
FUNCTIONAL AND SHAPE DATA ANALYSIS

Anuj Srivastava

Department of Statistics, Florida State University

Presented at Texas A&M FIDS & TAMID on September 18, 2020

Srivastava & Klassen
Functional and Shape Data Analysis

Springer, 2016

Anuj Srivastava FUNCTIONAL AND SHAPE DATA ANALYSIS



Outline

1 Introduction, Motivation, and Background (1:00 - 1:30pm)
Introduction and Motivational Examples
Background: Shape Analysis
Background: Functional Data Analysis Using L2 Metric

2 Elastic Functional Data Analysis (1:30 - 2:15pm)
Registration Problem
Fisher-Rao Metric and Square-Root Velocity Function

——————— Coffee Break (15 mins) ———————-

3 Elastic Shape Analysis of Planar Curves (2:30 - 3:15pm)
Registration Problem
Elastic Metric and Square-Root Velocity Function
Shape Clustering, Summary, and Modeling

4 Matlab Code & Demo (3:15 - 3:45pm)
Alignment of Scalar Functions
Shapes of Planar, Closed Curves

5 Shape Analysis of Complex Objects (3:45 - 4:00pm)
Shape Analysis of Surfaces
Shape Analysis of Tree-like Structures



Outline

1 Introduction, Motivation, and Background (1:00 - 1:30pm)
Introduction and Motivational Examples
Background: Shape Analysis
Background: Functional Data Analysis Using L2 Metric

2 Elastic Functional Data Analysis (1:30 - 2:15pm)
Registration Problem
Fisher-Rao Metric and Square-Root Velocity Function

——————— Coffee Break (15 mins) ———————-

3 Elastic Shape Analysis of Planar Curves (2:30 - 3:15pm)
Registration Problem
Elastic Metric and Square-Root Velocity Function
Shape Clustering, Summary, and Modeling

4 Matlab Code & Demo (3:15 - 3:45pm)
Alignment of Scalar Functions
Shapes of Planar, Closed Curves

5 Shape Analysis of Complex Objects (3:45 - 4:00pm)
Shape Analysis of Surfaces
Shape Analysis of Tree-like Structures



Preface: Modern Statistical Data Analysis

We are going through a remarkable period of transition and growth,
reflecting large strides in data-driven methodologies – FIDS, TAMID.

Where is data coming from? Imaging sensors and modalities are
becoming a major source of data.

From mega scale (e.g. satellite and space imaging) to human scale
(cellphones, vehicular sensors, medical imaging, etc) to nanoscale (e.g.
sub-cellular structures and electron microscopy imaging).

Data is complex! It leads to newer challenges and inspires newer
solutions. Data (images) contain objects of interest and we want to
understand and analyze roles of these objects in larger systems.

Our specific subgoals are to estimate, recognize, track, classify, and
predict objects and their behaviors. We use shapes of objects as an
important characteristic in working towards these goals.



Preface: Modern Statistical Data Analysis

Why the focus on shapes? Shapes (structures) and functionality of
objects are highly interconnected. Structures both constrain and enable
functionality of an object. Understanding functions demands
understanding structures.

Object data is highly structured. Traditional statistical tools are not
directly applicable. We can add or subtract two vectors or two matrices,
but how does one add or subtract two objects?

These challenges are spawning a new age of structural data analysis,
with a confluence of tools from geometry, topology, statistics and other
several other domains.



Preface: Big Picture

This topic area is multidisciplinary, or transdisciplinary, not just
interdisciplinary:

Statistical analyses have traditionally been performed in Euclidean
spaces. Structured data is highly non-Euclidean. We need novel
mathematical platforms that are more suited to our needs.



Intro: Functional and Shape Data Analysis

Historically:
Functional Data Analysis (FDA):

The term was coined by Jim Ramsay and Bernard Silverman in late 80s.

Statistical analysis where variables of interest are functions –
mostly, scalar functions on a fixed interval.

Mathematical platform was Hilbert space of square-integrable functions (will
discuss this in detail later)

Using a (truncated) orthonormal basis, many statistical problems are
converted to multivariate statistics. Replace functions by their coefficients.

Shape Analysis:
Pioneered by D’Arcy Thompson (early 20th century), David Kendall (1980s),
Ulf Grenander (1990s), and others.

Most of this analysis was performed assuming that objects were made up of
a set of registered points – landmarks.

The main accomplishment were developing mathematical machinery that
performs analysis while being invariant to rotations, translations, scale.



Intro: Functional and Shape Data Analysis
More recently:

Shape Analysis of Functional Data:
Objects are represented by functions (continuum) – scalar functions, curves,
surfaces, etc.

Challenges:
Invariance: A shape of the object does not change under rotation,
translation and scaling. Analysis is invariant to rotations, translations, scale,
etc.

Registration: Which point on one object is matched with which point on the
other?
We do not assume that the data is already registered. That is the biggest
achievement of this theory. Registration is performed during shape analysis.



Typical Shape Analysis Tasks

A set of theoretical and computational tools that can provide:

Shape Metric: Quantify differences in any two given shapes.

How different are these shapes?
⇐⇒

Shape Deformation/Geodesic:
How to optimally deform one shape into another?



Shape Analysis

Shape summary: Compute sample mean, sample covariance, PCA, and
principal modes of shape variability.

Mean shape

Shape model and testing: Develop statistical models and perform
hypothesis testing.
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Related tools: ANOVA, two-sample test, k -sample test, etc.



