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What is Reinforcement Learning?



What is Machine Learning?



Three Main Classes of ML

1. Unsupervised Learning
2. Supervised Learning
3. Reinforcement Learning



Unsupervised Learning

* Wikipedia: “Unsupervised machine learning is the machine learning
task of inferring a function that describes the structure of "unlabeled"
data (i.e. data that has not been classified or categorized)”

* Examples: Clustering, Dimensionality Reduction, Matrix Completion,
Image Inpainting, Collaborative Filtering



Unsupervised Learning: Clustering

Original unclustered data

Figure from [1]
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Unsupervised Learning

* Wikipedia: “Unsupervised machine learning is the machine learning
task of inferring a function that describes the structure of "unlabeled"
data (i.e. data that has not been classified or categorized)”

* Examples: Clustering, Dimensionality Reduction, Matrix Completion,
Image Inpainting, Collaborative Filtering

* Descriptive analytics refers to summarizing data in a way to make it
more interpretable



Supervised Learning

* Wikipedia: “Supervised learning is the machine learning task of
learning a function that maps an input to an output based on
example input-output pairs”



Supervised Learning

* Wikipedia: “Supervised learning is the machine learning task of
learning a function that maps an input to an output based on
example input-output pairs”

* Examples: Image classification, Handwriting recognition, Email
spam filtering, Face recognition, Speech recognition



Supervised Learning: Image Classification
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Supervised Learning: Face Recognition

Figure from [1]



Supervised Learning
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Supervised Learning

* Wikipedia: “Supervised learning is the machine learning task of
learning a function that maps an input to an output based on
example input-output pairs”

* Examples: Image classification, Handwriting recognition, Email
spam filtering, Face recognition, Speech recognition

* Predictive analytics aims to estimate outcomes from current data



Reinforcement Learning

Wikipedia: “Reinforcement learning (RL)
is an area of machine learning
concerned with how software agents
ought to take actions in an environment
so as to maximize some notion of
cumulative reward. The problem, due to
its generality, is studied in many other
disciplines, such as game theory, control
theory, operations research,
information theory, optimization, multi-
agent systems, swarm intelligence,
statistics, ... ”
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Wikipedia: “Reinforcement learning (RL)
is an area of machine learning
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RL: Agent and Environment

action

* At each time step t the agent: observation

* Executes an action A, o,

* Receives reward R,
* Receives observation O,

* The environment:
* Receives an action A,
* Emits reward R,
* Emits reward O;,,;

e Timet «t+1
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RL: Agent and Environment

* At each time step t the agent: abservatin /7~ [ ) action
* Executes an action A, AL SH
* Receives reward R,
* Receives observation O,,

* The environment:
* Receives an action A,
* Emits reward R,
* Emits reward O,

e Timet «t+1

Rules of the game are unknown!



Why RL is Different?



Why RL is Different?

RL: Learning to make a optimal sequence of decisions under uncertainty



Why RL is Different?

RL: Learning to make a optimal sequence of decisions under uncertainty

* No supervisor, only a reward signal decisions (actions)
* Feedback is delayed, not instantaneous
* Sequential decision making

e Actions have long-term consequences
* Non i.i.d. data

e Agent’s actions affect the subsequent data it v

receijves consequences

observations
rewards




Helicopter Maneuvers

P. Abbeel, A. Coates, M. Quigley, A. Ng. "An application of reinforcement learning to
aerobatic helicopter flight”, NeurlPS, 2007.



Robotic Hand Solving Rubik’s Cube

Akkayaet al. "Solving Rubik's Cube with a Robot Hand”, 2019.



Playing Atari

V. Mnih et al. “Playing Atari with Deep Reinforcement Learning”, NeurlIPS, 2013.



Robotic Arms

S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, D. Quillen, “Learning Hand-Eye
Coordination for Robotic Grasping with Deep Learning and Large-Scale Data
Collection”, International Journal of Robotics Research, 2017



Learning to Walk

S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, D. Quillen, “Learning to Walk via Deep
Reinforcement Learning”, Robotics: Science and Systems (RSS), 2019



Playing Go

* D. Silver, et al. “Mastering the game of Go with deep neural networks and tree
search”, Nature (2016)



Reinforcement Learning

Wikipedia: “Reinforcement learning (RL)
is an area of machine learning
concerned with how software agents
ought to take actions in an environment
so as to maximize some notion of
cumulative reward. The problem, due to
its generality, is studied in many other
disciplines, such as game theory, control
theory, operations research,
information theory, optimization, multi-
agent systems, swarm intelligence,
statistics, ... ”

Prescriptive analytics guides actions
to take in order to guarantee outcomes



RL: Exploration vs Exploitation

* Unlike supervised and unsupervised learning, data is not given before

* Agent learns about the environment by trying things out
* RLin some way a trial-and-error learning

Agent should learn a good control policy:
* From its experiences of the environment but without loosing too much reward along the way

Online decision-making involves a fundamental choice:

Exploitation: Make the best decision given current information

Exploration: Gather more information to make the best decisions

The optimal long-term strategy may involve sub-optimal short-term decisions



RL: Exploration vs Exploitation

* Unlike supervised and unsupervised learning, data is not given before

* Agent learns about the environment by trying things out
* RLin some way a trial-and-error learning

Agent should learn a good control policy:
* From its experiences of the environment but without loosing too much reward along the way

Online decision-making involves a fundamental choice:

Exploitation: Make the best decision given current information

Exploration: Gather more information to make the best decisions

The optimal long-term strategy may involve sub-optimal short-term decisions

How to balance exploration and exploitation?



