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Supervised learning

Classification Regression

• In supervised learning (e.g., classification and regression) we want to find the
underlying function (dashed curves) that represents data.

• How to represent a general function?
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• Global optimization for complex functions
• Only limited evaluations are available.

• Problem: find 𝑥0 such that
𝑓 𝑥0 = max

𝑥
𝑓 𝑥 .

• Applications:
• Engineering designs

• Parameter calibration for FEA models

• Optimal tuning for deep neural networks

• Challenge
No information for untried points!!

A Motivational Example: global optimization
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• Global optimization for complex functions
• Only limited evaluations are available.

• Problem: find 𝑥0 such that
𝑓 𝑥0 = max

𝑥
𝑓 𝑥 .

• Applications:
• Engineering designs

• Parameter calibration for FEA models

• Optimal tuning for deep neural network

• Challenge
No information for untried points!!

A Motivational Example: global optimization

Q: Where is the problem?
A: Function space too large.
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• Global optimization for complex functions
• Only limited evaluations are available.

• Problem: find 𝑥0 such that
𝑓 𝑥0 = max

𝑥
𝑓 𝑥 .

• Applications:
• Engineering designs

• Parameter calibration for FEA models

• Optimal tuning for deep neural network

• Challenge
No information for untried points!!

A Motivational Example: global optimization

Solution: Restrict the functions of interest!
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• Statistical model

• Forward problems. Not statistics

A Paradigm of Statistics

6

Model parameter

Data generating process
Data

?

• Inverse problems. This is statistics!
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• Bayesian inference

• “Parametric” Bayes
• Number of parameters is finite.

• The prior is a distribution in a finite-dimensional space.

• Nonparametric Bayes
• The unknown is a function (that is infinite dimensional).

• The prior is a stochastic process.

Bayesian Nonparametrics
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Prior

Posterior

Data

Bayes 
Theorem

𝑃 𝜃|𝐷𝑎𝑡𝑎 ∝ 𝑃 𝐷𝑎𝑡𝑎|𝜃 𝑃 𝜃

Forward 
problem

Inverse
problem
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• Rolling a die to get a number.
• The outcome of a dice rolling is a random number.

• A stochastic process 𝑍 is a random function.
• Each realization (a.k.a. sample path) of 𝑍 is a deterministic function.

• Given 𝑥, 𝑍 𝑥 is a random variable.

• Here 𝑥 is a 𝑑-dimensional vector.

Stochastic processes

8
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• Ideal priors for continuous functions.

• To define a Gaussian process, we need:
• Mean function 𝑚 𝑥 .
• Covariance function 𝐶 𝑥1, 𝑥2 .
• Denoted as 𝐺𝑃 𝑚, 𝐶 .

• 𝐺𝑃 𝑚, 𝐶 has continuous sample paths if 𝑚 and 𝐶 are continuous.

• A GP with 𝑚 = 0 is called centered.

• Stationary Gaussian processes
• GP is centered and 𝐶 𝑥1, 𝑥2 = 𝐾 𝑥1 − 𝑥2 .
• Probability structure is invariant in translation.

• Stationary GPs are commonly used priors. Why?

Gaussian processes

9
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• For stationary GPs, we parametrize
𝐶 𝑥1, 𝑥2 = 𝜎2Φ 𝑥1 − 𝑥2 ,

with Φ 0 = 1.

𝜎2 is called the variance; Φ is called the correlation function.

• Commonly used correlation functions in 1D

Correlation functions

10

➢ Gaussian correlation family

Φ 𝑥; 𝜃 = exp − 𝜃𝑥 2 .

➢ 𝜃 is a scale parameter.
➢ Sample paths are infinitely differentiable.

➢ Matérn correlation family
Φ 𝑥; 𝜃, 𝜈 ∝ 𝜃𝑥 𝜈𝐾𝜈 2 𝜈 𝜃𝑥 .

➢ 𝐾𝜈 is the modified Bessel function of the second kind.

