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Preface: Modern Statistical Data Analysis

@ We are going through a remarkable period of transition and growth,
reflecting large strides in data-driven methodologies — FIDS, TAMID.

@ Where is data coming from? Imaging sensors and modalities are
becoming a major source of data.

@ From mega scale (e.g. satellite and space imaging) to human scale
(cellphones, vehicular sensors, medical imaging, etc) to nanoscale (e.g.
sub-cellular structures and electron microscopy imaging).

@ Data is complex! It leads to newer challenges and inspires newer
solutions. Data (images) contain objects of interest and we want to
understand and analyze roles of these objects in larger systems.

@ Our specific subgoals are to estimate, recognize, track, classify, and
predict objects and their behaviors. We use shapes of objects as an
important characteristic in working towards these goals.



Preface: Modern Statistical Data Analysis

@ Why the focus on shapes? Shapes (structures) and functionality of
objects are highly interconnected. Structures both constrain and enable
functionality of an object. Understanding functions demands
understanding structures.

@ Object data is highly structured. Traditional statistical tools are not
directly applicable. We can add or subtract two vectors or two matrices,
but how does one add or subtract two objects?

@ These challenges are spawning a new age of structural data analysis,
with a confluence of tools from geometry, topology, statistics and other
several other domains.



Preface: Big Picture

@ This topic area is multidisciplinary, or transdisciplinary, not just
interdisciplinary:
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@ Statistical analyses have traditionally been performed in Euclidean
spaces. Structured data is highly non-Euclidean. We need novel
mathematical platforms that are more suited to our needs.




Intro: Functional and Shape Data Analysis

Historically:
@ Functional Data Analysis (FDA):
@ The term was coined by Jim Ramsay and Bernard Silverman in late 80s.

o Statistical analysis where variables of interest are functions —
mostly, scalar functions on a fixed interval.

o Mathematical platform was Hilbert space of square-integrable functions (will
discuss this in detail later)

e Using a (truncated) orthonormal basis, many statistical problems are
converted to multivariate statistics. Replace functions by their coefficients.

@ Shape Analysis:
o Pioneered by D’Arcy Thompson (early 20th century), David Kendall (1980s),
Ulf Grenander (1990s), and others.

@ Most of this analysis was performed assuming that objects were made up of
a set of registered points — landmarks.

e The main accomplishment were developing mathematical machinery that
performs analysis while being invariant to rotations, translations, scale.



Intro: Functional and Shape Data Analysis

More recently:

@ Shape Analysis of Functional Data:

o Obijects are represented by functions (continuum) — scalar functions, curves,
surfaces, etc.

@ Challenges:

o Invariance: A shape of the object does not change under rotation,
translation and scaling. Analysis is invariant to rotations, translations, scale,
etc.

o Registration: Which point on one object is matched with which point on the
other?
We do not assume that the data is already registered. That is the biggest
achievement of this theory. Registration is performed during shape analysis.




Typical Shape Analysis Tasks

A set of theoretical and computational tools that can provide:

@ Shape Metric: Quantify differences in any two given shapes.

How different are these shapes?
=

@ Shape Deformation/Geodesic:
How to optimally deform one shape into another?
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Shape Analysis

@ Shape summary: Compute sample mean, sample covariance, PCA, and

principal modes of shape variability.
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@ Shape model and testing: Develop statistical models and perform
hypothesis testing.
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@ Related tools: ANOVA, two-sample test, k-sample test, etc.



Motivations: Application Areas

Where do we need Functional and Shape Data Analysis?

Everywhere! If there is functional data, or image data, or object data!

@ Biology & Bioinformatics

@ Computer Vision & Al

@ Meteorological, Atmospheric, Earth Sciences

@ Medical Imaging Dianostics & Computational Anatomy

@ Health, Lifestyle, Biometrics



Sub-Cellular Structures

@ Shapes of Mitochondria contours.
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@ Scientific questions: Does the amount of daily activity performed by an
animal influence the shapes of mitochondria?

@ ANOVA type problem: Factor — daily exercise, Response — mitochondria
shapes. Decide significance of external factors.



Botanical Structures

@ Leaves: Classification of leaves using shapes.
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@ Trees:




@ Proteins, RNAs — Structure Analysis
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Single Cell Ensemble Estimation



phology

@ Neurons, axons

@ Complex branching structures, different numbers and shapes of
branches.

@ Interested in neuron morphology for various medical reasons —
cognition, genomic associations, diseases.



Nanoparticle Morphology

@ Nanoimaging: Supervising material properties using EM
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@ Scientific: Compare populations of dynamic shapes, not just individual
static shapes.



Biometrics - Human Body

@ Human biometrics is a fascinating problem area.

@ Facial Surfaces: 3D face recognition for biometrics
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@ Human bodies: applications — medical (replace BMI), textile design.
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@ Shapes are represented by surfaces in R3

s



Computational Anatamy

@ Subcortical structures in human brain
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@ Shapes are represented by surfaces in R3

@ Goal is to analyze shapes of these structures in order to diagnose or
predict onset of cognitive disorders — Alzheimers, Schizophrenia, ADHD,
PTSD, etc.



Surveillance and Activity Analysis

@ Human activity data using remote sensing — kinect depth maps

(a) Source and Target skeletons from Action#11 Two Hand Wave'

AR AT

) Source and Target skeletons from Action#1 ‘High Arm Wave’

AR AE

@ Each sketelon is considered either as an element of R or Kendall’'s
shape space (20 landmarks in R®).

@ An action is then a curve on that representation space.

@ Goal is action classification while being invariant to rate at which action
is performed.



Vasculature in Retinal Images

@ Shape analysis of vasculature in retinal images.