Exploration vs Exploitation: Examples

* Restaurant Selection
* Exploitation: Go to your favorite restaurant
* Exploration: Try a new restaurant

* Online advertisements
* Exploitation: Show the most successful ad
* Exploration: Show a different ad

* Oil Drilling
* Exploitation: Drill at best known location
* Exploration: Drill at new location

* Games
* Exploitation: Play the move you believe is best
* Exploration: Play an experimental move



Reinforcement Learning Problem

* Agent doesn’t know how the environment works
* Agent has to interact with the environment to learn

* Agent gets two feedback:
* |t can observe the state of the environment at each step
* It gets a reward at each step

* Agent has to learn a control policy
* Algorithm to select action sequentially

* Agent’s objective is to maximize the expected cumulative reward



Markov Decision Processes
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MDP Example: Grid World

e Agent lives in a grid world
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e Agent lives in a grid world

* This world is non-deterministic
* Inherent uncertainties in the environment
* Actions don’t go always go as planned

Figure from [1]
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MDP Example: Grid World

e Agent lives in a grid world

* This world is non-deterministic
* Inherent uncertainties in the environment
* Actions don’t go always go as planned

* Agent receives rewards each time step
* Reward will depend on the current state/action

Figure from [1]
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* A transition function: P(x’|x, a)
* Probability moving from x to x’
if action a is taken

* Also called model or dynamics
of the system
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Markov Decision Processes (MDP)

e A set of states: x € X
e A set of actions: a € A

* A transition function: P(x’|x, a)

* Probability moving from x to x’
if action a is taken

* Also called model or dynamics
of the system

* Reward function: R(x, a) or R(x, a, x’)

A start state and/or a terminal state Figure from [1]

* A very useful model for approximating real-world systems!
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Markov Property

* “Markov” generally means that given the present, the future and the
past are independent
P( X1 = x| Xe = x4, Ay = ayg, ..., Xog = 20, Ag = ag) = P(Xp11 = 2411 | Xy = 24, A = ay)
= P(x¢y1|xe, ar)
* If you know the current state and current action, history is irrelevant
to predict the future states

* |s the world Markov?
* A very useful modeling assumption for a large class of real world problems!

* Why is it useful?
* Tremendous reduction in memory/computation
* History explodes with time. But no need to store the entire history!



MDP Examples

Inverted Pendulum

Lunar Lander Cart Pole

Videos are from OpenAl Gym




MDP Examples

Robotic Arm 1 Robotic Arm 2
Videos are from OpenAl Gym



Markov Decision Processes

Definition. A Markov Decision Process (MDP) is a tuple (X, A, P, R), where,

e X is a finite set of states
e A is a finite set of actions
e P is a transition probability matrix, P(x'|x,a) = P(x;11 = 2|2y = x,a: = a)

e R is areward function, R: X x A —- R



Control Policy

 Which action to take in each state?



Control Policy

 Which action to take in each state?

* A control policy specifies the action to take given the current state
* Can be deterministic or stochastic

m(alx) = P(a; = a|lry = x)

* Conditional probability of taking action a given the state x



Control Policy

 Which action to take in each state?

* A control policy specifies the action to take given the current state
* Can be deterministic or stochastic

m(alx) = P(a; = a|lry = x)

* Conditional probability of taking action a given the state x

* A policy fully defines the behavior of an agent



Value of a Policy



Value of a Policy

Always Go Right Always Go Forward

Figure from [1]



Value of a Policy

* Value of a policy evaluated at state x is the expected cumulative
(discounted) rewards obtained by taking action according that policy,
starting from x

Vi(z) =E [R(:co, ao) + YR(x1,a1) + Y’ R(xa,a2) + ... + V' R(x, a0) + ... |xo =z, a8 ~ 7r(|xt)}

Always Go Right Always Go Forward

Figure from [1]



Value of a Policy

* Value of a policy evaluated at state x is the expected cumulative
(discounted) rewards obtained by taking action according that policy,
starting from x
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MDP Questions

1. How to evaluate a policy?

Given a policy m, how to compute the value function V. of that policy?

Va(z) =E [R(x()aa()) + R(x1, a1) + Y R(x2, a2) + ... + 7' R(zy,a0) + ... |w0 = 2,01 ~ 7T(|$t)]
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MDP Questions

1. How to evaluate a policy?

Given a policy m, how to compute the value function V. of that policy?