➢ 𝜃 is a scale parameter. 
➢ 𝜈 is the “smoothness parameter”.
➢ The sample path smoothness is governed by 𝜈.
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Sample path comparison
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(𝜈 = ∞)𝜈 = 1.5 𝜈 = 2.5

Matérn Gaussian

𝜈 = 0.5
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• Two common strategies to construct 𝑑-dimensional correlations

1. Isotropic correlation:
Φ 𝑥 = Φ1 𝑥 ,

where Φ1 is a 1D Gaussian or Matérn correlation; 𝑥 is the Euclidean norm.

2. Product correlation:
Φ 𝑥 = Φ1 𝑥1 ⋯Φ𝑑 𝑥𝑑 ,

where Φ1, … ,Φ𝑑 are 1D correlations, 𝑥 =: 𝑥1, … , 𝑥𝑑 .

An isotropic Gaussian kernel is also a product kernel.

Multi-dimensional correlation functions

12
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Isotropic Matérn Product Matérn

𝜈 = 0.5

𝜈 = 2.5

Sample paths

13
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• A non-centered GP is the sum of a centered GP and a deterministic 
function. 

Non-centered Gaussian processes

14

Centered GP Sample paths Non-centered GP Sample paths𝑚 𝑥

+ =
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❖ Machine learning with Gaussian process models

GP surrogate models for Large Eddy Simulations

Figure courtesy of Mak et al. (2018)
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• Simple kriging
𝑦𝑖 = 𝑓 𝑥𝑖 + 𝑒𝑖 ,

with 𝑓 ∼ 𝐺𝑃 0, 𝜎2Φ and i.i.d. 𝑒𝑖’s with 𝔼𝑒𝑖 = 0 and 𝔼𝑒𝑖
2 = 𝜏2.

• The goal is to reconstruct 𝑓 based on the data.

• The estimator is denoted as መ𝑓.

• If 𝜏2 = 0, መ𝑓 should interpolate 𝑓.

Gaussian process regression

16
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• Multivariate normal (MVN) distribution is a generalization of 𝑁 𝜇, 𝜎2 .

• To define an MVN random vector, we need
• Mean vector 𝜇;
• Covariance matrix Σ.

• Probability density function
•

2𝜋 −
𝑛
2 det Σ −

1
2 exp −

1

2
𝑥 − 𝜇 𝑇Σ−1 𝑥 − 𝜇 .

• The conditional distribution of an MVN random vector given some of its 
entries is also MVN with
• Condition mean:

• Conditional covariance matrix: 

Multivariate normal distribution

17

𝜇1 + Σ12Σ22
−1 𝑌 − 𝜇2

Σ11 − Σ12Σ22
−1Σ12
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Prediction via Conditional Distributions

• Suppose 𝑍 ∼ 𝐺𝑃 0, 𝜎2Ψ .

• Given design                     , data

For unobserved 𝑥, 𝑍 𝑥 is normally distributed with

where

• 𝔼 𝑍 𝑥 |𝑌 naturally predict 𝑍 𝑥 given the data.

𝑌 = 𝑍 𝑥1 , … 𝑍 𝑥𝑛
𝑇

𝔼 𝑍 𝑥 |𝑌 = 𝑟𝑇 𝑥 𝐾−1𝑌

Var 𝑍 𝑥 |𝑌 = 𝜎2 1 − 𝑟𝑇 𝑥 𝐾−1𝑟 𝑥

𝑟 𝑥 = Φ 𝑥 − 𝑥1 , … ,Φ 𝑥 − 𝑥𝑛
𝑇

: correlation vector

𝐾 = Φ 𝑥𝑖 − 𝑥𝑗
𝑖𝑗

: kernel matrix

Interpolation Property 

Uncertainty Quantification 

𝑋 = 𝑥1, … 𝑥𝑛

18
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• Predictive mean: 𝑟𝑇 𝑥 𝐾−1𝑌.

• Training step: Solve for
𝑢 = 𝐾−1𝑌.

• Prediction step: Input 𝑥; compute

መ𝑓 𝑥 =
𝑖=1

𝑛

𝑢𝑖Φ 𝑥 − 𝑥𝑖 .

• Time complexity
• 𝑂 𝑛3 for training via Gaussian elimination;

• 𝑂 𝑛 for prediction.

• Both unacceptable for a huge 𝑛.

• 𝐾 can be nearly singular when 𝑛 is large.