Original Image Binary Segmentation Graph Representation

@ The goal is to detect and diagnose different kinds of abnormalities
associated with vision and eyes.



Brain Arterial Networks

@ Shape analysis of networks of arteries in human brain

Network of 3D curves

@ The goal is to study how arterial networks change with age, gender,
disease, and injuries.



What is the Nature of Objects

Many objects can be represented as functions f : D — R¥, M

@ 2D, 3D, or Euclidean Curves: For example, 2D closed curves forming
silhouettes of objects.

@ Collections of Curves: For example, neurons or botanical trees.

@ Surfaces: Boundaries of 3D objects.

(
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functions curves trajectories  |surfaces
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@ Tajectories on nonlinear manifolds. e.g. covariance trajectories, skeletal
trajectories.

@ Simplest example: scalar functions on [0, 1]. We are going to focus a lot
on statistical analysis of scalar functions on a fixed interval.
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High School Geometry

@ Congruent Objects: If we rotate and translate an object, then it remains
congruent to the original object.

N7V

@ Similar Objects: If we scale, rotate, and translate an object, then it
remains similar to the original object.

N <5\

These are called similarity or shape-preserving transformations.




Invariance in Shape Analysis

@ General Objects: Shape is a property that is invariant to rotation,
translation, and scaling of objects (Kendall, 84).
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@ An additional invariance for functional data:

@ In case we are working with continuous objects (curves, surfaces, etc), there
is another transformation — re-parameterization — that leaves shapes
unchanged.

o For example, shape of a parametrized curve is also invariant to how it is
parameterized.

e This transformation has another role — it helps in registering points along two
objects. (More on this later)



Shape-Preserving Transformations as Groups

@ ltis very useful to view these transformations as groups.

@ What is a Group:
A group G is a set having an associative binary operations, denoted by -,

such that:
o there is an identity elemente € G(e-g=g-e=gforallg € G.
e forevery g € G, thereisaninverse g—' (g-g~' = e).
@ Examples:
o Translation Group: R”, group operation is addition, identity element is zero
vector

@ Scaling Group: R, group operation is multiplication, identity element is 1.

o Rotation Group: SO(n), group operation is matrix multiplication, identity
element is In.

o Diffeomorphism/Reparameterization Group: Define
r={y:[0,1] — [0,1]]7(0) = 0,~(1) = 1,~ is a diffeo} .

I is a group, group operation is composition: vy oy, € I’
Identity element is iy (t) = t.



Object Transformations as Group Actions

@ Transformations (of an object) are viewed as actions of a group.

@ What is a Group Action:
Given a set M and a group G, the (left) group action of G on M is defined
to be a map: G x M — M, written as (g, p) such that:
° (91,(92,p)) = (91 - Go,p), forall gy, 00, € G, p € M.
o (e,p)=p,VpeM

@ Examples:

o Translation Group: R” with additions, M = R":
Group action (y,x) = (x + y)

o Rotation Group: SO(n) with matrix mulitplication, M = R"™:
Group action (O, x) = Ox

@ Scaling Group: R with multiplication, M = R"™:
Group action (a, x) : ax.




Object Transformations as Group Actions

@ What is the advantage of viewing transformations as group actions? One
can compose these group elements to form composite transformations.

Single Transform

Double Transform /ki

Composite Transform




A Transformation of Functions: Time Warping

@ Diffeo Group: I with compositions,
M = F, the set of smooth functions on [0, 1].

Group action: (f,v) = f o v, time warping!
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@ We will use this group to register — align peaks and valleys — of scalar
functions.

@ Very important group in shape analysis of functional data.



Shapes are Represented by Orbits

@ Shapes are not represented by single points in a space — they are
represented by sets.

@ What are Orbits:
For a group G acting on a manifold M, and a point p € M, the orbit of p:

[l = {(9.p)lg € G}
If p1, P2 € [p], then there existsag € Gs. t. p» = (g, p1).

@ Examples:

o Translation Group: R" with additions, M = R"
[x] = R": All possible translations of a point.

@ Rotation Group: SO(n) with matrix mulitplication, M = R"
[x] is a sphere with radius ||x||: All possible rotations of a point (a vector from
origin).

e Scaling Group: R with multiplication, M = R"
[x] = a half-ray almost reaching origin: All possible scalings of a vector from
origin.

e Time Warping Group I': [f] is the set of all possible time warpings of f € F.



Shape Spaces are Quotient Spaces

@ Two elements of an orbit have exactly the same shape. Orbits are either
equal or disjoint. They partition the original space M.

Quotient Space M/G

The set of all orbits is called the quotient space of M modulo G.

M/G={lpll € p M} .

V.

Quotient Metric

Let dn be a distance on M such that: (1) the action of G on M is by isometry
under dn, and (2) the orbits of G are closed sets, then:

Am/g([Pl [a]) = inf dn(p, (g, q)) = inf dn((g.P),q)

V.

Group action is by isometry: dn(p, Q) = dn((9,p), (9, q)). This forms the
basis for all of shape analysis.

@ The minimization over a group (usually rotation or reparameterization) is
called alignment or registration.
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Traditional Functional Analysis: Hilbert Structure

Let F be a function space.

@ Vector Space: Forany fi,f, € F and ai, a2 € R, we have aifi + axfh € F.

@ Banach Space: F is complete, and there exists a norm on F. (Recall the
definition of a norm).

@ Hilbert Space: F is a Banach space, and there is an inner product

associated with the norm on F.
Example: Set of square-integrable functions

e Standard L2 inner product: (f;, fr) = Jp (i (1), Ra(2)) dt.
e 1.2 norm or IL2 distance:
It =l = —hf — ) = \/fD<f1(t)f1 — K(1), f(t) — B(1) dt
o Denote: L2(D,R¥) = {f : D — R¥|||f|| < oo}. Often use L2 for the set.
o Shortest path between any two points, f;, £, in .2 is a straight line:

a(r) =01 -nh+71h.
The length of this path is ||fi — f]].