Motivations: Application Areas

Where do we need Functional and Shape Data Analysis?

Everywhere! If there is functional data, or image data, or object data!

Biology & Bioinformatics

Computer Vision & AI

Meteorological, Atmospheric, Earth Sciences

Medical Imaging Dianostics & Computational Anatomy

Health, Lifestyle, Biometrics



Sub-Cellular Structures

Shapes of Mitochondria contours.

Scientific questions: Does the amount of daily activity performed by an
animal influence the shapes of mitochondria?

ANOVA type problem: Factor – daily exercise, Response – mitochondria
shapes. Decide significance of external factors.



Botanical Structures

Leaves: Classification of leaves using shapes.

Trees:



Bioinformatics

Proteins, RNAs – Structure Analysis

Chromosome structure analysis using Hi-C data

Single Cell Ensemble Estimation



Neuron Morphology

Neurons, axons

Complex branching structures, different numbers and shapes of
branches.

Interested in neuron morphology for various medical reasons –
cognition, genomic associations, diseases.



Nanoparticle Morphology

Nanoimaging: Supervising material properties using EM

Frame i Frame j Zoom in 1 Zoom in 2

Scientific: Compare populations of dynamic shapes, not just individual
static shapes.



Biometrics - Human Body

Human biometrics is a fascinating problem area.

Facial Surfaces: 3D face recognition for biometrics

Human bodies: applications – medical (replace BMI), textile design.

Shapes are represented by surfaces in R3



Computational Anatamy

Subcortical structures in human brain

Shapes are represented by surfaces in R3

Goal is to analyze shapes of these structures in order to diagnose or
predict onset of cognitive disorders – Alzheimers, Schizophrenia, ADHD,
PTSD, etc.



Surveillance and Activity Analysis

Human activity data using remote sensing — kinect depth maps

Each sketelon is considered either as an element of R60 or Kendall’s
shape space (20 landmarks in R3).

An action is then a curve on that representation space.

Goal is action classification while being invariant to rate at which action
is performed.



Vasculature in Retinal Images

Shape analysis of vasculature in retinal images.

Original Image Binary Segmentation Graph Representation

The goal is to detect and diagnose different kinds of abnormalities
associated with vision and eyes.



Brain Arterial Networks

Shape analysis of networks of arteries in human brain

Schematic Dense Point Clouds

Network of 3D curves

The goal is to study how arterial networks change with age, gender,
disease, and injuries.



What is the Nature of Objects

Many objects can be represented as functions f : D → Rk ,M

2D, 3D, or Euclidean Curves: For example, 2D closed curves forming
silhouettes of objects.

Collections of Curves: For example, neurons or botanical trees.

Surfaces: Boundaries of 3D objects.
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on statistical analysis of scalar functions on a fixed interval.
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High School Geometry

Congruent Objects: If we rotate and translate an object, then it remains
congruent to the original object.

Similar Objects: If we scale, rotate, and translate an object, then it
remains similar to the original object.

These are called similarity or shape-preserving transformations.



Invariance in Shape Analysis

General Objects: Shape is a property that is invariant to rotation,
translation, and scaling of objects (Kendall, 84).

An additional invariance for functional data:
In case we are working with continuous objects (curves, surfaces, etc), there
is another transformation – re-parameterization – that leaves shapes
unchanged.

For example, shape of a parametrized curve is also invariant to how it is
parameterized.

This transformation has another role – it helps in registering points along two
objects. (More on this later)



Shape-Preserving Transformations as Groups

It is very useful to view these transformations as groups.

What is a Group:
A group G is a set having an associative binary operations, denoted by ·,
such that:

there is an identity element e ∈ G (e · g = g · e = g for all g ∈ G.
for every g ∈ G, there is an inverse g−1 (g · g−1 = e).

Examples:
Translation Group: Rn, group operation is addition, identity element is zero
vector

Scaling Group: R+, group operation is multiplication, identity element is 1.

Rotation Group: SO(n), group operation is matrix multiplication, identity
element is In.

Diffeomorphism/Reparameterization Group: Define

Γ = {γ : [0, 1]→ [0, 1]|γ(0) = 0, γ(1) = 1, γ is a diffeo} .

Γ is a group, group operation is composition: γ1 ◦ γ2 ∈ Γ
Identity element is γid (t) = t .



Object Transformations as Group Actions

Transformations (of an object) are viewed as actions of a group.

What is a Group Action:
Given a set M and a group G, the (left) group action of G on M is defined
to be a map: G ×M → M, written as (g, p) such that:

(g1, (g2, p)) = (g1 · g2, p), for all g1, g2,∈ G, p ∈ M.
(e, p) = p, ∀p ∈ M

Examples:
Translation Group: Rn with additions, M = Rn:
Group action (y , x) = (x + y)

Rotation Group: SO(n) with matrix mulitplication, M = Rn:
Group action (O, x) = Ox

Scaling Group: R+ with multiplication, M = Rn:
Group action (a, x) : ax .



Object Transformations as Group Actions

What is the advantage of viewing transformations as group actions? One
can compose these group elements to form composite transformations.

Single Transform

Double Transform

Composite Transform



A Transformation of Functions: Time Warping

Diffeo Group: Γ with compositions,
M = F , the set of smooth functions on [0, 1].

Group action: (f , γ) = f ◦ γ, time warping!
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We will use this group to register – align peaks and valleys – of scalar
functions.

Very important group in shape analysis of functional data.