Vi(z) =E [R(xo,ao) +yR(z1,a1) + V*R(z2,a2) + ... + V' R(zp,a0) + ... |wo =z, a1 ~ 7T('|$t)]

2. How to compute the optimal value function V*7

Vi(x) = max Vr(x)

3. How to compute the optimal policy 7*7

7" (z) = argmax V;(x)



Bellman Optimality Equation

Let V* be the optimal value function. Then V* satisfies the equation
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Bellman Optimality Equation

Let V* be the optimal value function. Then V* satisfies the equation

V*(x) = max | R(z,a +72P(y$,a)v*(y))

acA
yeX

* Intuition: Suppose V" is the optimal value function

M V'y1)  Value at state x by taking action\a is
At state x

Take action a ° - (R(x, a) + Z P(y|z, a)V*(y)>

\ yeX
P(y2|x,a)

Vi(y2) But we want to take the best action




Bellman Operator and Value Iteration
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Bellman Operator and Value Iteration

Define the mapping 7' : R™"* — R™* as

Bellman
(TV)(z) = max (R(z,a) +~ Y P(ylz,a)V(y)) Operator
yeX

Define the iteration, Vi, 1 =TV}

This will give a sequence Vp, Vi, Vs, . .. Value Iteration

* Will the VI converge?

* Will it converge to V'?

* IsV unique?

* How fast does it converge?
e Howtoget 7" fromV"?
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Fixed Point of the Bellman Operator

Definition 1 (Fixed Point). Let f : X — X. x* is a fized point of f, if f(z*) = x*
V*is a fixed point of the Bellman Operator T V¥=TV*

(TV)(z) = ax (R(z,a) + Z P(y|x,a)V(y)) Bellman Operator
yeX

Viz) = max (R(z,a) +~ Z P(y|r,a)V*(y))  Bellman Optimality Equation
yeX

* Computing optimal value function is equivalent to computing the
fixed point of the Bellman Operator
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Contraction Mapping

Proposition 2 (Contraction Mapping). T is a contraction mapping.
For any V1,V2 € R™, [TV = TVa||, <~ [[Vi = V2«




Convergence of Value Iteration
HVk+1 — V*H < HTVk — TV*H < v HVk — V*H One step contraction

HVk+1 — V*H < 7k+1 H% — V*H (k+1) step contraction



Contraction, Fixed Point, Convergence
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* Optimal value function V~ satisfies the Bellman optimality equation



Summary: Computing V°
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* \V*is the unique fixed point of the Bellman operator V* = TV*



Summary: Computing V°

* Optimal value function V~ satisfies the Bellman optimality equation
* \/*is the unique fixed point of the Bellman operator V* =TV*

* Value iteration, V;.; =TV, ,convergestoV’
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State-Action Value Function (Q-function)

* Value of a policy:

Ve(z) = Ex[R(zo, 7(z0)) + YR(z1, 7(21)) + v R(22, m(22)) + v R(23, m(w3)) + ... | 39 = 2]

* Expected cumulative discounted reward obtained by
starting from state x and following the policy



State-Action Value Function (Q-function)

* Value of a policy:

Vi(2) = Ex[R(zo, m(20)) +YR(w1, m(21)) + v*R(x2, w(22)) + 7 Rlwz, m(23)) + ... | 20 = 2]

* Expected cumulative discounted reward obtained by
starting from state x and following the policy

* Q-Value of a policy:
Qr(z,a) = Ex[R(x0,a0)) + YR(z1, 7(x1)) + v2R(x2, w(22)) + Y R(x3, m(x3)) + ... | ©o = x, ap = a]

* Expected cumulative discounted reward obtained by
starting from state x, taking action a, and then following the policy
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Optimal Q-Function

Q-function for a given policy:  Qx(z,a) = R(z,a) +v > P(y|lz,a)Vx(y)
yeX

Optimal Q-function:  Q*(z,a) = R(z,a) +7 ) _ P(ylz,a)V*(y)

yeX

How do we get V¥ from Q" ? V*(z) = max Q*(x,a)

Recall optimal Value function: v*(z) = max (R(z,a) +7 > P(ylz, a)V*(y))
yeX

Bellman Equation for Q":

Q*(v,a) = R(x,a) +7 ) P(ylv,a) maxQ*(y,b)



Value, Q-value and Policy

D =
P

PP

VitoQ™:

Q" (x,a) = R(x,a) + v E[V*(y)|z,a

Q toV":

Vi(x) = max Q*(z,a



Value, Q-value and Policy

Vito Q" :
Q*(x,a) = R(x,a) +v E[V*(y)|z,q]

Q'toV":

Computing optimal policy: 7*(z) = argmax Q*(z, a)
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Policy Iteration

Iteration over policy space to find the optimal policy

1. Start with an arbitrary policy g

2. At each iteration k
(a) Evaluate policy 7 to get Vi, (solve the equation Vi, =T, Vi, )
(b) Update the policy to get mg11

Thp1(2) = argmax(R(z, a) + ), P(ylz,a)Vr, ()
yeX

(select w41 s.t. Ty, Vi, = TV5,)

k+1

Policy Iteration converges in finite number of steps!