@ This is the most common/convenient mathematical platform used in
Functional Data Analysis.



Statistics 101 for Functional Data

Computing Data Summary:
Let fy, f, ..., f, be data samples from a distribution P on LL2.

@ Mean function p(t) = Ep[f](t), a(t) = 1 5=, fi(1).
A metric view point: (check)

n
fi = argmin y [|f — % .

fer i

@ Covariance function C(s,t) = Ep[(f(t) — u(1))(f(8) — u(8))]-
@ Sample covariance function:

B(s. ) = —— S (h(H) — A (h(S) — ALS)) -
i=1

n—1 —
e Viewed as a linear operator on L.2:
]
A2 512 Af(t) = / Clt, s)f(s)ds .
0

Self-adjoint, bounded, linear operator. Has spectral decomposition (eigen
functions).



Functional PCA — FPCA

@ Random f € .2 and assume that the covariance C(t, s) is continuous.

@ Karhunen-Loeve theorem states that f can be expressed in terms of an
orthonormal basis {e;} of L?:

f(t)y=>_zegl(t)
)

where {z;} are mean zero and uncorrelated.

@ Practice: Discretize the sample covariance matrix at T time points and
get C e R™ 7, use the svd C = UXUT, then the columns of U provide
(samples from) eigenfunctions of f.



FPCA Example

@ Well aligned data
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Numerical Computations in Functional Analysis

A quick note on numerical implementation.

@ We assume that all functions are sampled on a fixed, dense, uniform grid
on [0, 1]. Then, we can approximate integral with finite sums:

! Nooi i
<f,g>:/0 f(t)g(t) dme(N)g(N)N,
i=1

@ What if the data is sparse, noisy or nonuniform? Resample it on a fixed,
dense, uniform grid.

@ Fit a function to the sparse data and resample it on the fixed, dense,
uniform grid on [0, 1]
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Problems with this Setup

@ Most of the FDA literature is centered around the L2 norm. But there are
some major problems with this choice.

@ Distances (under L2 metric) are larger than they should be.

) d,,=0.837,d,,=0.791 " d,, =4.471,d,,=3.989
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@ Misalignment (or phase variability) can be incorrectly interpreted as
actual (amplitude) variability.



Problems with FDA as Setup So Far

@ Recall that the average under L2 norm is given by:

f(t) = Zf

@ Function averages under the 1. norm are not representative!

8

o = v e s o o N

{f}, f f+ std
Individual functions are all bimodal and the average is multimodal!
@ In f, the geometric features (peaks and valleys) are smoothed out. They

are interpretable attributes in many situations and they need to be
preserved



FPCA: Data With Phase Variability

n = 50 functions, fi(t) = f(vi(t)), vis are random time warps.
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Real Issue: Improper Registration

@ 1.2 norm uses vertical registration:

1
I — Bl = /0 (h (1) — h(t)) dt

For each t, fi(t) is being compared with £(t).
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@ The geodesic path (interpreted as the deformation between f; and f,) is
unnatural as geometric features (peaks and valleys) are lost or created
arbitrarily.



Real Issue

@ What if the variability is more naturally horizontal:

Registration Geodesic Registration Geodesic

@ Or, maybe a combination of vertical and horizontal:

Registration Geodesic

@ The question is: How can we detect the compute and decompose the
differences into horizontal and vertical components.



Registration Framework

@ How to perform registration?

@ For functional objects of the type f: [0, 1] — R, registration is essentially
a diffeomorphic deformation of the domain.

@ Let~:[0,1] — [0, 1] be a diffeomorphism. Then, then f;(t) is said to be
registered to f(~(t)). Composition by ~ is called time warping.

@ How to define and find optimal v? The warping - should be chosen so

@ The deformation t — ~(t) is called the phase variability and the residual
fi(t) — f(vy(t)) is called the amplitude or shape variability.



Desired Properties

Problem Setup:
@ Letfi, £ :[0,1] — R be two functions.

@ [ is the group of orientation-preserving diffeomorphisms of [0, 1] to itself.
I is a group with composition. -, is the identity element.

@ Question: What should be the objective function: E(f;, £ o ), for
defining optimal registration?

Desired Properties of E:
o If 4 registers f; to £, then 4~ should register £ to .

e If ,, = cf for a positive constant ¢, then 4 = ~;5. Shapes are more
important than heights.

@ It will be nice to have min, E(f, £ o y) as a proper metric.



Current Registration Formulation

@ A natural quantity to define E for optimal registration is the L2 norm, i.e.

’ 4 = argintyer(||fi — f207)?). ‘

@ However, this choice is degenerate — pinching effect!

L2 norm = 1.679568 L2 norm = 0389352
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Current Registration Formulation

@ Common solution — add penalty:

‘ 4 =arginfyer(|fi — ko y|? + AR(Y)). ‘

@ Effectively reducing the search space, not really solving the problem.

@ Example: Using the first order penality R = [, |%(8)|dt.

2=00001 =000 A=001 -0 a1

2 =0.0001 | A=0001 | A=001 | rz01 | Azt

@ One can use other penalty terms instead.