Shapes are Represented by Orbits

Shapes are not represented by single points in a space – they are
represented by sets.

What are Orbits:
For a group G acting on a manifold M, and a point p ∈ M, the orbit of p:

[p] = {(g, p)|g ∈ G}

If p1, p2 ∈ [p], then there exists a g ∈ G s. t. p2 = (g, p1).

Examples:
Translation Group: Rn with additions, M = Rn

[x ] = Rn: All possible translations of a point.

Rotation Group: SO(n) with matrix mulitplication, M = Rn

[x ] is a sphere with radius ‖x‖: All possible rotations of a point (a vector from
origin).

Scaling Group: R+ with multiplication, M = Rn

[x ] = a half-ray almost reaching origin: All possible scalings of a vector from
origin.

Time Warping Group Γ: [f ] is the set of all possible time warpings of f ∈ F .



Shape Spaces are Quotient Spaces

Two elements of an orbit have exactly the same shape. Orbits are either
equal or disjoint. They partition the original space M.

Quotient Space M/G

The set of all orbits is called the quotient space of M modulo G.

M/G = {[p]| ∈ p ∈ M} .

Quotient Metric

Let dm be a distance on M such that: (1) the action of G on M is by isometry
under dm, and (2) the orbits of G are closed sets, then:

dm/g([p], [q]) = inf
g∈G

dm(p, (g, q)) = inf
g∈G

dm((g, p), q)

Group action is by isometry: dm(p, q) = dm((g, p), (g, q)). This forms the
basis for all of shape analysis.

The minimization over a group (usually rotation or reparameterization) is
called alignment or registration.
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Traditional Functional Analysis: Hilbert Structure

Let F be a function space.

Vector Space: For any f1, f2 ∈ F and a1, a2 ∈ R, we have a1f1 + a2f2 ∈ F .

Banach Space: F is complete, and there exists a norm on F . (Recall the
definition of a norm).

Hilbert Space: F is a Banach space, and there is an inner product
associated with the norm on F .
Example: Set of square-integrable functions

Standard L2 inner product: 〈f1, f2〉 =
∫

D 〈f1(t), f2(t)〉 dt .
L2 norm or L2 distance:
‖f1 − f2‖ = 〈f1 − f2, f1 − f2〉 =

√∫
D 〈f1(t)f1 − f2(t), f1(t)− f2(t)〉 dt

Denote: L2(D,Rk ) = {f : D → Rk |‖f‖ <∞}. Often use L2 for the set.
Shortest path between any two points, f1, f2 in L2 is a straight line:

α(τ) = (1− τ)f1 + τ f2 .

The length of this path is ‖f1 − f2‖.

This is the most common/convenient mathematical platform used in
Functional Data Analysis.



Statistics 101 for Functional Data

Computing Data Summary:
Let f1, f2, . . . , fn be data samples from a distribution P on L2.

Mean function µ(t) = EP [f ](t), µ̂(t) = 1
n

∑
i fi (t).

A metric view point: (check)

µ̂ = argmin
f∈F

n∑
i=1

‖f − fi‖2 .

Covariance function C(s, t) = EP [(f (t)− µ(t))(f (s)− µ(s))].
Sample covariance function:

Ĉ(s, t) =
1

n − 1

n∑
i=1

(fi (t)− µ̂(t))(fi (s)− µ̂(s)) .

Viewed as a linear operator on L2:

A : L2 → L2, Af (t) =

∫ 1

0
C(t , s)f (s)ds .

Self-adjoint, bounded, linear operator. Has spectral decomposition (eigen
functions).



Functional PCA – FPCA

Random f ∈ L2 and assume that the covariance C(t , s) is continuous.

Karhunen-Loeve theorem states that f can be expressed in terms of an
orthonormal basis {ej} of L2:

f (t) =
∑

j

zjej (t)

where {zj} are mean zero and uncorrelated.

Practice: Discretize the sample covariance matrix at T time points and
get C ∈ RT×T , use the svd C = UΣUT , then the columns of U provide
(samples from) eigenfunctions of f .



FPCA Example

Well aligned data
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Numerical Computations in Functional Analysis

A quick note on numerical implementation.

We assume that all functions are sampled on a fixed, dense, uniform grid
on [0, 1]. Then, we can approximate integral with finite sums:

〈f , g〉 =

∫ 1

0
f (t)g(t) dt ≈

N∑
i=1

f (
i
N

)g(
i
N

)
1
N
.

What if the data is sparse, noisy or nonuniform? Resample it on a fixed,
dense, uniform grid.

Fit a function to the sparse data and resample it on the fixed, dense,
uniform grid on [0, 1]
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Problems with this Setup

Most of the FDA literature is centered around the L2 norm. But there are
some major problems with this choice.

Distances (under L2 metric) are larger than they should be.
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Misalignment (or phase variability) can be incorrectly interpreted as
actual (amplitude) variability.



Problems with FDA as Setup So Far

Recall that the average under L2 norm is given by:

f̄ (t) =
1
n

n∑
i=1

fi (t) .

Function averages under the L2 norm are not representative!
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Individual functions are all bimodal and the average is multimodal!

In f̄ , the geometric features (peaks and valleys) are smoothed out. They
are interpretable attributes in many situations and they need to be
preserved



FPCA: Data With Phase Variability

n = 50 functions, fi (t) = f0(γi (t)), γis are random time warps.
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FPCA: Data With Phase Variability
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Real Issue: Improper Registration

L2 norm uses vertical registration:

‖f1 − f2‖2 =

∫ 1

0
(f1(t)− f2(t))2 dt .

