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.- Supervised learning

Classification Regression
¢ 0 ¢ R
=77 ‘e
N
2 A TN ¢ 4
¢ » ‘0 ° ; ¢
L A AR
R A ’ ¢ 4o
A /s ¢ ¢ /
A A ‘ / ¢ “ ¢ ¢ -_—00 /
¢ ¢ 7 D 4
. / e /
A / ¢ R ¢ > ~ _ ° 7/
‘ . ¢ ” . ¢ PN I.. * T - ; -
A ¢ ® °
A“\\ . _ - o !
A A A\ —_- A A
A A A A

* In supervised learning (e.g., classification and regression) we want to find the
underlying function (dashed curves) that represents data.

 How to represent a general function?
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.- A Motivational Example: global optimization

* Global optimization for complex functions
* Only limited evaluations are available.

* Problem: find x, such that B

fxo) = m;axf(x). N

* Applications:
* Engineering designs
* Parameter calibration for FEA models
e Optimal tuning for deep neural networks

* Challenge | 7@@%&/ \ /

No information for untried points!! N
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.- A Motivational Example: global optimization

* Global optimization for complex functions
* Only limited evaluations are available. .

* Problem: find x, such that a

fxo) = m;axf(x). N

* Applications:

* Engineering designs

e Parameter calibration for FEA models N /\ J /\
NI

* Optimal tuning for deep neural network

—s<ih N
* Challenge . . W\ /

No information for untried points!!

Q: Where is the problem?
A: Function space too large.
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.- A Motivational Example: global optimization

* Global optimization for complex functions
* Only limited evaluations are available. .

* Problem: find x, such that B

fxo) = m;axf(x). N

* Applications:
* Engineering designs

e Parameter calibration for FEA models ” A
* Optimal tuning for deep neural network N <\
— \“v& “753/ \L\\k /
* Challenge . \\{,///,
No information for untried points!!

Solution: Restrict the functions of interest!
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.- A Paradigm of Statistics

e Statistical model

Data generating process
° > Data

Model parameter

* Inverse problems. This is statistics!

‘ ? |-

* Forward problems. Not statistics

v

-
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.- Bayesian Nonparametrics

* Bayesian inference

Prior

Bayes
Theorem

Inverse Forward
problem problem
N\ /

P(O|Data) «< P(Data|@)P(0)

Data

e “Parametric” Bayes

* Number of parameters is finite.
* The prior is a distribution in a finite-dimensional space.

* Nonparametric Bayes

Posterior

\ 4

 The unknown is a function (that is infinite dimensional).
* The prior is a stochastic process.
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.- Stochastic processes

* Rolling a die to get a number. .- : o
* The outcome of a dice rolling is a random number. . 0o

* A stochastic process Z is a random function.
e Each realization (a.k.a. sample path) of Z is a deterministic function.
* Given x, Z(x) is a random variable.
* Here x is a d-dimensional vector.
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.- Gaussian processes

* |deal priors for continuous functions.

* To define a Gaussian process, we need:
* Mean function m(x).

 Covariance function C(xq, x5).
e Denoted as GP(m, C).

* GP(m, C) has continuous sample paths if m and C are continuous.
* AGP withm = 0 is called centered.
* Stationary Gaussian processes

* GPis centered and C(x1,x,) = K(x; — x5).

* Probability structure is invariant in translation.

 Stationary GPs are commonly used priors. Why?
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.- Correlation functions

* For stationary GPs, we parametrize
C(x1,%2) = 0°D(x; — x3),

with ®(0) = 1.

o is called the variance; @ is called the correlation function.