Greedy update
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(a) Evaluate policy 7 to get Vi, (solve the equation Vi, = Tx, Vr, )
(b) Update the policy to get g1

Ti1(v) = argmax(R(z,a) + v ), P(ylz,a)V, (y))
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Policy Iteration

2. At each iteration k

(a) Evaluate policy 7 to get Vi, (solve the equation Vi, = Tx, Vr, )
(b) Update the policy to get g1

Ti1(v) = argmax(R(z,a) + v ), P(ylz,a)V, (y))
yexX

(select w1 s.t. Ty, Vi, = TV;,)

Theorem 3. In Policy Iteration, there exists a finite number ko such that
Vi, = V7™ for all k > k.

The sequence {Vy,, Vi, Vry, ...} is a monotonically increasing sequence bounded above by V*,
and the sequence must therefore converge. As there are finitely many deterministic policies, this
convergence must happen in finite time.

Bad news: It can take up to M, ® steps Good news: Much faster in practice!



Dynamic Programming

1. How to evaluate a policy?

Given a policy m, Vi1 = Tx V. Then Vi, — Vi

2. How to compute the optimal value function V*7
Value Iteration: Vi =TV, Then Vi, — V*

3. How to compute the optimal policy 7*7

Value Iteration, Policy Iteration



Q Learning
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Dynamic Programming

1. How to evaluate a policy?

Given a policy 7, Vi1 = Ty, Vk. Then Vi, — V;

2. How to compute the optimal value function V*7
Value Iteration: Vipy 1 =TVy. Then Vi, — V*

3. How to compute the optimal policy 7*7

Value Iteration, Policy Iteration

Requires the system model P
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Reinforcement Learning

o7
1. How to evaluate a policy™ When the system model

2. How to compute the optimal value function V*? is unknown

3. How to compute the optimal policy 7*7

* Need to learn from experiences and observations
* Observations: Sequences of states, actions, and rewards



Bellman Operator for Q-Function

e Recall Bellman Operator for V:
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Bellman Operator for Q-Function

e Recall Bellman Operator for V:

(TV)(x) = max (R(z,a)+7 Y _ Plylz,a)V(y))

acA
yeXx

* Bellman Operator for Q

(FQ)(z,a) = R(z,a) +7 Y  P(y|z,a) maxQ(y,b)

beA
yeX

Proposition 1. (i) F' is a monotone mapping. (ii) F' is a contraction mapping



Why Q-function?

e Q to action is simple: 7*(z) = arg r;leajcQ*(fE,a)
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Why Q-function?

e Obtaining unbiased samples of (FQ) is easier than
obtaining unbiased samples of (TV)

(FQ)(x,a) = R(z,a) +7 ) _ P(ylz, a) maxQ(y,b)
yexX

— R(CL’,G,) + E[Igleaj(Q(wt-l-h b)lwt =&, 0t = a’]

(TV)(z) = max (R(z,a )+ Plylz,a)V (y))
yeX

= max (R(z,a) + v E[V(x441)|2r = x,a; = al)
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Q-Learning Algorithm

* Learning the optimal value function directly
e Action can be taken with respect to a behavioral policy

Algorithm  (Q-Learning

1: Initialization: A behavioral policy u, t = 0, initial state s; = sg
2: foreacht=0,1,2,... do

3:  Observe the current state s;

4:  Take action a; according to the policy u: a;s ~ p(st)

5. Observe the reward R; and the next state sy
6

Update Q:
Q(st,ar) = Q(s¢,a¢) + o (Ry + le;chQ(StH,b) — Q(s¢,at))

7. end for




Q-Learning Algorithm

Theorem. If: (i) all state-action pairs are visited infinitely often, and
(ii) step size satisfies Robbins-Munro condition, ), a; = 00, ) _, a% < 00,
then Q-Learning will converge, i.e., Q; — (Q* almost surely.
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Q-Learning Algorithm

Theorem. If: (i) all state-action pairs are visited infinitely often, and
(ii) step size satisfies Robbins-Munro condition, Y, oy = 00, Y., af < 00,
then Q-Learning will converge, i.e., Q; — (Q* almost surely.

* It is a very surprising result!
* Convergence to the optimal Q-value even if you are acting sub-optimally
(according to a behavioral policy)
* This is called off-policy learning

 Caveats:

* Need to explore enough (make sure that behavioral policy will visit
all state-action pairs infinitely often)

* Need to use the correct learning rate
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all state-action pairs infinitely often)

e Standard behavioral policy: e-greedy policy
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Q-Learning Algorithm: Behavioral Policy

* Q-Learning is an off-policy learning algorithm

* However, need to explore enough (make sure that behavioral policy will visit
all state-action pairs infinitely often)

e Standard behavioral policy: e-greedy policy

a* = arg max, Qx(s,a) with prob. 1 — € (|A| — 1)

Tr+1(8) = e-greedy(Qy) = { a with prob e

* Under some conditions on the transition probability matrix, all
state-action pairs will be visited infinitely often (in the limit)

* |s e-greedy (Q) is the optimal online control policy?