For each t , f1(t) is being compared with f2(t).
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The geodesic path (interpreted as the deformation between f1 and f2) is
unnatural as geometric features (peaks and valleys) are lost or created
arbitrarily.



Real Issue

What if the variability is more naturally horizontal:

Registration Geodesic Registration Geodesic

Or, maybe a combination of vertical and horizontal:
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The question is: How can we detect the compute and decompose the
differences into horizontal and vertical components.



Registration Framework

How to perform registration?

For functional objects of the type f : [0, 1]→ R, registration is essentially
a diffeomorphic deformation of the domain.

Let γ : [0, 1]→ [0, 1] be a diffeomorphism. Then, then f1(t) is said to be
registered to f2(γ(t)). Composition by γ is called time warping.

How to define and find optimal γ? The warping γ should be chosen so
that the geometric features (peaks and valleys) are well aligned.
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The deformation t 7→ γ(t) is called the phase variability and the residual
f1(t)− f2(γ(t)) is called the amplitude or shape variability.



Desired Properties

Problem Setup:

Let f1, f2 : [0, 1]→ R be two functions.

Γ is the group of orientation-preserving diffeomorphisms of [0, 1] to itself.
Γ is a group with composition. γid is the identity element.

Question: What should be the objective function: E(f1, f2 ◦ γ), for
defining optimal registration?

Desired Properties of E :

If γ̂ registers f1 to f2, then γ̂−1 should register f2 to f1.

If f2 = cf1 for a positive constant c, then γ̂ = γid . Shapes are more
important than heights.

It will be nice to have minγE(f1, f2 ◦ γ) as a proper metric.



Current Registration Formulation

A natural quantity to define E for optimal registration is the L2 norm, i.e.

γ̂ = arg infγ∈Γ(‖f1 − f2 ◦ γ‖2 ).

However, this choice is degenerate – pinching effect!
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Current Registration Formulation

Common solution – add penalty:

γ̂ = arg infγ∈Γ(‖f1 − f2 ◦ γ‖2 + λR(γ)).

Effectively reducing the search space, not really solving the problem.

Example: Using the first order penality R =
∫

D |γ̇(t)|2dt .
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One can use other penalty terms instead.



Problems: Penalized L2 Alignment

The right balance between alignment and penalty?

f1, f2 f1, f2 ◦ γ2 f1 ◦ γ1, f2 γ1, γ2 γ1 ◦ γ2
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Alternative Method
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Problems: Penalized L2 Alignment

Asymmetry: Discussed earlier

inf
γ

(‖f1 − f2 ◦ γ‖2 + λR(γ)) 6= inf
γ

(‖f1 ◦ γ − f2‖2 + +λR(γ)) .

Triangle inequality: The following does not hold –

inf
γ

(‖f1 − f3 ◦ γ‖2 + λR(γ))) ≤ inf
γ

(‖f1 ◦ γ − f2‖2 + λR(γ))

+ infγ(‖f2 ◦ γ − f3‖2 + λR(γ)) .

Most fundamental issue: Not invariant to warping

‖f‖ 6= ‖f ◦ γ‖ .

The norm ‖f ◦ γ‖ can be manipulated to have a large range of values,
from min(|f |) to max(|f |) on [0, 1].



Why Invariance to Warping?

Registration is preserved under identical warping!
[f1(t), f2(t)] are registered before warping, and [f1(γ(t)), f2(γ(t))] are
registered after warping.
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The metric or objective function for measuring registration should also be
invariant to identical warping.

L2 norm is not invariant to identical warping.



Desired Properties for Objective Function

We want to use a cost function d(f1, f2) for alignment, so that:

Invariance: d(f1, f2) = d(f1 ◦ γ, f2 ◦ γ), for all γ.
Technically, the action of Γ on F is by isometries.

Registration problem can be:

(γ∗1 , γ
∗
2 ) = arginf

γ1,γ2∈Γ̃

d(f1 ◦ γ1, f2 ◦ γ2) .

Γ̃ is a closure of Γ to make orbits closed set.

Symmetry will hold by definition.

Triangle inequality: Let ds(f1, f2) = infγ1,γ2 d(f1 ◦ γ1, f2 ◦ γ2). Then, we
want:

ds(f1, f3) ≤ ds(f1, f2) + ds(f2, f3) .

We want ds to be proper metric so that we can use ds for ensuing
statistical analysis.
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Fisher-Rao Distance

There exists a distance that satisfies all these properties. It is called the
Fisher-Rao Distance:

dFR(f1, f2) = dFR(f1 ◦ γ, f2 ◦ γ), for all f1, f2 ∈ F , γ ∈ Γ.

For many years, this nice invariant property was well known in the
literature. The question was: How to compute dFR? The definition was to
difficult to lead to a simple expression.

Joshi et al. (2007) and Srivastava et al. (2011) introduced the SRVF.
(Has similarities to the complex square-root of Younes 1999.) Define a
new mathematical representation called square-root velocity function
(SRVF):

q(t) ≡

{
ḟ (t)√
|ḟ (t)|

|ḟ (t)| 6= 0

0 |ḟ (t)| = 0

(f : [0, 1]→ Rn, q : [0, 1]→ Rn)

SRVF is invertible up to a constant: f (t) = f (0) +
∫ t

0 |q(s)|q(s)ds.