* Commonly used correlation functions in 1D

» Gaussian correlation family » 0 is a scale parameter.
®(x;0) = exp{—(6x)?}. » Sample paths are infinitely differentiable.
» Matérn correlation family » 0 is a scale parameter.

d(x;0,v) x |6x|VK,(2+/v|0x]). > visthe “smoothness parameter”.
> K, is the modified Bessel function of the second kind. » The Sample path smoothness is governEd by V.
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.- Sample path comparison T
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Matérn Gaussian

v=0.5 v=15 V=25 (v = o)
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.- Multi-dimensional correlation functions

 Two common strategies to construct d-dimensional correlations

1. Isotropic correlation:
O (x) = D, ([lx[D),
where @, is a 1D Gaussian or Matérn correlation; ||x|| is the Euclidean norm.

2. Product correlation:
d(x) = c131(951) q)d(xd);

where @4, ..., &4 are 1D correlations, x =: (x4, ..., X4).

An isotropic Gaussian kernel is also a product kernel.
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.. Non-centered Gaussian processes

A non-centered GP is the sum of a centered GP and a deterministic

function.
Centered GP Sample paths m(x) Non-centered GP Sample paths
\
o~ \ o~ o~
e N + = .
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** Machine learning with Gaussian process models

T (K) = =n
20 150 280

Emulated

Emulated

Simulated

Simulated

t=21.75 t=23.25 ms

0 10 20 30

GP surrogate models for Large Eddy Simulations
Figure courtesy of Mak et al. (2018)
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.- Gaussian process regression

e Simple kriging

yi = f(x) + e,
with f ~ GP(0,0%®) and i.i.d. e;’s with Ee; = 0 and Ee/ = 72,
* The goal is to reconstruct f based on the data.

* The estimator is denoted as f.

e If 72 = 0, f should interpolate f.
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.- Multivariate normal distribution

 Multivariate normal (MVN) distribution is a generalization of N(u, o2).

* To define an MVN random vector, we need
* Mean vector u;
* Covariance matrix 2.

* Probability density function

2
* The conditional distribution of an MVN random vector given some of its
entries is also MVN with

« Condition mean: py + 212255 (Y — uy)

_n 1 1
(2m) 2 det(X) 2 exp{ (x — w2 1(x — ,u)}.

 Conditional covariance matrix: X1 — 21222_21212
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.- Prediction via Conditional Distributions

* Suppose Z ~ GP(0,a%¥).
* Given design X =@, ..x) ,data  v= (2, .-2@)"

For unobserved x, Z(x) is normally distributed with

E[Z(x)|Y] =rT(x)K~ 'Y Interpolation Property
Var[Z(x)|Y] = 02(1 —rT)K'r(x)) Uncertainty Quantification

r(x) = (CD(x —X1), e, P(x — xn))T: correlation vector

where g - (CID(xl- — xj)) : kernel matrix

ij

* E[Z(x)|Y] naturally predict Z(x) given the data. =/
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.- Computational Challenges

e Predictive mean: rT(x)K~1Y.
* Training step: Solve for
u=K"1y.
* Prediction step: Input x; compute
n

flx) = z__luiq’(x —X;).

* Time complexity
» 0(n?) for training via Gaussian elimination;
* O(n) for prediction.
* Both unacceptable for a huge n.

K can be nearly singular when n is large.
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.- Nugget effect

* To enhance numerical stability, we use
u= (K + A1y,
with a small 1 > 0, say, 10~°.

e Ais called a nugget term.

* The predictor is no longer an interpolant.

* This approach is equivalent to the predictor give the noisy data with
2
og° = A
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f ~ GP(‘LL(),O'ZCDQ(,))

* u(-) = X B;fj(-): linear combination of basis functions with unknown coefficients.
* Parameters can be estimated by MLE or Bayesian methods.

* Prediction can be done by plugging in the estimated parameters or a full
Bayesian approach.
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.- Maximum likelihood estimation

* Parameters of a universal kriging model
* Regression coefficients
e Variance ¢
* Correlation parameters 6

e Estimate the parameters by maximizing the likelihood function
(B,62,0) = argmax P(Y|B,02,6).

Multivariate normal distribution

* Maximization usually proceeds by a gradient descend algorithm.
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.- Bayesian methods

Step 1: Choose a prior for (58,54, 8).

