

For support and questions, contact the HPRC Helpdesk
help@hprc.tamu.edu
(979) 847-8643