Pitfalls of Big Data

PROFESSOR VICKI BIER
INDUSTRIAL AND SYSTEMS ENGINEERING
UNIVERSITY OF WISCONSIN-MADISON
Despite the major advantages of big data,

THE USUAL CAUTIONS STILL APPLY!!!

Especially in safety-critical areas
Big Data Can End Up Being …SMALL DATA!

Example: Searching a large data base for the few cases with a particular combination of diseases

“There are a lot of small data problems that occur in big data. They don’t disappear… They get worse”

--Spiegelhalter (2014)

- Decisions made on the basis of such data could end up being based on only a handful of cases:
 - And could then eliminate the requisite variety to learn from experience in future.
TIME SERIES

• Also any two variables with monotonic trends will be correlated
• E.g., income, education, technology
NEED FOR VALIDATION

- E.g., experiments (try multiple approaches on a limited number of cases to confirm)
- Splitting data into training sets and test sets
FALSE POSITIVES

Another pitfall of big data! Ioannides (2005): “Most Published Research Findings Are False”!

- Example: Rate of automobile accidents
 - Higher with consumption of beer or hard liquor
 - Lower with consumption of wine!
 - Lower in 9th month of pregnancy (might make sense)
 - Also in 3rd or 6th month! (almost certainly a false positive)
Another problem with false positives:

- If there are only a few actual bad guys in the data base
- Many of the bad guys identified will be false positives!

- Note that being “identified” can get you on the “no-fly list”:
 - Or worse!
MORE PRIVACY ISSUES

“Anonymous” data may not really be anonymous!

- “A mere 10 URLs can be enough to uniquely identify someone”
- “Just think, for instance, of how few people there are at your company, with your bank, your hobby, your preferred newspaper and your mobile phone provider"
62% chance of being identified based on birth date, gender, and zip code:

Rises to 99% based on my being a state government employee!

https://cpg.doc.ic.ac.uk/individual-risk/
SOLUTIONS

Ways to characterize data
(Cox, 2013)

- Adjustments for multiple comparisons.
- Granger causality.
- Conditional independence tests.