* What do we mean by optimal online control policy?
Exploration vs Exploitation, Sample Complexity, Safety, Stability



Deep Q Learning
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Problems with Large States Space

* RL should be useful to solve large problems:
 Backgammon: 102°
« Go: 10'™ (how many atoms are in the universe?)
* Helicopter: continuous state

e Recall Q-learning assumptions for convergence

* Will we ever solve such a large scale systems?



Tabular Form to Function Approximation

* We have represented V, Q, m in tabular form
* One element for each state / (state, action)

* Function Approximation:

Q(s,a) = Q(s, a;w)

W ey (S, A, W)

Generalize from seen states to unseen states



What Do We Need

e A good class of function approximators
* Linear combinations of features
* Decision trees

Tile coding

Fourier basis

Reproducing Kernel Hilbert Spaces

Neural networks

* A good training algorithm that is suitable for
non-iid and non-stationary data



Q-Learning with FA

* Q-Learning with FA:
Wty — Wt + % (Rt + /YmbaXQ(St—i-lv b7 w) o Q(St7 i , ’UJ)) VQ(Sta at, U})
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* Q-Learning with FA:

W1 = Wy + oy (Ry + meaX Q(S¢+1,0,w) — Q(S¢, ag, w)) VQ(Ss¢, ar, w)

* Does it converge?
* No convergence proofs even with linear function approximation!



Q-Learning with FA

* Q-Learning with FA:
Wiy = wy + oy (R + ymax Q(St+1,b,w) — Q(s¢, a, w)) VQ(s¢, ap, w)

* Does it converge?
* No convergence proofs even with linear function approximation!

Function approximation A powerful, scalable way of generalizing from a state space
much larger than the memory and computational resources (e.g., linear function
approximation or ANNs).

”Dead|y Triad” according to Bootstrapping Update target;, that include existing estimates (as in dynamic pro-
gramming or TD methods) rather than relying exclusively on actual rewards and
Sutton and Barto (2018) complete returns (as in MC methods).

Off-policy training Training on a distribution of transitions other than that produced
by the target policy. Sweeping through the state space and updating all states
uniformly, as in dynamic programming, does not respect the target policy and is
an example of off-policy training.
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@ 1. Take some actions a; and get the data point e; = (s;, a;, R;, st)
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Correlation and Forgetting in Q-Learning

* Q-Learning:
@ 1. Take some actions a; and get the data point e; = (s;, a;, R;, 3;)

2. Update w = w+ a (R; + vy maxy, Q(s}, b,w) — Q(si, a;, w)) VQ(s;,ai,w)

e Data is used in sequentially, in the same way as they are observed
e Past data is discarded

* Correlation: of sequential data leads to (strongly) correlated updates
* This breaks the i.i.d. assumption of many popular SGD algorithms

* Rapid forgetting: of possibly rare experiences does not effectively use
the information (that would be useful later on)
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* Break the temporal correlations by mixing more
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* Using rare experience for more than just a single update
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. Initialization; Collect data set {e; = (s;, a;, R;,s})} using some policy.
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. For each data point e; in the sampled mini-batch, update
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Experience Relay

* Experience Replay:
* Break the temporal correlations by mixing more ® o
and less recent experience for the updates o © ¢ -

* Using rare experience for more than just a single update " o ‘/

. Initialization; Collect data set {e; = (s;, a;, R;,s})} using some policy.
Add it to the replay buffer B.

. At each time t, sample a random mini-batch of transitions {e} from B

. For each data point e; in the sampled mini-batch, update
w=w + « (R + ymaxp Q(s),, b, w) — Q(sk, ak, w)) VQ(sk, ak, w)

. Select an action a; according to e-greedy policy Necessary to do off-policy learning for ER!

. Add the new data point e; = (s¢, at, Ry, s3) to B. QL-is off-policy learning!
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e QL gradient update:
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* In QL, target itself depend on the parameter

e Target is moving as the parameter is updated
* This leads to oscillation and instability



Target Network

e QL gradient update:
w=w+Q (R’L + ’YmbaXQ(Sé, b, w) o Q(Sia Ag, w)) VQ(S’ia aq, w)

Target for gradient update

* In supervised learning, the target doesn’t depend on the parameter

* In QL, target itself depend on the parameter
e Target is moving as the parameter is updated
* This leads to oscillation and instability

 Solution:
* Use a separate target network
* Keep the target network unchanged for multiple updates



Target Network

e QL gradient update:
w=w+a (R; + Y max Q(si,b,w) — Q(s;,a:,w)) VQ(si,ai,w)

Target for gradient update
e QL with target network
w=w+a (R; + Y max Q(si,b,w" ) — Q(s;,a:,w)) VQ(s;,a;,w)

w— = w after every N steps



Deep Q-Networks (DQN) for Atari Games

* State: Screen Images (history) T
e 210 x 160 pixel, 128 color !