Computational Challenges

19
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• To enhance numerical stability, we use
𝑢 = 𝐾 + 𝜆𝐼 −1𝑌,

with a small 𝜆 > 0, say, 10−9.

• 𝜆 is called a nugget term.

• The predictor is no longer an interpolant.

• This approach is equivalent to the predictor give the noisy data with
𝜎2 = 𝜆.

Nugget effect

20



Wm Michael Barnes ’64 Department of Industrial and Systems Engineering 

• Model
𝑓 ∼ 𝐺𝑃 𝜇 ⋅ , 𝜎2Φ𝜃 ⋅,⋅ .

• 𝜇 ⋅ = σ𝛽𝑗𝑓𝑗 ⋅ : linear combination of basis functions with unknown coefficients.

• Parameters can be estimated by MLE or Bayesian methods.

• Prediction can be done by plugging in the estimated parameters or a full 
Bayesian approach.

Universal kriging

21
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• Parameters of a universal kriging model
• Regression coefficients 𝛽

• Variance 𝜎2

• Correlation parameters 𝜃

• Estimate the parameters by maximizing the likelihood function
መ𝛽, ො𝜎2, መ𝜃 = argmax𝑃 𝑌|𝛽, 𝜎2, 𝜃 .

• Maximization usually proceeds by a gradient descend algorithm.

Maximum likelihood estimation

22

Multivariate normal distribution
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❑Step 1: Choose a prior for 𝛽, 𝜎2, 𝜃 .

❑Step 2: Use the Bayes rule to determine the posterior
𝑃 𝛽, 𝜎2, 𝜃|𝑌 ∝ 𝑃 𝑌|𝛽, 𝜎2, 𝜃 × 𝑃 𝛽, 𝜎2, 𝜃 .

❑Step 3: Bayesian computation and inference
• Markov Chain Monte Carlo

• Variational inference

Bayesian methods

23
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• Justification from a Bayesian perspective

Regard the GP as a prior of the underlying function.

• Justification from a frequentist perspective

GP regression, as a methodology, works for a family of problems.
Regard the specific problem as a sample from the “population of problems”.

• Justification from the approximation theory

The approximation error is mathematically in control under mild conditions.

Why fit a deterministic function with a GP?

24
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• A general supervised learning problem:
• Data: 𝑥𝑖 , 𝑦𝑖
• Underlying function 𝑓, supposed to be continuous.

• Empirical loss:
𝐿𝑜𝑠𝑠 𝑓 ≔ σ𝑙 𝑦𝑖 , 𝑓 𝑥𝑖 .

• GP prior: 𝑓 ∼ 𝐺𝑃 𝜇 ⋅ , 𝜎2Φ ⋅ .

• Data augmentation
• Given 𝑧𝑖 = 𝑓 𝑥𝑖 , the problem can be decomposed into two parts.

➢Empirical loss:
𝐿𝑜𝑠𝑠 = σ𝑙 𝑦𝑖 , 𝑧𝑖 .

➢GP regression: 𝑧𝑖 = 𝑓 𝑥𝑖 .

More supervised learning problems

25
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• Frequentist approach
• Minimize the regularized loss function

min
𝑍,𝛽,𝜎2,𝜃

σ𝑙 𝑦𝑖 , 𝑧𝑖 − log 𝐿𝐻 𝛽, 𝜎2, 𝜃|𝑍 .

• If 𝑓 ∼ 𝐺𝑃 0, 𝜎2Φ with a known Φ, the above method is equivalent to a 
kernel learning method:

min
𝑓

σ𝑙 𝑦𝑖 , 𝑧𝑖 + 𝜆 𝑓 Φ
2

• Bayesian posterior density

𝑃 𝛽, 𝜎2, 𝜃, 𝑍|𝑌 ∝ 𝑃 𝑌|𝑍 × 𝑃 𝑍|𝛽, 𝜎2, 𝜃 × 𝑃 𝛽, 𝜎2, 𝜃 .

Training methods

26
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• Classification problem: 𝑦 ∈ 0,1 , input 𝑥 is real-valued.