Problems: Penalized L= Alignment

@ The right balance between alignment and penalty?

fi, f1{ f 0 fi oM, I Y15 V2 Y1092

[T RETIT)

Alternative Method




Problems: Penalized L= Alignment

@ Asymmetry: Discussed earlier

inf([lfi —f2 0 7P+ AR(7)) # inf(l|fr oy — Bl|* + +AR(7)) -

@ Triangle inequality: The following does not hold —
inf([|fy —fs 0 YE+AR())) < inf([|fr oy — Rl® + AR(7))

+ infy (|l oy — BI* + AR()) -

@ Most fundamental issue: Not invariant to warping

Il # [ oyl -

The norm ||f o || can be manipulated to have a large range of values,
from min(|f[) to max(|f|) on [0, 1].



Why Invariance to Warping?

@ Registration is preserved under identical warping!
[fi (), f2(2)] are registered before warping, and [fi(y(1)), (y(t))] are
registered after warping.

2 L2 norm = 2.655761 | a=teaty), a=-0999 L2 norm = 2.717500
',‘I
-

08 i

15 e 15
/’

06 v

10 e 10
,
04 7t
/
/

5 g 5

02 e

/
%
0 0 0
0 02 04 06 08 10 02 04 06 08 1 0 02 04 06 08 1

@ The metric or objective function for measuring registration should also be
invariant to identical warping.

@ 1.2 norm is not invariant to identical warping.



Desired Properties for Objective Function

We want to use a cost function d(fi, £) for alignment, so that:

@ Invariance: d(fi, &) = d(fi oy, L o), for all +.
Technically, the action of I on F is by isometries.

@ Registration problem can be:

(vi,72) = arginf d(fi oy1, 2 072) .

Y1,72€F

i is a closure of I' to make orbits closed set.
@ Symmetry will hold by definition.
@ Triangle inequality: Let ds(fi, f2) = inf,, 1, d(fi 0 1, f2 0 72). Then, we

want:
ds(fr, 1) < ds(fr, o) + Os(fe, o) .

@ We want ds to be proper metric so that we can use ds for ensuing
statistical analysis.
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Fisher-Rao Distance

@ There exists a distance that satisfies all these properties. It is called the
Fisher-Rao Distance:

[ dea(fi, ) = dra(fi 07, ko), forall i, € F,y €.
For many years, this nice invariant property was well known in the

literature. The question was: How to compute deg? The definition was to
difficult to lead to a simple expression.

@ Joshi et al. (2007) and Srivastava et al. (2011) introduced the SRVF.
(Has similarities to the complex square-root of Younes 1999.) Define a
new mathematical representation called square-root velocity function

(SRVF): .
f(t) ;

q(t):{ iy 0170

0 |t =0

(f:[0,1] = R", q:[0,1] = R")
@ SRVF is invertible up to a constant: f(t) = f(0) + fot lq(s)|g(s)ds.



SRVF Representation

@ Under SRVF, the Fisher-Rao distance simplifies: drr(fi, £) = ||g1 — g2||.
@ The SRVF of (f o) is (g o v)v/4. Just by chain rule. We will denote
(9,7) =(goNV7H-

Commutative Diagram:

¢ SRVF g

Group action by I Different Group action by I

(fon) W (@:7)



SRVF Representation

@ Lemma: This distance satisfies: deg(fi, ) = drr(fi 0 v, 0 %)
We need to show that [[(g1 0 v)v/F — (g2 o V)Vl = lla1 — @el|-

"
@, — (@ NI = /o (a1 (v A (1) — Ga(v(D)y/~ (0)2at

1
/0 (@ (V1) — g(v(0) P50t = llay — g .0

@ Corollary: For any g € L2 and v € ', we have ||g|| = ||(g,~)]|- This
group action is norm preserving, like a rotation. Can’t have pinching!

@ Registration Solution:

(17.7) = arginf.,__, (@ ©71)v/31 — (@ 0 72)v/3]

One approximates this solution with:
v = arginf||gr — (G2 0 V)Vl -
Y

This is solved using dynamic programming.



Background Story

@ Where does SRVF come from?
@ Fisher-Rao Riemannian Metric: For functions, there is a F-R metric

(5,68 = /01 5f1(t)5'f2(t)f(1—t)dt .

@ Under F-R metric, the time warping action is by Isometry:
<<5f1 ) 6f2>>f = <<6f1 o7, 6f2 o ’Y>>fo'y'

(Note this is different from the F-R metric for pdfs, but same as the F-R
for cdfa.)

@ Under the mapping f — g, Fisher-Rao metric transforms to the 1.2
metric:

((6f1,0k))r = (0q1,002)
Fisher-Rao metric L2 inner product



SRVF Mapping

Nice isometric, bijective mapping from F to L2

Function Space F SRVF Space L2

Absolutely continuous functions|Square-integrable functions
1 [Functions and tangents Functions and tangents

f, and 6f;, 6 € T;(F) q,0q1,0qz € L2
2|Fisher-Rao Inner Product LZ inner product

I3 oty (1)3(t) gz ot [ 61 (t)oau(t) dt
3|Fisher-Rao Distance L? norm

dFR(f1,f2) =777 L2 norm: ||Q1 — CIQH
4|Geodesic Under Fisher-Rao  |Straight line

?? T (1=7)g1 +702)
5|Mean of functions under dr.g |Cross-Section Mean

?? 52 Gi
6.|Registration under drg Registration under L2

inf, dra(fi, .0 ) inf, [lgr — (@2 2 )V
7|FPCA analysis under deg FPCA analysis under L? norm

Any item on the left can be accomplished by computing the corresponding
item on the right and bringing back the results.



Pairwise Registration: Examples

Liquid chromatography - Mass spectrometry data

m Before )
T T B
6 Aftgr ) )

Zoom in: Before Zoom in: After



Multiple Registration

@ Align each function to a template. The template can be the sample mean
but under what metric?