* Action: Joystick position
* 18 different positions

e Reward: Game score

* Objective: Win the game (a control policy that maximizes game score)

Mnih et al, Human-level control through deep reinforcement learning, Nature, 2015



QL with Function Approximation

* Function Approximation
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QL with Function Approximation

* Function Approximation
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QL with (Deep) NN

* Preprocessing
* Each original frame is 210 x 160 pixel images with a 128-colour palette
* Preprocessing: Reduce it to to 84 x 84 images
e History: Use the 4 most recent frame
* Statesize=84 x84 x4



QL with (Deep) NN

* Preprocessing
* Each original frame is 210 x 160 pixel images with a 128-colour palette
* Preprocessing: Reduce it to to 84 x 84 images
e History: Use the 4 most recent frame
* Statesize=84 x84 x4

 Architecture

* Input state (s), output Q(s, a), for each a
* Avoid forward pass for each possible action

 Three CNN and two fully connected layers with RelLU



QL with (Deep) NN

32 4x4 filters 256 hidden units Fully-connected linear

output layer
|6 8x8 filters ‘ |

4x84x84
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Stack of 4 previous . Fully-connected layer
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QL with (Deep) NN

32 4x4 filters 256 hidden units Fully-connected linear

output layer
|6 8x8 filters ‘ |

4x84x84

- ‘r

Stack of 4 previous . Fully-connected layer
frames Convolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear units

Same network architecture, hyperparameters for 49 games in Atari
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DQN Performance in Atari

e 100 x (DQN score - random play score)/

(human score - random play score)

* Score for each game is averaged over 30 sessions on
each game, each lasting up to 5 minutes and beginning
with a random initial game state

* The professional human tester played using the same
emulator (with the sound turned off). After 2 hours of
practice, the human played about 20 episodes of each
game for up to 5 minutes each and was not allowed to

take any break during this time
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DQN Training

* Training time: Training over 50 million frames
» 38 days of game experience in total

* Replay memory: Recent 1 million frames

* Minibatch size: 32

* Target network update frequency: After every 10k parameter updates
* Action repeat: Repeat the same action for k (= 4) frames

* SGD: RMSProp, with learning rate 0.00025

* Exploration: Epsilon-greedy policy
* Epsilon decreasing from 1.0 to 0.1 over first million frames and then fixed after

e Discount factor: 0.99



Effect of Replay and Target Network

Game V\_Iith replay, _With replay, Wit.hout replay, V\!ithout replay,
with target Q without target Q with target Q without target Q
Breakout 316.8 240.7 10.2 3.2
Enduro 1006.3 831.4 141.9 29.1
River Raid 7446.6 4102.8 2867.7 1453.0
Seaquest 2894 4 822.6 1003.0 275.8

Space Invaders 1088.9 826.3 373.2 302.0



DQN vs Linear

Game DQN Linear
Breakout 316.8 3.00
Enduro 1006.3 62.0
River Raid 7446.6 2346.9
Seaquest 2894 .4 656.9
Space Invaders 1088.9 301.3



DQN Algorithm

Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights 0
Initialize target action-value function Q with weights 0~ = 0
For episode = 1, M do
Initialize sequence s; ={x; } and preprocessed sequence ¢, =¢(s)
Fort=1T do
With probability ¢ select a random action q,
otherwise select a; = argmax_ Q(¢(s;),a; 0)
Execute action a, in emulator and observe reward r, and image x; ; ,
Set ;1 =5¢,a4,%+1 and preprocess ¢, , | =¢(s;41)
Store transition (qbt,at,rt,qbt +1) in D
Sample random minibatch of transitions ((/)',aj,rj,qﬁj N 1) from D

Code: https://sites.google.com/a/deepmind.com/dgn/

i if episode terminates at step j+ 1
Sety; = rj+7y maxy Q<¢j+ L 9—) otherwise

Perform a gradient descent step on (yj -0 ((]5 A 0) ) 2 with respect to the
network parameters 0
Every C steps reset Q= 0
End For
End For


https://sites.google.com/a/deepmind.com/dqn/

DQN Improvements
* Prioritized Experience Replay (Shaul et al, ICLR 2016)

* |n experience replay, experience transitions were uniformly
sampled from a replay memory

* However, some transitions may be more informative than others,
but may occur less frequently

* Uniform sampling may not select these experiences
e Can we prioritize the samples to accelerate the learning progress?

Intuition: Prioritize a sample based on how much can learn from a transition
(expected learning progress)



DQN Improvements
* Prioritized Experience Replay (Shaul et al, ICLR 2016)

* |n experience replay, experience transitions were uniformly
sampled from a replay memory

* However, some transitions may be more informative than others,
but may occur less frequently

* Uniform sampling may not select these experiences
e Can we prioritize the samples to accelerate the learning progress?