• Likelihood function given 𝑍

𝑃 𝑌|𝑍 =ෑ
𝑒𝑧𝑖

1 + 𝑒𝑧𝑖

𝑦𝑖 1

1 + 𝑒𝑧𝑖

1−𝑦𝑖

.

• The posterior density is
𝑃 𝛽, 𝜎2, 𝜃, 𝑍|𝑌 ∝ 𝑃 𝑌|𝑍 𝑃 𝑍|𝛽, 𝜎2, 𝜃 𝑃 𝛽, 𝜎2, 𝜃 .

• Prediction at a new input 𝑥𝑛𝑒𝑤:
➢Step 1: sample 𝑧𝑛𝑒𝑤 from the posterior distribution of 𝑓 𝑥𝑛𝑒𝑤

➢Step 2: sample 𝑦𝑛𝑒𝑤 from 𝑃 𝑦|𝑧𝑛𝑒𝑤 =
𝑒𝑧𝑛𝑒𝑤

1+𝑒𝑧𝑛𝑒𝑤

𝑦𝑛𝑒𝑤 1

1+𝑒𝑧𝑛𝑒𝑤

1−𝑦𝑛𝑒𝑤
.

Example: GP-based logistic regression

27
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• GP models are suitable under the following conditions
1. Underlying function is smooth

2. Data size is moderate

3. Input dimension is not too high

4. Signal-to-noise ratio is high

5. Uncertainty quantification is of interest

• Typical areas and problems
• Spatial statistics (GP is a natural tool to capture spatial-temporal correlation)

• Bayesian optimization

• Surrogate modeling for complex computer models

When to use GP models

28



Wm Michael Barnes ’64 Department of Industrial and Systems Engineering 

❖ Design of experiments

Space-filling designs versus random designs

29
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• The performance for GP models (as well as other methodologies) 
highly rely on the set of input points 𝑥 of the training data.

• Goal of  DoE: Choose the best input sets to run the experiment to 
maximize the prediction performance.

• Three principles of experimentation (suggested by R. A. Fisher)
• Replication: Reducing inevitable random noise

• Blocking: Removing effects of recognized nuisance variables 

• Randomization: Removing effects of unrecognized variables

• The above principles are not applicable for GP models

Design of Experiments

30
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• Geometric considerations
• Space-filling designs

• Projection properties
• Latin hypercube designs

• Tensor-product-based designs
• Full grid designs

• Sparse grid designs

• Optimal designs

Experimental design strategies

31
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• Fill distance
• ℎ𝑋,Ω = sup

𝑥∈Ω
min
𝑥𝑗∈𝑋

𝑥 − 𝑥𝑗 .

• Minimize ℎ𝑋,Ω minimax distance design

• Separation distance

• 𝑞𝑋 =
1

2
min
𝑖≠𝑗

𝑥𝑖 − 𝑥𝑗 .

• Maximize 𝑞𝑋 maximin distance design.

Distance-based criteria [JMY90]

32



Wm Michael Barnes ’64 Department of Industrial and Systems Engineering 

• A simple space filling design.

• Not necessarily a square (hypercube) design.

• Arisen naturally in certain problems,
e.g., imaging, remote sensing, etc.

• Good accuracy for isotropic kernels.

• Less accurate for product (Matérn) kernels.

• Main reason: poor projection properties.

(Full) Grid Designs

33

When projected onto 1D, only 3 
points are left.
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• Two performance measures
1. Prediction accuracy

2. Computational efficiency

• Despite the accuracy deficiency, grid 
designs for product kernels enjoy 
computational advantages.

• The kernel matrix is a tensor product.

(Full) Grid Designs: computational advantages

34

Kriging prediction with 9 input points
1. Direct Gaussian elimination

Time complexity = 𝑂 93 .
2. Tensor product + Gaussian elimination

Time complexity = 𝑂 33 .
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• A 𝑑-dimensional grid design has 𝑛𝑑 points

• A Latin hypercube design (LHD) is an 𝑛-point subset such that 
each row and column have exactly one point.

Latin hypercube designs

35

Fig. Latin hypercube design versus full grid design 

• There are 𝑛! difference LHDs.

• Space-filling metrics are usually 
incorporated to choose the best 
LHDs.
• E.g., minimax LHDs.
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• Idea: Minimize a criterion function, usually related to a prediction error.