@ Mean under the quotient space metric:

= argint (in g — (@)

gelL?

i

@ lterative procedure:

@ Initialize the mean p.

@ Align each g;s to the mean using pairwise alignment to obtain
A; = arginf,_||q — (a5, 7)1, and set §; = (g1, %)

@ Update mean using = 1 377 | ;.

@ Check for convergence. If not converged, go to step 2.



Multiple Registration: Examples

{f} Amplitude {f;} Phase {v;}

@ One can view this separation f. = (f,,), as being analogous to polar
coordinates of a vector v = (r, 9).

@ In most cases, one of the two components is more useful than the other.
So, separation helps put different weights on these components.



Multiple Registration: Examples

Matlab Code — Demo



Alignment After Transformation

Sometimes it is useful to transform the data before applying alignment
procedure. Some of these transformations are: |fi(t)|, fi(t), log|fi(t)], etc.

@ Absolute Value: When optimal points are to be aligned (irrespective of
them being peaks or valleys).

-
N\

7z .
02 04 06 08 0z 05 08

{Ifil} {Ifi o %il} {3} {fio%i}



Alignment After Transformation

@ Derivatives: When aligning montonoic functions

{%}7

{fioHi}

{Fit

{fioHi}




Penalized Elastic Alignment

@ If we want to control the elasticity, we can also add a roughness penalty.
. 1/2
inf,er (llgn — (@ I + AR(1) "

@ For example, using a first order penalty: R(vy) = ||1 — V72

original functions| A =0

MSE (amplitude)MSE (phase)

@ We loose some nice mathematical properties - no longer have a metric
in the quotient space.



Post Separation Analysis

Original data

Warping functions Warped data

o - v © & o o ~
o =« » 6 & o o ~

0o 02 04 06 08 1

@ Once we separate phase and amplitude components from the data, we
can perform more standard data analysis.

@ We can perform FPCA of these components separately and model their
distributions.

@ We can weight these components differently to cluster and classify
functional data.



COVID Rate Curves

@ COVID-19 rate curves — the count of new infections in a state as a
function of time.

5
x10
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3

800
600
400
200

6000

4000

2000

0Mar Apr May Jun Jul Aug OMar Apr May Ju Jul  Aug l)Mar pr May Jun Jul Aug oMar Apr May Jun Jul Aug
2020 2020 2020 2020
@ From left to right:
e Cumulative COVID-19 positive counts for each state.
e COVID rates: Daily new COVID-19 positive counts.

@ Smoothed and normalized (to area under the curve being one) for each
state separately.

o Average of all curves before normalization.

@ We study shapes of normalized rate curves for different states.



COVID Rate C

es

Clustering of states: Five clusters, Hawaii is an outlier
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@ Introduction, Motivation, and Background (1:00 - 1:30pm)

@ Introduction and Motivational Examples
e Background: Shape Analysis
e Background: Functional Data Analysis Using .2 Metric

@ Elastic Functional Data Analysis (1:30 - 2:15pm)

@ Registration Problem
o Fisher-Rao Metric and Square-Root Velocity Function

Coffee Break (15 ming) —M8M8

@ Elastic Shape Analysis of Planar Curves (2:30 - 3:15pm)

e Registration Problem
o Elastic Metric and Square-Root Velocity Function
o Shape Clustering, Summary, and Modeling

© Matlab Code & Demo (3:15 - 3:45pm)

@ Alignment of Scalar Functions
@ Shapes of Planar, Closed Curves

@ Shape Analysis of Complex Objects (3:45 - 4:00pm)

@ Shape Analysis of Surfaces
o Shape Analysis of Tree-like Structures



Shape Analysis of Curves

@ Shape analysis of silhouettes of objects in images.

N DO = l<a]] S & § §

@ Shape analysis of chromosomal configurations:

@ Nanoparticles:
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Objects of Interest

@ Assume all the objects have the same topology, as described below.

@ Euclidean Curves: They are all maps of the type: f : D — R¥, where D is
a one-dimensional compact space. Examples:
e D =[0,1]: f can be open or closed curve
e D=S": fis called a closed curve

@ Curves on Manifolds: They are all maps of the type: f : D — M, where D
is a one-dimensional compact space. Examples:
e D=[0,1]: fis called an open curve
e D =S": fis called a closed curve

Often call them trajectories on manifolds.



What is the Registration Problem

@ Registration: Which point on one object matches with which point on the
other object.

@ In order to compare any two shapes, one needs to (densely) register
points across objects.

functions curves trees (neurons)



Registration Problem

@ |s arc-length parameterization a solution?

@ No. Here is why —

B (arc-length) B2 (arc-length) | B2 (matching)

Figure: Registration of points across two curves using the arc-length and a
convenient non-uniform sampling. Non-uniform sampling allows a better matching
of features between 34 and 5.

Elastic Shape Analysis
Perform registration and shape comparison (analysis) simultaneously.




Mathematical Representations of Curves

@ Parametrized curves — 7 : [0,1] — R%, S' — R

B((t))
B(t
[0,1]
Y(¢)
[0,1]

@ Let I be the set of all diffeomorphisms of [0, 1] that preserve the
boundaries. Elements « € T, plays the role of a re-parameterization
function.

@ Forany curve f: [0,1] — R?, and v € ', the composition f o vy is a
re-parameterization of f.

@ I is a group (with composition as group operation), and f — (f,v) = fo~y
defines a group action on the space of curves.



Example: Re-Parameterization

Example: va(f) = t+ at(1 —t), -1 <a<1.

I R S S R
-~ v e s o o
-~ v o s o o

foy fore fos



Shape-Preserving Transformations

@ The following group actions are shape preserving:

Translation: For any x € R?, the f(t) — x + f(t) denotes a translation of f.
Rotation: For any O € SO(2), the f(t) — Of(t) denotes a rotation of f.
Scaling: For any a € Ry, the f(t) — af(t) denotes the translation of f.