SRVF Representation

Under SRVF, the Fisher-Rao distance simplifies: dFR(f1, f2) = ‖q1 − q2‖.
The SRVF of (f ◦ γ) is (q ◦ γ)

√
γ̇. Just by chain rule. We will denote

(q, γ) = (q ◦ γ)
√
γ̇.

Commutative Diagram:

f q

(f ◦ γ) (q, γ)

SRVF

Group action by Γ

SRVF

Different Group action by Γ



SRVF Representation

Lemma: This distance satisfies: dFR(f1, f2) = dFR(f1 ◦ γ, f2 ◦ γ)
We need to show that ‖(q1 ◦ γ)

√
γ̇ − (q2 ◦ γ)

√
γ̇‖ = ‖q1 − q2‖.

‖(q1, γ) − (q2, γ)‖2 =

∫ 1

0
(q1(γ(t))

√
γ̇(t) − q2(γ(t))

√
γ̇(t))2dt

=

∫ 1

0
(q1(γ(t)) − q2(γ(t)))2

γ̇(t)dt = ‖q1 − q2‖
2
.�

Corollary: For any q ∈ L2 and γ ∈ ΓI , we have ‖q‖ = ‖(q, γ)‖. This
group action is norm preserving, like a rotation. Can’t have pinching!

Registration Solution:

(γ∗1 , γ
∗
2 ) = arginfγ1,γ2

‖(q1 ◦ γ1)
√
γ̇1 − (q2 ◦ γ2)

√
γ̇2‖ .

One approximates this solution with:

γ∗ = arginf
γ
‖q1 − (q2 ◦ γ)

√
γ̇‖ .

This is solved using dynamic programming.



Background Story

Where does SRVF come from?

Fisher-Rao Riemannian Metric: For functions, there is a F-R metric

〈〈δf1, δf2〉〉f =

∫ 1

0
δ̇f 1(t) ˙δf2(t)

1
ḟ (t)

dt .

Under F-R metric, the time warping action is by Isometry:

〈〈δf1, δf2〉〉f = 〈〈δf1 ◦ γ, δf2 ◦ γ〉〉f◦γ .

(Note this is different from the F-R metric for pdfs, but same as the F-R
for cdfa.)

Under the mapping f 7→ q, Fisher-Rao metric transforms to the L2

metric:

〈〈δf1, δf2〉〉f = 〈δq1, δq2〉
Fisher-Rao metric L2 inner product



SRVF Mapping

Nice isometric, bijective mapping from F to L2

Function Space F SRVF Space L2

Absolutely continuous functions Square-integrable functions
1 Functions and tangents Functions and tangents

f , and δf1, δf2 ∈ Tf (F) q, δq1, δq2 ∈ L2

2 Fisher-Rao Inner Product L2 inner product∫ 1
0 δ̇f 1(t) ˙δf2(t) 1

ḟ (t)
dt

∫ 1
0 δq1(t)δq2(t) dt

3 Fisher-Rao Distance L2 norm
dFR(f1, f2) =??? L2 norm: ‖q1 − q2‖

4 Geodesic Under Fisher-Rao Straight line
?? τ 7→ ((1− τ)q1 + τq2)

5 Mean of functions under dFR Cross-Section Mean
?? 1

n

∑n
i=1 qi

6. Registration under dFR Registration under L2

infγ dFR(f1, f2 ◦ γ) infγ ‖q1 − (q2 ◦ γ)
√
γ̇)‖

7 FPCA analysis under dFR FPCA analysis under L2 norm

Any item on the left can be accomplished by computing the corresponding
item on the right and bringing back the results.



Pairwise Registration: Examples

Liquid chromatography - Mass spectrometry data
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Multiple Registration

Align each function to a template. The template can be the sample mean
but under what metric?

Mean under the quotient space metric:

q̄ = arginf
q∈L2

(
inf
γi
‖q − (qi , γi )‖2

)
.

Iterative procedure:

1 Initialize the mean µ.
2 Align each qi s to the mean using pairwise alignment to obtain
γ̂i = arginfγi

‖q − (qi , γi )‖2, and set q̃i = (qi , γ̂i ).
3 Update mean using µ = 1

n
∑n

i=1 q̃i .
4 Check for convergence. If not converged, go to step 2.



Multiple Registration: Examples

{fi} Amplitude {f̃i} Phase {γi}

One can view this separation fi = (f̃i , γi ), as being analogous to polar
coordinates of a vector v = (r , θ).

In most cases, one of the two components is more useful than the other.
So, separation helps put different weights on these components.



Multiple Registration: Examples

Matlab Code – Demo



Alignment After Transformation

Sometimes it is useful to transform the data before applying alignment
procedure. Some of these transformations are: |fi (t)|, ḟi (t), log |fi (t)|, etc.

Absolute Value: When optimal points are to be aligned (irrespective of
them being peaks or valleys).
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Alignment After Transformation

Derivatives: When aligning montonoic functions
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Penalized Elastic Alignment

If we want to control the elasticity, we can also add a roughness penalty.
infγ∈Γ

(
‖q1 − (q2, γ)‖2 + λR(γ)

)1/2

For example, using a first order penalty: R(γ) = ‖1−
√
γ̇‖2.
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We loose some nice mathematical properties - no longer have a metric
in the quotient space.



Post Separation Analysis

Once we separate phase and amplitude components from the data, we
can perform more standard data analysis.

We can perform FPCA of these components separately and model their
distributions.