• Notation: 𝐷=design, 𝑌𝐷=kriging predictor given 𝐷.

• Integrated mean squared prediction error

𝐼𝑀𝑆𝑃𝐸 𝐷 = න
Ω

𝔼 𝑌 𝑥 − 𝑌𝐷 𝑥
2
𝑑𝑥 .

• Maximum mean squared prediction error

𝑀𝑀𝑆𝑃𝐸 𝐷 = max𝑥∈Ω 𝔼 𝑌 𝑥 − 𝑌𝐷 𝑥
2
.

Optimal designs

36
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• Sparse grid designs provide a tradeoff 
between prediction accuracy and 
computational efficiency.

• Sparse grids
• Suitably chosen subset of a full grid.

• Better projection properties than full
grids.

• Matrix inversion can be done efficiently 
via the Smolyak algorithms.

Sparse grid designs

Fig. courtesy of [Plumlee14].
Sparse grid design versus full grid design.

37
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❖ GP models with nonstationary covariance

Nonstationary GPs can fuse experimental data from 
different sources. 

Figure courtesy of [CJYC17].

38
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Computer Experiments

• Computer model is a complex black box function.

• The aim of CE is to explore and reconstruct the function 
relationship between the input and the output. 

Input
Computer 

Model
Output

Input
Computer 

Model
Output

Surrogate Model

Deterministic; Expensive

Accurate; Fast

39
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• Computer codes with 
different accuracy levels 
are available.

• Example: FEA with 
different mesh size.

• Properties:
• High fidelity computer 

code is more accurate.

• High fidelity computer 
code is also more costly.

• Goal: integrate CE outputs 
from different fidelities to 
improve the prediction.

Multi-fidelity computer models

Figure courtesy of [TT17].

40
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• Autoregressive model suggested by Kennedy and O’Hagan 
[KO00].

• 𝑧𝑡 = computer output at fidelity level 𝑡, 𝑡 = 1,… , 𝑆. Accuracy 
increases in 𝑡.

• Model 𝜖𝑡 as mutually independent GPs with stationary 
covariances. 

Autoregressive model

𝑧1 𝑥 = 𝜖1 𝑥 .
𝑧2 𝑥 = 𝑧1 𝑥 + 𝜖2 𝑥 .

⋯
𝑧𝑆 𝑥 = 𝑧𝑆−1 𝑥 + 𝜖𝑆 𝑥 .

41
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• Problem description
• Both the computer code and the 

physical data are available

• Computer code requires 
unknown input parameters 
(physical properties)
• E.g, permeability, conductivity, etc.

• “Calibration is the activity of 
adjusting the unknown 
(calibration) parameters until 
the outputs of the (computer) 
model fit the observed data.” 
[KO01].

Calibration of computer models

Figure courtesy of [MSM18]. 

42
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• Model

• 𝑦𝑖
𝑝

= 𝑖th physical observation;

• 𝜁 = the average physical response at input 𝑥, known as the true process;

• 𝜂 = computer output;

• 𝛿 = discrepancy function (CE cannot perfectly mimic the physical process);

• 𝜖𝑖 = random error corresponding to 𝑖th physical observation.

• Model 𝜂 and 𝛿 as independent GPs with stationary covariances.

• Estimating 𝜃0
• Impose a prior for 𝜃0.

• Use MCMC to obtain the posterior of 𝜃0.

Kennedy-O’Hagan approach [KO01]

𝑦𝑖
𝑝
= 𝜁 𝑥 + 𝜖𝑖

𝜁 𝑥 = 𝜂 𝑥, 𝜃0 + 𝛿 𝑥 ,

43
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❖ Bayesian Optimization

Figure courtesy of Frazier (2018).
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• Global optimization
max
𝑥∈𝐴

𝑓 𝑥 .

• Bayesian optimization methodologies are mostly promising if
• The input dimension is not too large, typically no more than 20.
• The objective function 𝑓 is continuous.
• No known special structure of 𝑓, such as convexity.
• 𝑓 is expensive to evaluate.