Intuition: Prioritize a sample based on how much can learn from a transition
(expected learning progress)

* Double DQON (Van Hasselt, Guez and Silver, AAAI 2026)

e Overcome the maximization bias in Q-learning



DQN Improvements
* Dueling DON (Wang et al, ICML 2016)

* Two streams to separately estimate (scalar) state-value
and the advantages for each action

* Noisy Networks for Exploration (Fortunato sselt, ICLR 2018)
* Exploration via adding noise to the neural network parameters

* Distributional Reinforcement Learning (Bellemare, ICML, 2018)
* Tracks the distribution of the Q-values instead of a point estimate

* Rainbow (Hessel et al, AAAI 2018)

* Combining all the DQN improvements



DQN Rainbow Performance
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Recent Improvements

“Agent57: Outperforming the human Atari benchmark”
https://deepmind.com/blog/article/Agent57-Outperforming-
the-human-Atari-benchmark

“We’ve developed Agent57, the first deep reinforcement
learning agent to obtain a score that is above the human
baseline on all 57 Atari 2600 games”

Intrinsic |
Motivation |

Curiosity |

Neural |
Episodic
Control

/ [/ Random |
| | Hashing | | Network
\ / Distillation

[ Memory | |
| Networks | |

| Transformers | CoEx | | Reachability |

Meta Adaptive
Gradients Bandits

Agent57

2020

Figure from the above link


https://deepmind.com/blog/article/Agent57-Outperforming-the-human-Atari-benchmark
https://deepmind.com/blog/article/Agent57-Outperforming-the-human-Atari-benchmark

Policy Gradient Algorithms



Reinforcement Learning

o7
1. How to evaluate a policy™ When the system model

2. How to compute the optimal value function V*? is unknown

3. How to compute the optimal policy 7*7

* Q Learning: Learn optimal value (Q-value) function
* Compute the policy from the learned Q-function

* Can we learn the policy directly?



Reinforcement Learning

o7
1. How to evaluate a policy™ When the system model

2. How to compute the optimal value function V*? is unknown

3. How to compute the optimal policy 7*7

* Q Learning: Learn optimal value (Q-value) function
* Compute the policy from the learned Q-function

* Can we learn the policy directly?

Policy Gradient Algorithms



Parametric Policy

* Consider a (stochastic) policy my(s,a)

) 7 (S,a1)
S-H—b()
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Parametric Policy

* Objective: Find the optimal policy 7" that maximizes V;
* Consider a (stochastic) policy my(s,a)

* Define J(0) =V,

* Goal: Find 6* = arg max J(0)

* Parametric policy examples:
e(6(5,0)T0)
Zb e(qb(s,b)TQ)

» Softmax policy: my(s,a) =

* Gaussian policy (for continuous action space): a ~ N(p(s)'0,0%)



Policy Gradient

* Objective: Find the optimal policy 7" that maximizes V;
* Consider a (stochastic) policy my(s,a)

* Define J(0) =V,

* Goal: Find 6* = arg max J(0)

* Policy gradient intuition: 0 =60 + aVJ(60)
* Will this converge?
* How do we estimate the gradient?



Why Policy Gradient?

* Advantages:
* In many problems, policy may be a simpler function to approximate

* Choice of policy parameterization is a good way of incorporating domain
knowledge about the system into the reinforcement learning algorithm
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Why Policy Gradient?

* Advantages:

* In many problems, policy may be a simpler function to approximate

* Choice of policy parameterization is a good way of incorporating domain
knowledge about the system into the reinforcement learning algorithm

 Effective in high-dimensional or continuous action spaces
* Can learn stochastic policies

* Disadvantages:

* Typically converge to a local rather than global optimum
e Evaluating a policy is typically inefficient and high variance



Why it is difficult?

* Value of a policy depends on both action selections (policy) and the
(stationary) distribution of the states resulting from the policy
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Why it is difficult?

* Value of a policy depends on both action selections (policy) and the
(stationary) distribution of the states resulting from the policy

* Given a state's, Vmy(s,-) can be computed

* But, the gradient of the (stationary) distribution of the states induced
by the policy cannot be computed easily
* Requires the knowledge of the transition probability
* Transition probability is unknown!

* How do we estimate the gradient?



Policy Gradient Theorem

Theorem 2. For infinite horizon discounted reward MDP,

VI(0) = 3 tiry(5) D @y (5,0) To(s,0)

where, piz,(s) =Y so0" P(st = s|so) . This can be represented as

VJ(@) — ]Esw,uwe(.) ]anw@(s,-) [Qm; (87 CL)V lOg 79(57 a)] — Eﬂ'g [Qﬂ'g (87 a)v log 7T9(87 CL)]



Policy Gradient Theorem

Theorem 2. For infinite horizon discounted reward MDP,

VI(0) =Dty () Y Qny(s,0) Vg(s, a)

where, piz,(s) =Y so0" P(st = s|so) . This can be represented as

VJ(H) — Esw,uwe(.) ]Ea~7r9(s,-) [Qﬂ'e (87 CL)V log 77—9(57 a)] — Eﬂ'g [Qﬂ'g (87 CL)V log 7T9(87 a)]

* Doesn't depend on the gradient of the (stationary) distribution
induced by the policy!

