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Selecting features is hard
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Sadeghi-Tehran et al. (2017). Automated Method to Determine Two Critical Growth

Stages of Wheat: Heading and Flowering. Front. in Plant Sci., 8(February), 1-14.



Deep learning is representation learning
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Sadeghi-Tehran et al. (2017). Automated Method to Determine Two Critical Growth
Stages of Wheat: Heading and Flowering. Front. in Plant Sci., 8(February), 1-14.



Imaging & Deep Learning for Agriculture

Seed scale Plant scale Field scale Global scale
seed phenotyping, identifying plants, crop health, yield prediction,
provenance estimating traits precision management price forecasting
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automated seed early disease crop damage, weather prediction,
inspection detection crop insurance logistics



Learned Features across Scales

Spatial Spectral Temporal
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(Mishra et al. 2017)




Image-based Phenotyping

Semantic Instance
/ Regression Regression Detection Segmentation Segmentation

Classification Local

Deep Plant Phenomics
https://github.com/p2irc/DeepPlantPhenomics



Challenge #1: Large diverse datasets




New open datasets
Global Wheat Head Dataset
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https://global-wheat.com



Global Wheat Head Detection Dataset

USask 1 ; RRes 1

David, E., Madec, S., Sadeghi-Tehran, P, Aasen, H., Zheng, B., Liu, S., Pozniak, C., Stavness, I., Guo, W.
(2020). Global Wheat Head Detection (GWHD) dataset. Plant Phenomics, in press.



Global Wheat Head Detection Dataset
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kaggle Competition for CVPPP 2020

Global Wheat Detection $15,000

Can you help identify wheat heads using image analysis? Prize Monay

.
Il University of Saskaichewan - 1,790 teams - 19 days 10 QO (12 days 10 g0 unti merger geadine)

Data NoOWbooks Dscusson LeaderDoard Rukes Host

Evaluaton




Global Wheat Data: Future Contributions

https://global-wheat.com
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PlotVision
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Challenge ;

t2: Image annotation

Label for | Dot on each
whole image object

Low cost

Box around Draw outlines Draw outlines
each object for each object




Latent Space Phenotyping

Phenotype-to-genotyping mapping for stress resistance

https://github.com/p2irc/LSPlab

Ubbens, J., Cieslak, M., Prusinkiewicz, P, Parkin, I., Ebersbach, J., & Stavness, I. (2020). Latent space
phenotyping: automatic image-based phenotyping for treatment studies. Plant Phenomics, 2020, 5801869



Image-based Phenotyping

Images <

Numeric
Phenotype

Tedious annotations!

GWAS




Latent Space Phenotyping

Images

GWAS




Original Image
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Original Image

| atent variable models

Encoder

D Output:
: ﬁ Treatment Label

Latent Phenotype for
Representa’uon Stress Response




Datasets: Setaria RIL

Feldman et al. (2018). Components of Water Use Efficiency Have Unique
Genetic Signatures in the Model C , Grass Setaria. Plant Phys., 178(2), 699-715.




Datasets: Canola NAM




Datasets: Synthetic Arabidopsis

* Genomic data from the A. thaliana polymorphism database
* Images generated from a 3D L-system model




Embedding Process

Feature Extractor  Classifier

1 | Treatment
( \ \ Label
Conv. D Long
Neural B o Short-Term
Network | £ 2 Memory | predicted
CNN) | 8 (LSTM) Trostment
- W Classification

Image Sequences
for Control Samples

1 Loss




Decoding Process

Decoder

Learned Embedding for
Treated / Control Images



Example decoded images




Measuring Response-to-Ireatment

Decoded Image Sequence
along Treated Path

nr
i
Decoder
final Measure Difference phenotype for
Paths in Embedding for Between Treated  Rosponse fo

Treated / Control Samples Decoded Image Sequence and ControlPath — Traaiment



Results: Synthetic Arabidopsis
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Results: Setaria
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Trait Value

Results: Canola
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Limitation: Explainability

KL




AutoCount: Unsupervised Organ Counting
To appear: www.plant-phenotyping.org/CVPPP2020

Gradient-Free
Detection
Optimization

Gradient-Free
Watershed
Optimization

NNO

Ubbens, J., Ayalew, T., Shirtliffe, S., Josuttes, A., Pozniak, C. & Stavness, I. (2020). AutoCount: Unsupervised
Segmentation and Counting of Organs in Field Images. ECCV Workshops, 2020, to appear.



AutoCount: Unsupervised Organ Counting
To appear: www.plant-phenotyping.org/CVPPP2020
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Ubbens, J., Ayalew, T., Shirtliffe, S., Josuttes, A., Pozniak, C. & Stavness, I. (2020). AutoCount: Unsupervised
Segmentation and Counting of Organs in Field Images. ECCV Workshops, 2020, to appear.



AutoCount: Unsupervised Organ Counting

To appear: www.pl

Ubbens, J., Ayalew, T., Shirtliffe, S., Josuttes, A., Pozniak, C. & Stavness, I. (2020). AutoCount: Unsupervised
Segmentation and Counting of Organs in Field Images. ECCV Workshops, 2020, to appear.




Domain Adaptation for Organ Counting
To appear: www.plant-phenotyping.org/CVPPP2020

Source: Target:
Indoor labeled dataset Qutdoor Unlabeled dataset
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Ubbens, J., Ayalew, T., & Stavness, |. (2020). Unsupervised Domain Adaptation
For Plant Organ Counting. ECCV Workshops, 2020, to appear.



Domain Adaptation for Organ Counting
To appear: www.plant-phenotyping.org/CVPPP2020

(a) Input b)) GT (¢) Baseline 'd) Ours
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Ubbens J., Ayalew, T., & Stavness, I. (2020). Unsupervised Domain Adaptation
For Plant Organ Counting. ECCV Workshops, 2020, to appear.




Domain Adaptation for Organ Counting

To appear: www.plant—phenotyping.org/CVPPPZOZO
(a) Input ) Baseline (d) Ours
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Ubbens, J., Ayalew, T., & Stavness, |. (2020). Unsupervised Domain Adaptation
For Plant Organ Counting. ECCV Workshops, 2020, to appear.
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