AStep 2: Use the Bayes rule to determine the posterior
P(B,0%,0|Y) < P(Y|B,0%,0) X P(B,0%,6).

AStep 3: Bayesian computation and inference
* Markov Chain Monte Carlo
e Variational inference
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.- Why fit a deterministic function with a GP?

e Justification from a Bayesian perspective

Regard the GP as a prior of the underlying function.

e Justification from a frequentist perspective

GP regression, as a methodology, works for a family of problems.
Regard the specific problem as a sample from the “population of problems”.

e Justification from the approximation theory

The approximation error is mathematically in control under mild conditions.
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.- More supervised learning problems

* A general supervised learning problem:
 Data: (x;, y;)
* Underlying function f, supposed to be continuous.
e Empirical loss:

Loss(f) = X1(ys f (1)),
* GP prior: f ~ GP(u(),a2®(")).
* Data augmentation

 Given z; = f(x;), the problem can be decomposed into two parts.

»Empirical loss:
Loss =Y 1(y;, z;).
»GP regression: z; = f(x;).
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.- Training methods

* Frequentist approach
* Minimize the regularized loss function

. 2
g 21y z) —logLH(B,0%,0|2).

* If f ~ GP(0,0%®) with a known ®, the above method is equivalent to a
kernel learning method:

mfin Sy, z) + AfIlS

e Bayesian posterior density
P(B,0%,0,Z|Y) x P(Y|Z) x P(Z|B,0%,0) X P(B,5%,0).

Wm Michael Barnes '64 Department of Industrial and Systems Engineering



.- Example: GP-based logistic regression

» Classification problem: y € {0,1}, input x is real-valued.

* Likelihood function given Z
P(Y|2) = 1_[ o) ()
(Y12) = 1+ e% 1+ e% '

* The posterior density is
P(B,0%,0,Z|Y) x P(Y|Z)P(Z|B,0%,6)P(B,a%,0).

* Prediction at a new input X,

»>Step 1: sample z,,,,, from the posterior distribution of f (x,,.y,)
eZnew )Ynew( 1 )1_3’new

1+eZnew

»>Step 2: sample V., from P(y|Z,on) = (

1+eZnew
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.- When to use GP models

* GP models are suitable under the following conditions
1. Underlying function is smooth

2. Data size is moderate

3. Input dimension is not too high

4. Signal-to-noise ratio is high

5. Uncertainty quantification is of interest

e Typical areas and problems
 Spatial statistics (GP is a natural tool to capture spatial-temporal correlation)
* Bayesian optimization
* Surrogate modeling for complex computer models
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+" Design of experiments

Space-filling designs versus random designs
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.- Design of Experiments

* The performance for GP models (as well as other methodologies)
highly rely on the set of input points x of the training data.

* Goal of DoE: Choose the best input sets to run the experiment to
maximize the prediction performance.

* Three principles of experimentation (suggested by R. A. Fisher)

* Replication: Reducing inevitable random noise
* Blocking: Removing effects of recognized nuisance variables
 Randomization: Removing effects of unrecognized variables

* The above principles are not applicable for GP models
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.- Experimental design strategies

e Geometric considerations

* Projection properties

* Tensor-product-based designs

* Optimal designs
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.- Distance-based criteria [JMY90]

1.0

e Fill distance

* hx.o = sup minflx — x|

* Minimize hy , == minimax distance design
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* qx = ;min]lx; — x].

* Maximize g s maximin distance design.
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.- (Full) Grid Designs

* A simple space filling design.

® ® ®
* Not necessarily a square (hypercube) design.
. . . ® ® ®
* Arisen naturally in certain problemes,
e.g., Imaging, remote sensing, etc. . . .
* Good accuracy for isotropic kernels.
* Less accurate for product (Matérn) kernels. Al R OIS O

points are left.

* Main reason: poor projection properties.
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.. (Full) Grid Designs: computational advantages

* Two performance measures

1. Prediction accuracy ° ° o
2. Computational efficiency

* Despite the accuracy deficiency, grid
designs for product kernels enjoy
computational advantages.