We can weight these components differently to cluster and classify
functional data.



COVID Rate Curves

COVID-19 rate curves – the count of new infections in a state as a
function of time.
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From left to right:
Cumulative COVID-19 positive counts for each state.

COVID rates: Daily new COVID-19 positive counts.

Smoothed and normalized (to area under the curve being one) for each
state separately.

Average of all curves before normalization.

We study shapes of normalized rate curves for different states.



COVID Rate Curves

Clustering of states: Five clusters, Hawaii is an outlier
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Shape Analysis of Curves

Shape analysis of silhouettes of objects in images.

Shape analysis of chromosomal configurations:

Nanoparticles:



Objects of Interest

Assume all the objects have the same topology, as described below.

Euclidean Curves: They are all maps of the type: f : D → Rk , where D is
a one-dimensional compact space. Examples:

D = [0, 1]: f can be open or closed curve
D = S1: f is called a closed curve

Curves on Manifolds: They are all maps of the type: f : D → M, where D
is a one-dimensional compact space. Examples:

D = [0, 1]: f is called an open curve
D = S1: f is called a closed curve

Often call them trajectories on manifolds.



What is the Registration Problem

Registration: Which point on one object matches with which point on the
other object.

In order to compare any two shapes, one needs to (densely) register
points across objects.

functions curves trees (neurons)



Registration Problem

Is arc-length parameterization a solution?

No. Here is why –

β1 (arc-length) β2 (arc-length) β2 (matching)

Figure: Registration of points across two curves using the arc-length and a
convenient non-uniform sampling. Non-uniform sampling allows a better matching
of features between β1 and β2.

Elastic Shape Analysis

Perform registration and shape comparison (analysis) simultaneously.



Mathematical Representations of Curves

Parametrized curves – f : [0, 1]→ R2, S1 → R2.

Let Γ be the set of all diffeomorphisms of [0, 1] that preserve the
boundaries. Elements γ ∈ Γ, plays the role of a re-parameterization
function.

For any curve f : [0, 1]→ R2, and γ ∈ Γ, the composition f ◦ γ is a
re-parameterization of f .

Γ is a group (with composition as group operation), and f 7→ (f , γ) = f ◦ γ
defines a group action on the space of curves.



Example: Re-Parameterization

Example: γa(t) = t + at(1− t), −1 < a < 1.

0 2 4 6
0

1

2

3

4

5

6

0 2 4 6
0

1

2

3

4

5

6

0 2 4 6
0

1

2

3

4

5

6

γ1, a = −0.5 γ2, a = 0 γ3, a = 0.5

f ◦ γ1 f ◦ γ2 f ◦ γ3



Shape-Preserving Transformations

The following group actions are shape preserving:

Translation: For any x ∈ R2, the f (t) 7→ x + f (t) denotes a translation of f .
Rotation: For any O ∈ SO(2), the f (t) 7→ Of (t) denotes a rotation of f .
Scaling: For any a ∈ R+, the f (t) 7→ af (t) denotes the translation of f .
Re-parameterization: For any γ ∈ Γ, f (t) 7→ f (γ(t)) is a re-paramaterization
of f .

We want shape metrics and shape analysis to be invariant to these
actions. For instance, if ds is a shape metric, then we want:

ds(f1, f2) = ds(aO(f1 ◦ γ) + x , f2), ∀a ∈ R+,O ∈ SO(2), γ ∈ Γ, x ∈ R2

These transformations are considered nuisance in shape analysis.



Registration Through Re-Parametrizations

Re-parameterization is not entirely a nuisance transformation. It is useful in
solving the registration problem.

Take two parameterized curves f1, f2 : [0, 1]→ R2.

For any t , the point f1(t) on the first curve is said to be registered to the
point f2(t) on the second curve.

We can change the registration by re-parametrizing the curves.

If we re-parameterize f2 by γ, then the new registration is
f1(t)↔ f2(γ(t)).

Re-parameterization = Registration
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Elastic Riemannian Metric

Let f : [0, 1]→ Rn be a Euclidean curve. ḟ (t) is the velocity vector at f (t).

r(t) = |ḟ (t)| is the speed function, and

Θ(t) = ḟ (t)
r(t) is the direction vector.

We represent a curve by the pair (r ,Θ).

For a re-parameterized curve f ◦ γ, the representation is given by
((r ◦ γ)γ̇,Θ ◦ γ).

Elastic Riemannian Metric for curves: for any a, b,

〈(δr1, δΘ1), (δr2, δΘ2)〉(r,Θ) = a2
∫ 1

0
δr1(t)δr2(t)

1
r(t)

dt

+ b2
∫ 1

0
δΘ1(t)δΘ2(t)r(t) dt .

This metric is invariant to re-parameterization of f :

〈(δ((r1 ◦ γ)γ̇), δ(Θ1 ◦ γ)), (δ((r2 ◦ γ)γ̇), δ(Θ2 ◦ γ))〉(((r◦γ)γ̇),(Θ◦γ))

= 〈(δr1, δΘ1), (δr2, δΘ2)〉(r,Θ)



SRVF Representation for Curves

Define the square-root velocity function (SRVF):
q(t) ≡ ḟ (t)√

|ḟ (t)|
=
√

r(t)Θ(t).

Computing variation on both sides, we get:

δq =
1

2
√

r(t)
δr(t)Θ(t) +

√
r(t)δΘ(t) .