• Applications:
❑Optimizing complex computer model outputs
❑Reinforcement learning
❑Architecture configuration in deep learning
❑…

Problem of interest

45

E.g., How to best train our Ph.D students?
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Sequential optimization

46

• Step 1: 
Choose a GP prior for 𝑓.

• Step 2:
Choose an initial design, e.g., a maximin 
Latin-hypercube design.

Evaluate 𝑓 over the initial design.
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Sequential optimization

47

• Step 1: 
Choose a GP prior for 𝑓.

• Step 2:
Choose an initial design, e.g., a maximin 
Latin-hypercube design.

Evaluate 𝑓 over the initial design.

• Step 3:
Update the posterior of the GP.

• Step 4:
Determine the next point by optimize an 
acquisition function.
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• Step 1: 
Choose a GP prior for 𝑓.

• Step 2:
Choose an initial design, e.g., a maximin 
Latin-hypercube design.
Evaluate 𝑓 over the initial design.

• Step 3:
Update the posterior of the GP.

• Step 4:
Determine the next point by optimize an 
acquisition function.

• Step 5:
Repeat Steps 3 & 4 until budget is used or 
accuracy level is met.

Sequential optimization

48
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• Acquisition function is a function of input location.
It also depends on the GP posterior.

• Denote the acquisition function by 𝑎𝑛 𝑥 given the first 𝑛 inputs.

• Determine the next input as
𝑥𝑛+1 = argmax𝑥 𝑎𝑛 𝑥 .

• Another global optimization is needed.
But it is easier as 𝑎𝑛 is less expensive.

Acquisition Function

49
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• Multi-armed bandit
• Exploitation

Play the arm with the highest expected reward.

• Exploration
Play the arm with the highest uncertainty.

• Bayesian optimization
• Exploitation

Sample the point with the highest expected value.

• Exploration
Sample the point with the highest uncertainty.

Exploration versus Exploitation

50
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• Multi-armed bandit
• Exploitation

Play the arm with the highest expected reward.

• Exploration
Play the arm with the highest uncertainty.

• Bayesian optimization
• Exploitation

Sample the point with the highest expected value.

• Exploration
Sample the point with the highest uncertainty.

Exploration versus Exploitation
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Pure exploitation

Pure exploration
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• An intuitive method to balance the 
exploitation and exploration.

• Consider the 𝛼-upper confidence bound, 
denoted as 𝑈𝐶𝐵 𝛼 . 
Blue line in the Figure.

• Acquisition function
𝑎𝑛 𝑥 = 𝑈𝐶𝐵 𝛼𝑛 .

• UCB can be expressed as

𝑈𝐶𝐵 𝛼𝑛 = 𝜇𝑛 𝑥 + 𝛽𝑛

1
2𝜎𝑛 𝑥 .

• A theory is available to determine 𝛽𝑛.

GP-UCB
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GP-UBC favors this point
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• Most commonly used acquisition function.

• Maximum value in the current observations = 𝑓𝑛
∗.

• Improvement of a potential observation:

𝑓 𝑥 − 𝑓𝑛
∗ + = ቊ

𝑓 𝑥 − 𝑓𝑛
∗ if 𝑓 𝑥 − 𝑓𝑛

∗ > 0;
0 otherwise.

Expected improvement
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This function is known as a Rectifier in Deep Learning.
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• Acquisition function, called the Expected 
Improvement:

EI𝑛 𝑥 ≔ 𝔼 𝑓 𝑥 − 𝑓𝑛
∗ +|observations .

• EI𝑛 𝑥 can be expressed explicitly, and a 
function of 𝜇𝑛 𝑥 and 𝜎𝑛 𝑥 .

• EI does not rely on a tuning parameter. 

Expected Improvement
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EI favors this point
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• Probability of improvement

• Knowledge Gradient

• Entropy Search

• …

Other Bayesian Optimization Criteria
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• Advantages of GP models
• GP models enable uncertainty quantification.

• GP models can accommodate complex data structure and prior 
information.

• Deficiencies of GP models
• Computational issues when 𝑛 is large.

(This can be partially evaded by choosing appropriate designs.)

• Cannot handle discontinuous response surfaces.

Conclusion
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Thank you for attending the talk!
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