* The kernel matrix is a tensor product.

Kriging prediction with 9 input points
1. Direct Gaussian elimination
Time complexity = 0(93).
X — 2. Tensor product + Gaussian elimination
Time complexity = 0(3%).

3X3 3X3
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.- Latin hypercube designs

e A d-dimensional grid design has n? points

A Latin hypercube design (LHD) is an n-point subset such that
each row and column have exactly one point.

* There are n! difference LHDs. . . . .
e Space-filling metrics are usually . . . .
incorporated to choose the best
LHDs.
* E.g., minimax LHDs.

Fig. Latin hypercube design versus full grid design
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.- Optimal designs

* |[dea: Minimize a criterion function, usually related to a prediction error.

* Notation: D=design, VD=kriging predictor given D.

* Integrated mean squared prediction error

IMSPE(D) = f E[Y (x) — ()] dx.
Q)

* Maximum mean squared prediction error
o 2
MMSPE (D) = max,cq E[Y (x) — ¥y (x)]".
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.- Sparse grid designs

e Sparse grid designs provide a tradeoff
between prediction accuracy and
computational efficiency.

e Sparse grids ceocecccollesccccsess
e Suitably chosen subset of a full grid. S | DD
* Better projection properties than full DY | DD
grids.
* Matrix inversion can be done efficiently Fig. courtesy of [Plumlee14].

via the Smolyak a|goritth. Sparse grid design versus full grid design.
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+* GP models with nonstationary covariance

-®@ - HF Model & Sample
4+ LF1 Model & Sample
—A— LF2 Model & Sample

—— Mean Prediction

95% Prediction Interval

Figure courtesy of [CJYC17].

¥(x)

\J

Nonstationary GPs can fuse experimental data from
different sources.
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.- Computer Experiments

 Computer model is a complex black box function.

Computer

Deterministic; Expensive

* The aim of CE is to explore and reconstruct the function
relationship between the input and the output.

Computer

% Surrogate Model j

Accurate; Fast
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.- Multi-fidelity computer models

e Computer codes with
different accuracy levels
are available.

* Example: FEA with
different mesh size.

* Properties:
* High fidelity computer
code is more accurate.
* High fidelity computer
code is also more costly.

Figure courtesy of [TT17].

e Goal: integrate CE outputs
from different fidelities to
improve the prediction.
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.- Autoregressive model

e Autoregressive model suggested by Kennedy and O’Hagan
[KOO0O].
21 (x) = €1(x).
z;(x) = z1(x) + €,(%).

zs(x) = zg_1(x) + €5(x).

* z; = computer output at fidelity level t, t = 1, ..., S. Accuracy
Increases in t.

* Model €; as mutually independent GPs with stationary
covariances.
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.- Calibration of computer models

* Problem description

Natural phenomenon

e Both the computer code and the f(.)
physical data are available Discrepancy
* Computer code requires e O() 1y
unknown input parameters @ gt s 4,@
(physical properties) — T
" N () F
* E.g, permeability, conductivity, etc. C
e “Calibration is the activity of

Computer code

adjusting the unknown .
(calibration) parameters until o = ,®
the outputs of the (computer) z — (i

model fit the observed data.”
[KOO].] . Figure courtesy of [MSM18].
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.- Kennedy-O’Hagan approach [KOO01]

* Model

yi ={(x) +¢
¢(x) =n(x,0p) + 8(x),
. yip = ith physical observation;
* ( =the average physical response at input x, known as the true process;
* 1 = computer output;
* 0 =discrepancy function (CE cannot perfectly mimic the physical process);
* ¢; =random error corresponding to ith physical observation.
* Model n and 6 as independent GPs with stationary covariances.