Re-parameterization: For any v € T, f(t) — f(v(t)) is a re-paramaterization
of f.

@ We want shape metrics and shape analysis to be invariant to these
actions. For instance, if ds is a shape metric, then we want:

ds(fi, ) = ds(aO(fy o) + x, ), YVaeR,,0 e SO(2),y €T, x € R?

@ These transformations are considered nuisance in shape analysis.



Registration Through Re-Parametrizations

Re-parameterization is not entirely a nuisance transformation. It is useful in
solving the registration problem.

o Take two parameterized curves f;,  : [0, 1] — R

@ For any t, the point f;(t) on the first curve is said to be registered to the
point £(t) on the second curve.

@ We can change the registration by re-parametrizing the curves.

@ If we re-parameterize f, by ~, then the new registration is
fi(t) < R(y(1))-

@ Re-parameterization = Registration



@ Introduction, Motivation, and Background (1:00 - 1:30pm)

@ Introduction and Motivational Examples
e Background: Shape Analysis
e Background: Functional Data Analysis Using .2 Metric

@ Elastic Functional Data Analysis (1:30 - 2:15pm)

@ Registration Problem
o Fisher-Rao Metric and Square-Root Velocity Function

Coffee Break (15 ming) —M8M8

@ Elastic Shape Analysis of Planar Curves (2:30 - 3:15pm)

o Registration Problem
o Elastic Metric and Square-Root Velocity Function
o Shape Clustering, Summary, and Modeling

© Matlab Code & Demo (3:15 - 3:45pm)

@ Alignment of Scalar Functions
@ Shapes of Planar, Closed Curves

@ Shape Analysis of Complex Objects (3:45 - 4:00pm)

@ Shape Analysis of Surfaces
o Shape Analysis of Tree-like Structures



Elastic Riemannian Metric

@ Letf:[0,1] — R” be a Euclidean curve. f(t) is the velocity vector at f(t).

e r(t)= |f_(t)\ is the speed function, and

e O(t) = % is the direction vector.

We represent a curve by the pair (r, ©).

@ For a re-parameterized curve f o v, the representation is given by
((rov)y,©07).

@ Elastic Riemannian Metric for curves: for any a, b,

1 1
((6r1,801), (6r2,802))(; 09 = a2/0 ry (t)<5r2(t)ﬁ dt
1
+ b2/ 501 (£)50(1)r(1) dt.
0
@ This metric is invariant to re-parameterization of f:
((6((r1 ©7)¥),6(©1 © 7)), (6((r2 © ¥)¥), 8(O2 © 1)) ((ror)4).(©0))
=((6r1,601),(0r2,002));,e)



SRVF Representation for Curves

@ Define the square root velocity function (SRVF):

q(t) = /r(He(1).

@ Computing variation on both sides, we get:

;
5q = W(Sr(t)@(t) +/r(056(1)

@ Taking standard IL2 inner product between two such variations:

(5a1,6G) = / 5ry(1)6rs(1) )dt + / (504(t), 602(1)) r(t)dt
Use (©(1),60i(t)) =0
@ This is equal to the elastic Riemannian metric fora=1/2and b= 1.
Thus, the mapping f — g transforms the elastic Riemannian metric into

the L2 metric for these weights.

@ The geodesic distance between any f; and £ under the elastic
Riemannian metric (for a= 1/2 and b = 1) is simply ||g1 — @2||.



SRVF Representation ....

@ We use SRVF g for analyzing shape of a curve f.

@ The SRVF of (f o) is (g o v)v/4- Just by chain rule. We will denote
(@,7) = (qoNVA-

Commutative Diagram:

SRVF
f——q

Group action by I Different Group action by I

(for) W (g,7)

@ Lemma: The chosen distance satisfies: deg(fi, £) = der(fi 0y, 2 07)
We need to show that [[(g1 o 7)v/y — (G2 o MVl = llan — cell.

,
@1 v) - (@ IZ = /0KQ1(’Y(Y))\/"Y<1)—L72<’Y(Y)) 5(0)2at

|
= /O (@1 (V1) — a(v(0)P5 (et = llay — g .0



Shape Analysis Using SRVFs

@ Checking all nuisance transformations:

@ Translation: SRVF g for a curve f is invariant to its translation !

@ Scaling: We can rescale all the curves to be of unit length, to get rid of the
scale variability. It turns out that ||q|| = L[f]. So, if L[f] = 1, then the
corresponding SRVF q is an element of a unit sphere S .

@ Re-parameterization and rotations we can’t remove by any such
standardization. However, we have the nice property:

g1 — Gell = 110g1 — Ozl = Il(q1,7) — (g2, Ml -

@ We use the notion of equivalence classes, or orbits, to reconcile the
remaining two transformation. For any curve f, and its SRVF g, we its
equivalence class to be:

[9] = {O(a,7)|0 € SO(n),y €T} .

This set represents SRVFS of all possible rotations and
re-parameterizations of f. Each equivalence class represents a shape.



Shape Metric

@ S C L2 is called the pre-shape space.

@ The set of all equivalence classes is a quotient space 1.2/(SO(n) x ). It
is called the shape space.

@ The distance between any two curves in the pre-shape space is
cos™'((qn, @)

@ The distance in the shape space, called the shape metric, is given by:

as(lal [ =, inf cos™'((gr, 0(qe, 7)) -

,7)€SO(n)xT

This include rotational alignment and non-rigid registration of the two
curves.