Taking standard L2 inner product between two such variations:

〈δq1, δq2〉 =
1
4

∫ 1

0
δr1(t)δr2(t)

1
r(t)

dt +

∫ 1

0
〈δΘ1(t), δΘ2(t)〉 r(t)dt .

Use 〈Θ(t), δΘi (t)〉 = 0.

This is equal to the elastic Riemannian metric for a = 1/2 and b = 1.
Thus, the mapping f 7→ q transforms the elastic Riemannian metric into
the L2 metric for these weights.

The geodesic distance between any f1 and f2 under the elastic
Riemannian metric (for a = 1/2 and b = 1) is simply ‖q1 − q2‖.



SRVF Representation ....

We use SRVF q for analyzing shape of a curve f .

The SRVF of (f ◦ γ) is (q ◦ γ)
√
γ̇. Just by chain rule. We will denote

(q, γ) = (q ◦ γ)
√
γ̇.

Commutative Diagram:

f q

(f ◦ γ) (q, γ)

SRVF

Group action by Γ

SRVF

Different Group action by Γ

Lemma: The chosen distance satisfies: dFR(f1, f2) = dFR(f1 ◦ γ, f2 ◦ γ)
We need to show that ‖(q1 ◦ γ)

√
γ̇ − (q2 ◦ γ)

√
γ̇‖ = ‖q1 − q2‖.

‖(q1, γ) − (q2, γ)‖2 =

∫ 1

0
(q1(γ(t))

√
γ̇(t) − q2(γ(t))

√
γ̇(t))2dt

=

∫ 1

0
(q1(γ(t)) − q2(γ(t)))2

γ̇(t)dt = ‖q1 − q2‖
2
.�



Shape Analysis Using SRVFs

Checking all nuisance transformations:
1 Translation: SRVF q for a curve f is invariant to its translation !
2 Scaling: We can rescale all the curves to be of unit length, to get rid of the

scale variability. It turns out that ‖q‖ = L[f ]. So, if L[f ] = 1, then the
corresponding SRVF q is an element of a unit sphere S∞.

3 Re-parameterization and rotations we can’t remove by any such
standardization. However, we have the nice property:

‖q1 − q2‖ = ‖Oq1 − Oq2‖ = ‖(q1, γ)− (q2, γ)‖ .

We use the notion of equivalence classes, or orbits, to reconcile the
remaining two transformation. For any curve f , and its SRVF q, we its
equivalence class to be:

[q] = {O(q, γ)|O ∈ SO(n), γ ∈ Γ} .

This set represents SRVFS of all possible rotations and
re-parameterizations of f . Each equivalence class represents a shape.



Shape Metric

S∞ ⊂ L2 is called the pre-shape space.

The set of all equivalence classes is a quotient space L2/(SO(n)× Γ). It
is called the shape space.

The distance between any two curves in the pre-shape space is
cos−1(〈q1, q2〉).

The distance in the shape space, called the shape metric, is given by:

ds([q1], [q2]) = inf
(O,γ)∈SO(n)×Γ

cos−1(〈q1,O(q2, γ)〉) .

This include rotational alignment and non-rigid registration of the two
curves.

Given optimal parameters O∗, γ∗, the shortest path or a geodesic is
simply:

α(τ) =
1

sin(ϑ)
(sin(ϑ(1− t))q1 + sin(ϑt)q∗2 ), cos(ϑ) = 〈q1, q∗2 〉 ,

where q∗2 = O∗(q2, γ
∗).



Shape Metric

So far we have developed a technique for computing geodesics and
geodesic distances in shape space of all curves.

Suppose we are interested in only closed curves.

The SRVF q of a closed curve f satisfies an additional condition:

f (0) = f (1)⇔
∫ 1

0
q(t)|q(t)|dt = 0 .

So we are now interested in the pre-shape space:

C = {q ∈ S∞|
∫ 1

0
q(t)|q(t)|dt = 0} ⊂ S∞ .

The geodesics here are no longer arcs on great circles. We don’t know
have analytical expressions for these geodesics or geodesic distances.

We have developed a numerical technique called path straightening for
finding geodesics on C.



Elastic Geodesics

Hand contours/ Leaves/ Nanoparticles



Elastic Geodesics



Elastic Geodesics 3D Curves
All these ideas extend easily to curves in higher dimensions.

Example 1:
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Elastic Registration of High-Dimensional Curves

Temporal alignment of human activity data: Two-hand wave

Sequence 1, f1

Sequence 2, f2

Sequence 2 re-parameterized, f2 ◦ γ∗1
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Warping γ∗ |q1(t) − q2(t)|, |q1(t) − q2(γ∗(t))
√
γ̇∗(t)|



Elastic Registration of High-Dimensional Curves

Temporal alignment of human activity data: One-arm wave

Sequence 1, f1

Sequence 2, f2

Sequence 2 re-parameterized, f2 ◦ γ∗1
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Warping γ∗ Plots of |q1(t) − q2(t)| and |q1(t) − q2(γ∗(t))
√
γ̇∗(t)|
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Shape Clustering

11191614201315121718  1  5  2  6  8  7 10  3  4  9

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Shapes Average

11191614201513121718  1  5  2  8  6  7 10  3  4  9

0.1

0.15

0.2

0.25

0.3

0.35

0.4

11191416131520171812  1  5  2  6  8  7 10  9  3  4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Nearest Furthest

Figure: A set of 20 shapes of the left have been clustered using different linkage
criterion: average (top-right), nearest distance (bottom left), and compete or furthest
distance (bottom-right).