* Can be estimated from the sample trajectories
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Actor-Critic Algorithm
* We have VJ(0) =E|[Q,(s,a) Vlog(my(s,a))]

* Approximate Q function: Qu(s,a) = Qx(s,a) . Then,
VJ(0) = E[Qu(s,a) Vlog(mg(s,a))]

* Can we do the update

0 =0+ a Qu(s,a) Vog(m(s,a))

Yes, but what is the w
to be used?

* w should give a good approximation Qu(s,a)~ Qn,(s,a)
* Qr, iISunknown. So, need to learn w
* @ changing. So, w should also change



Actor-Critic Algorithm

VJ(O) = E[Qu(s,a) Vlog(my(s,a))]
* Critic: Updates Q-value parameter w
(Evaluate the policy corresponding to 6)

* Actor: Update policy parameter 9
(Improve the policy in the direction suggested by critic)
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Actor-Critic Algorithm

VJ(O) = E[Qu(s,a) Vlog(my(s,a))]
* Critic: Updates Q-value parameter w Can be done by TD
(Evaluate the policy corresponding to 6)

* Actor: Update policy parameter 9
(Improve the policy in the direction suggested by critic)

for each step do
0 =0+ ap Qu(s,a) Volog(me(s,a))
Sample the next state s’, sample the next action a’ ~ my(s', )
0 = R(s,a) +v Qu(s',a') — Qu(s,a)
w=w~+ oy 0 ViuQul(s,a)
end for



Advantage Actor-Critic
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Advantage Actor-Critic

* Reduce variance using baseline: VJ(8) = E[(Qx,(s,a) — b(s)) Vlog(mg(s,a))]

* Value function is a good baseline: v j9) = E [(Qr,(5,a) — Vi, (5)) Viog(ma(s,a))]

VJ(O)=E[A,, (s,a) Vog(my(s,a))] Advantage
Function



Advanced Policy Gradient Algorithms

* Natural Policy Gradient Algorithm (Kakade, NIPS, 2002)
* Trust Region Policy Optimization (TRPO) (Schulman et al, ICML, 2015)

* Proximal Policy Optimization (PPO) (Schulman et al, 2017)



Some Examples with PPO

N mujoco_py

Run speed = 0.250 x real time '[S]Iower, [Flaster l

Ren[d]er every frame On

Switch camera (#cams = 2) [Tab] (camera ID = 0)
[C]lontact forces

Referenc[e] frames

T[rlansparent

Display [M]ocap bodies

Stop [Space]
Advance simulation by one step [right arrow]
[H]ide Menu

Record [V]ideo (Off)

Caplt]ure frame

Start [i]pdb

Toggle geomgroup visibility

Step 50
timestep 0.01000

n_substeps 1

Trained by Rayan El Helo (ECE, TAMU)



Some Examples with PPO

M mujoco_py

Run speed 3l time '[S]IoweE[F]aster
Ren[d]er ev On
Switch camera (#cams = 2) [Tab] (camera ID = 0)
[Clontact forces On
Referenc[e] frames (oh}
T[r]lansparent Oft
Display [M]ocap bodies On
Start [Space]

ance simulation by one step [right arrow]
[H]ide Menu
Record [V]ideo (Off)
Caplt]ure frame
Start [i]pdb
Toggle geomgroup

20
s . timestep 0.01000
Solver iterations 2 n_substeps 1

| BPY

Trained by Rayan El Helo (ECE, TAMU)



Some Examples with PPO

N mujoco_py
Run speed = 0.500 x real time  [S]lower, [F]aster

Ren[d]er every frame On

Switch camera (#cams = 2) [Tab] (camera ID = 0)

[Clontact forces On
Referenc[e] frames On
T[r]lansparent Off
Display [M]ocap bodies On
Start [Space]
Advance simulation by one step [right arrow]
[H]ide Menu

Record [V]ideo (Off)

Cap[t]ure frame

Start [i]pdb

Toggle geomgroup visibility 0-4

timestep 0.00200
Solveniterationsy2 n.substeps 1

Trained by Rayan El Helo (ECE, TAMU)



Taxonomy of RL Algorithms

RL Algorithms
Model-Free RL Model-Based RL
Policy Optimization Q-Learning Learn the Model Given the Model
Policy Gradient < > DQN » World Models \—+ AlphaZero
> DDPG <
A2C / A3C < > C51 > I2A

> TD3 <

PPO < > QR-DQN > MBMF
> SAC <

TRPO < > HER > MBVE

[1] https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#id20



Conclusion

* RL provides a general-purpose framework for Al
* RL problems can be solved by end-to-end deep learning
e Reinforcement Learning + Deep Learning = Al ?



Conclusion

* RLis a very active research areal!

How do we learn fast? (RL is infamous for being data hungry)

How do we learn safely? (Don’t want my drone to crash during
training/testing)

How do we use memory for transfer/meta learning? (Learning one task
should be useful to execute other tasks)

How do we represent and learn hierarchical features? (Breaking down a very
large task to simple tasks, to reduce the complexity)

How do we learn from an expert? (Can the Al agent learn from human agents
demonstrations?)

How do we learn with multiple agents? (Especially if the agents are rational
and selfish)

’

* Would you like to do some cool research on RL?

Please send me an email!