@ Given optimal parameters O*,~*, the shortest path or a geodesic is
simply:

a(r) = ﬁ(sinwm — B)gr +sin(9)g5), cos(9) = (g1, G) .

where g5 = O"(q2,7").



Shape Metric

@ So far we have developed a technique for computing geodesics and
geodesic distances in shape space of all curves.

@ Suppose we are interested in only closed curves.

@ The SRVF q of a closed curve f satisfies an additional condition:

1
f(O):f(1)<:>/o a(blat)dt=0.

@ So we are now interested in the pre-shape space:

c={qe Soo|/0 q(Blq(t)|dt = 0} C Swo .

The geodesics here are no longer arcs on great circles. We don’t know
have analytical expressions for these geodesics or geodesic distances.

@ We have developed a numerical technique called path straightening for
finding geodesics on C.
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Elastic Geodesics 3D Curves
All these ideas extend easily to curves in higher dimensions.

@ Example 1:

TELTIS

(d) (@) (b) (o) (d)

@ Example 2:




Elastic Registration of High-Dimensional Curves

Temporal alignment of human activity data: Two-hand wave

AR S

Sequence 1, f;

i TERERRERRT L

Sequence 2, f,

AR e

Sequence 2 re-parameterized, f o y{

Warping ~* lg1(t) — a2(). 1a1 (1) — (v * (VA (@)



Elastic Registration of High-Dimensional Curves

Temporal alignment of human activity data: One-arm wave

it IR

Sequence 1, f;

g R

Sequence 2, f,

ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ

Sequence 2re- parameterlzed f ot

Warping ~* Plots of |4 (1) — da(t)] and [q4 (1) — a(v* (1) v/F* (|



@ Introduction, Motivation, and Background (1:00 - 1:30pm)

@ Introduction and Motivational Examples
e Background: Shape Analysis
e Background: Functional Data Analysis Using .2 Metric

@ Elastic Functional Data Analysis (1:30 - 2:15pm)

@ Registration Problem
o Fisher-Rao Metric and Square-Root Velocity Function

Coffee Break (15 ming) —M8M8

@ Elastic Shape Analysis of Planar Curves (2:30 - 3:15pm)

o Registration Problem
o Elastic Metric and Square-Root Velocity Function
e Shape Clustering, Summary, and Modeling

© Matlab Code & Demo (3:15 - 3:45pm)

@ Alignment of Scalar Functions
@ Shapes of Planar, Closed Curves

@ Shape Analysis of Complex Objects (3:45 - 4:00pm)

@ Shape Analysis of Surfaces
o Shape Analysis of Tree-like Structures



Shape Clustering

5ES5SNNN
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Figure: A set of 20 shapes of the left have been clustered using different linkage
criterion: average (top-right), nearest distance (bottom left), and compete or furthest
distance (bottom-right).



Shape Clustering

01 |
b $ A A J’ TIZ14131617201918 6 810 7 915 1 2453

Shapes Average
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Figure: A set of 20 shapes of the left have been clustered using different linkage

criterion: average (top-right), nearest distance (bottom left), and compete or furthest
distance (bottom-right).



Shape Clustering: Nanoparticles
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3D Shape Clustering
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Shape Statistics

@ Sample mean: ,
fg = a%gn; ds([a]. [a)* .
and then, pq — p.
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Elastic Averaging of Multiple Shape Sequences

AR A ARAAN
AR AR
bR,
bbb

Four of Six Sequences Used in Experiment

AR08 60

Pre-Alignm

@ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬂﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ

Post-Alignment Mean




o PCA in the tangent space at the mean
JeaaettetalE
givedieses

@ Testing equality of shape populations across time frames: Truncated
Wrapped Normal Distributions

p values (left) and binary decisions (right)
The nanoparticle shape populations across frames are increasing
different as the frames are further apart in time.



Leaves Shapes

Second mode
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Leaves Classification

Methods Recognition score
SM200 99.18
TAR (Mouine et al., 20133, 2013b) 90.40
TSL (Mouine et al., 2013a, 2013b) 95.73
TOA (Mouine et al., 20133, 2013b) 95.20
TSLA (Mouine et al.,, 20133, 2013b) 96.53
Shape-Tree (Felzenszwalb and Schwartz, 2007) 96.28
IDSC + DP (Ling and Jacobs, 2007) 9413
SC + DP (Ling and Jacobs, 2007) 88.12
Fourier descriptors (Ling and Jacobs, 2007) 89.60
Method Score
SM200 (this paper) 0953
TAR (Mouine et al.,, 2013a, 2013b) 0636
TSL (Mouine et al.,, 2013a, 2013b) 0.757
TOA (Mouine et al,, 2013a, 2013b) 0.780
TSLA (Mouine et al., 2013a, 2013b) 0779
IFSC_USP_run2 0.402
inria_imedia_plantnet_run1 0.464
IFSC_USP_run1 0.430
LIRIS_run3 0513
URIS_run1 0543
Sabanci-okan-runl 0.476
URIS_run2 0508
LIRIS_rund 0538
inria_imedia_plantnet_run2 0554

DFH + GP (Yahiaoui et al., 2012) 0.725




PCA of Curves in R

(a) A collection of 20 spiral curves used in this experiment
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(b) the decrease in the norm of the gradient of Karcher variance function
during mean estimation, (c) the estimated Karcher mean and (d) the
estimated singular values of the covariance matrix.



PCA of Curves in R
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Random samples from the estimated wrapped-normal density in the shape
space.