Shape Clustering
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Figure: A set of 20 shapes of the left have been clustered using different linkage
criterion: average (top-right), nearest distance (bottom left), and compete or furthest
distance (bottom-right).



Shape Clustering: Nanoparticles

Pairwise Distance Matrix Dendrogram Clustering

Individual Clusters



3D Shape Clustering



Shape Statistics

Sample mean:

µq = argmin
[q]∈S

n∑
i=1

ds([q], [qi ])
2 ,

and then, µq 7→ µ.



Elastic Averaging of Multiple Shape Sequences

Four of Six Sequences Used in Experiment

Pre-Alignment Mean

Post-Alignment Mean



Shape Statistics

PCA in the tangent space at the mean

Testing equality of shape populations across time frames: Truncated
Wrapped Normal Distributions

p values (left) and binary decisions (right)

The nanoparticle shape populations across frames are increasing
different as the frames are further apart in time.



Leaves Shapes



Leaves Classification



PCA of Curves in R3

(a) A collection of 20 spiral curves used in this experiment
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(b) the decrease in the norm of the gradient of Karcher variance function
during mean estimation, (c) the estimated Karcher mean and (d) the
estimated singular values of the covariance matrix.



PCA of Curves in R3
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Matlab Demo – 1

Phase amplitude separation of functional data



Matlab Demo – 2

Shape analysis of planar curves
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Mathematical Representations of Surfaces

Interested in objects of the type: f : S2 → R3 that are immersions. We
can define a square-root representation similar to curves as follows.

The gradient ∇f : S2 → R3×2, is ∇f (s) = [ ∂f
∂s1

∂f
∂s2

].
For s = (u, v), the normal vector field is ñ(s) = ∂f

∂u ×
∂f
∂v , and the

induced metric (or the first fundamental form) on S2 is:

g(s) = ∇f (s)T∇f (s) ∈ R2×2

We have the area element a(s) = |ñ(s)| =
√

det(g(s) and unit normal
n(s) = ñ(s)/a(s).



Shape Registration and Geodesics

Without Reg.

With Reg.

Without Reg.

With Reg.

Geodesics are computed in the SRNF space and then each point along the
path is inverted back numerically.



Shape Summaries

Sample mean:

µq = argmin
[q]∈S

n∑
i=1

ds([q], [qi ])
2

Then, µq 7→ µf (SRNF Inversion).

Mean shape

Anuj Srivastava FUNCTIONAL AND SHAPE DATA ANALYSIS



Shape Clustering
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Shape PCA and Modeling

Use the tangent bundle of shape spaces to perform PCA and wrap it back on
the shape space to study principal directions.

-4σ 4σ
0

-2σ 2σ
0

(a) Mean shape and its first (b) Mean pose and its first (c) Random samples from the PCA

three modes of variation. three modes of variation. model on S.

Anuj Srivastava FUNCTIONAL AND SHAPE DATA ANALYSIS



Neuron Morphology

Neurons, axons

Complex branching structures, different numbers and shapes of
branches.

Interested in neuron morphology for various medical reasons –
cognition, genomic associations, diseases.



Mathematical Representations

Complex structure – divide and conquer

Components – main brain and side branches (ignore tertiary structures).
A collection of curves in R3. Also keep the locations where side branches
meet the main branch. β0, {βk , k = 1, . . . , n}, {sk , k = 1, 2, . . . , n}.
SRVFs: q0, {qk , k = 1, . . . , n}, {sk , k = 1, 2, . . . , n}.



Tree Shape Metric

Distance between two trees with n registered branches.

dn

(
q1,q2

)2
= λm

∥∥∥q1
0 − q2

0

∥∥∥2
+ λs

n∑
k=1

∥∥∥q1
k − q2

k

∥∥∥2
+ λp

n∑
k=1

(
s1

k − s2
k

)2
.

(1)

Trivial side branch: A side branch of length zero.

Define a notion of branch equivalence – two trees are branch
equivalent if they have the same shape, i.e. they only differ in null
branches.



Shape Geodesics

Compare trees with n1 and n2 side branches: Add null branches to make
the total number n1 + n2 in each. Match the branches using the
assignment problem – Hungarian algorithm. Also need global rotation for
alignment.

Geodesic Example:

Sample mean, PCA, etc.



Geodesics Examples



Shape Classification

Experimental Setting:

Wu Dataset: 41 apical dendrites taken from the CA1 region of the
hippocampus in mice. Two classes: wild type and a gene protocadherin
knocked out.

Chen Dataset: 99 apical dendrites of pyramidal neurons taken both
from the CA1 regios of the hippocampus and layer V of the sensorimotor
cortex in rats. Two regions and Three classes (BDL, BDHLHD, and
control group).

Feature method uses a 21 feature vector.



Real Tree Shapes: Geodesics

Tree shapes: stems, branches, tertiary branches⇒ different topologies and
geometries.



Summary

This field represents a confluence of ideas from geometry, functional
analysis, and statistics.

Reason: On one hand, objects are more naturally represented in
continuum, i.e. by functions. On the other hand, functions have shapes
that are often more important than functions themselves.

The simplest example is shapes of scalar functions on a unit interval.
However, as the data grows, the complexity of the objects also grows.

Next, we have shapes of curves in R2, R3, or Rn. Then we have tree-like
structures or graph-like structures. Then we have 3D objects, and so
on...

In the future, there is a potential for combining topological tools with
geometry to expand this framework.
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