* Estimating 6,
* Impose a prior for 6.
* Use MCMC to obtain the posterior of 8.
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%* Bayesian Optimization

Gaussian process posterior on the objective function

i~ ]
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0.5 .
Acquisition Function
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0.2

value of sampling

01

50 100 150 200 250 300

Figure courtesy of Frazier (2018).
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.- Problem of interest

* Global optimization

T

* Bayesian optimization methodologies are mostly promising if
* The input dimension is not too large, typically no more than 20.
* The objective function f is continuous.
* No known special structure of f, such as convexity.
* f is expensive to evaluate. E.g., How to best train our Ph.D students?

* Applications:
JOptimizing complex computer model outputs
dReinforcement learning

JArchitecture configuration in deep learning
d...
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.- Sequential optimization

* Step 1:
Choose a GP prior for f.
* Step 2:

Choose an initial design, e.g., a maximin
Latin-hypercube design.

Evaluate f over the initial design. :
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.- Sequential optimization

* Step 1:
Choose a GP prior for f.

* Step 2:
Choose an initial design, e.g., a maximin I ) ’
Latin-hypercube design. | .
Evaluate f over the initial design. . .

* Step 3: 1
Update the posterior of the GP. |

* Step 4:

Determine the next point by optimize an
acquisition function.
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.- Sequential optimization

* Step 1:
Choose a GP prior for f.
* Step 2:

Choose an initial design, e.g., a maximin ] . .
Latin-hypercube design. .

Evaluate f over the initial design. . ’
* Step 3: )

Update the posterior of the GP. . .
* Step 4: 1 e ’

Determine the next point by optimize an
acquisition function.

* Step 5:
Repeat Steps 3 & 4 until budget is used or
accuracy level is met.
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.- Acquisition Function

e Acquisition function is a function of input location.
It also depends on the GP posterior.

 Denote the acquisition function by a,,(x) given the first n inputs.

* Determine the next input as
Xn+q = argmax, a,(x).

* Another global optimization is needed.
But it is easier as a,, is less expensive.
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.- Exploration versus Exploitation

e Multi-armed bandit

e Exploitation ——
Play the arm with the highest expected reward. =
* Exploration = :
Play the arm with the highest uncertainty. L
1)
N

* Bayesian optimization
* Exploitation
Sample the point with the highest expected value.

* Exploration
Sample the point with the highest uncertainty.
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.- Exploration versus Exploitation

e Multi-armed bandit

* Exploitation
Play the arm with the highest expected reward.

* Exploration
Play the arm with the highest uncertainty.

* Bayesian optimization
* Exploitation
Sample the point with the highest expected value. | «

* Exploration
Sample the point with the highest uncertainty. -
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.. GP-UCB

* An intuitive method to balance the
exploitation and exploration.

e Consider the a-upper confidence bound,
denoted as UCB (a). 1
Blue line in the Figure.

e Acquisition function
an(x) — UCB(an)- |

* UCB can be expressed as . |4

UCB(ay) = up(x) + ,BZO-n(x) ]
* A theory is available to determine £,,.
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.- Expected improvement

* Most commonly used acquisition function.

. . . *
* Maximum value in the current observations = f.;'.
* Improvement of a potential observation:

[F (%) _frzs]+ _ g(x) — fn if fx)—fn >0

otherwise.

This function is known as a Rectifier in Deep Learning.
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.- Expected Improvement

_ — — Elfavors this point

p

e Acquisition function, called the Expected
Improvement:

El,(x) == E[[f(x) — f,x]*|observations|.

* EI,(x) can be expressed explicitly, and a
function of u,,(x) and a,,(x).

* El does not rely on a tuning parameter.
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.- Other Bayesian Optimization Criteria

* Probability of improvement

* Knowledge Gradient

* Entropy Search
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.. Conclusion

* Advantages of GP models
 GP models enable uncertainty quantification.

* GP models can accommodate complex data structure and prior
information.

e Deficiencies of GP models

* Computational issues when n is large.
(This can be partially evaded by choosing appropriate designs.)

e Cannot handle discontinuous response surfaces.

Thank you for attending the talk!
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