@ Introduction, Motivation, and Background (1:00 - 1:30pm)

@ Introduction and Motivational Examples
e Background: Shape Analysis
e Background: Functional Data Analysis Using .2 Metric

@ Elastic Functional Data Analysis (1:30 - 2:15pm)

@ Registration Problem
o Fisher-Rao Metric and Square-Root Velocity Function
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@ Elastic Shape Analysis of Planar Curves (2:30 - 3:15pm)

o Registration Problem
o Elastic Metric and Square-Root Velocity Function
o Shape Clustering, Summary, and Modeling

© Matlab Code & Demo (3:15 - 3:45pm)

@ Alignment of Scalar Functions
@ Shapes of Planar, Closed Curves

@ Shape Analysis of Complex Objects (3:45 - 4:00pm)

@ Shape Analysis of Surfaces
o Shape Analysis of Tree-like Structures



Matlab Demo — 1

Phase amplitude separation of functional data



Matlab Demo — 2

Shape analysis of planar curves



@ Introduction, Motivation, and Background (1:00 - 1:30pm)

@ Introduction and Motivational Examples
@ Background: Shape Analysis
e Background: Functional Data Analysis Using .2 Metric

@ Elastic Functional Data Analysis (1:30 - 2:15pm)
o Registration Problem
o Fisher-Rao Metric and Square-Root Velocity Function
Coffee Break (15 ming) —88

@ Elastic Shape Analysis of Planar Curves (2:30 - 3:15pm)

e Registration Problem
e Elastic Metric and Square-Root Velocity Function
o Shape Clustering, Summary, and Modeling

© Matlab Code & Demo (3:15 - 3:45pm)

o Alignment of Scalar Functions
e Shapes of Planar, Closed Curves

@ Shape Analysis of Complex Objects (3:45 - 4:00pm)

@ Shape Analysis of Surfaces
o Shape Analysis of Tree-like Structures

FUNCTIONAL AND SHAPE DATA ANALYSIS



Mathematical Representations of Surfaces

@ Interested in objects of the type: f : S — R® that are immersions. We
can define a square-root representation similar to curves as follows.

af
v

o The gradient Vf: §% — R¥*?,is V(s) = [FL 2L].
For s = (u, v), the normal vector field is fi(s) = 2f x 2L, and the

induced metric (or the first fundamental form) on S? is:
9(s) = VF(s) Vf(s) e R?*?

We have the area element a(s) = |n(s)| = y/det(g(s) and unit normal
n(s) = n(s)/a(s).



Shape Registration and Geodesics

Without Reg. W

\

With Reg.
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Geodesics are computed in the SRNF space and then each point along the
path is inverted back numerically.




Shape Summaries

Sample mean:

pq = argmin ) _ ds([q], [a1])

ldles "1

Then, g — pr (SRNF Inversion).

FUNCTIONAL AND SHAPE DATA ANALYSIS
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Shape PCA and Modeling

Use the tangent bundle of shape spaces to perform PCA and wrap it back on
the shape space to study principal directions.

(a) Mean shape and its first

three modes of variation.

FUNCTIONAL AND SHAPE DATA ANALYSIS
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phology

@ Neurons, axons

@ Complex branching structures, different numbers and shapes of
branches.

@ Interested in neuron morphology for various medical reasons —
cognition, genomic associations, diseases.



Mathematical Representations

@ Complex structure — divide and conquer

@ Components — main brain and side branches (ignore tertiary structures).
A collection of curves in R3. Also keep the locations where side branches
meet the main branch. B, {8k, k =1,...,n}, {sx,k =1,2,...,n}.

@ SRVFs: qu, {gx,k=1,...,n},{sx, k=1,2,...,n}.



Tree Shape Metric

@ Distance between two trees with n registered branches.

2 2 n 2 n 2
o (0. et 3 e (o)
k=1 k=
(1)

@ Trivial side branch: A side branch of length zero.

@ Define a notion of branch equivalence — two trees are branch
equivalent if they have the same shape, i.e. they only differ in null
branches.

L



Shape Geodesics

@ Compare trees with ny and n, side branches: Add null branches to make
the total number ny 4+ n. in each. Match the branches using the
assignment problem — Hungarian algorithm. Also need global rotation for
alignment.

@ Geodesic Example:
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@ Sample mean, PCA, etc.
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Geodesics Examples
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Shape Classification

Experimental Setting:

@ Wu Dataset: 41 apical dendrites taken from the CA1 region of the
hippocampus in mice. Two classes: wild type and a gene protocadherin
knocked out.

@ Chen Dataset: 99 apical dendrites of pyramidal neurons taken both
from the CA1 regios of the hippocampus and layer V of the sensorimotor
cortex in rats. Two regions and Three classes (BDL, BDHLHD, and
control group).

@ Feature method uses a 21 feature vector.

Summary comparison of classification accuracy with Gaussian RBF SVM in Euclidean feature
space, topology-only TED metric space, and the proposed metric space of tree shapes

Wu Chen Chen Chen

(6-class) (region) (exp. grp.)
Feature Vector 0.707 0.566 1.000 0.505
TED (topology only) 0.756 0.384 0.859 0.455

Proposed Metric 0.805 0.546 1.000 0.535




Real Tree Shapes: Geodesics

Tree shapes: stems, branches, tertiary branches = different topologies and
geometries.

B EE L 2 5 2 2

Geodesic of Example-e




@ This field represents a confluence of ideas from geometry, functional
analysis, and statistics.

@ Reason: On one hand, objects are more naturally represented in
continuum, i.e. by functions. On the other hand, functions have shapes
that are often more important than functions themselves.

@ The simplest example is shapes of scalar functions on a unit interval.
However, as the data grows, the complexity of the objects also grows.

@ Next, we have shapes of curves in R?, R®, or R". Then we have tree-like
structures or graph-like structures. Then we have 3D objects, and so
on...

@ In the future, there is a potential for combining topological tools with
geometry to expand this framework.
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