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How to enable interpretable
and Interactive machine learning?

How to enable automated 
knowledge discovery and learning?

Interpretable Machine Learning
( IML )

Automated Machine Learning
( AutoML )

Provide convenience for human to 
easily build the system

Provide explanations for human to 
easily understand the system
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1 Introduction to Interpretable Machine Learning

2

4

Interpretable Deep Learning

Applications To Four Domains

2

3 Evaluation of Interpretation

• Explaining CNN for Image Classification

• Explaining Recommender System

• Explaining Outlier Detection System

• Demo for Interpretable Fake News Detection
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Playing Go Medical Diagnosis

Scene Understanding Voice Recognition
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Playing Go Medical Diagnosis

Scene Understanding Voice Recognition
What have been learned inside the models?
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Why Interpretable Machine Learning

6

Safety of AI Models Trust of AI Decision

Policy and Regulation
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What is Interpretable Machine Learning
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[1] Bang, Seojin, et al. "Explaining a black-box using deep variational information bottleneck approach." arXiv preprint arXiv:1902.06918 (2019).
[2] Murdock et al. “Interpretable machine learning: definitions, methods, and applications”, PNAS 2019.

“Interpretable Machine Learning is the ability to explain or to present the 
behavior of a black-box ML model in understandable terms to a human” [1]

“We define interpretable machine learning as the extraction of relevant 
knowledge from a machine-learning model concerning relationships either 
contained in data or learned by the model. Here, we view knowledge as being 
relevant if it provides insight for a particular audience into a chosen problem. 
These insights are often used to guide communication, actions, and discovery.” [2]



Data Analytics at Texas A&M Lab

What is Interpretable Machine Learning
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ML 

Interpretable
ML 
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Interpretable Machine Learning

9

• Model-agnostic explanation 
• Broadly applicable to various machine learning models
• Treating a model as a black-box
• Does not inspect internal model parameters

• Model-specific explanation
• Specifically designed for each model
• Usually require examining internal structures and parameters
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Model-agnostic explanation (permutation-based)

10

Input X Permutated input Xp

Permutation feature importance
§ For each feature, do permutation, and then retrain the model 
§ Repeating this for n times for each feature, and compare the model accuracy
§ Rank accuracy
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Model-agnostic explanation (permutation-based)
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Input X Permutated input Xp

Feature importance vector
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Model-specific explanation

12
https://github.com/marcotcr/lime

Input X LASSO Model Output y

Interpretation to LASSO model:
Feature importance vector of

The linear weight β
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More Examples of IML
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Image Classification1

Medical Diagnosis2

Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. "" Why should i trust you?" Explaining the predictions of any classifier." KDD. 2016.
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1

2

4

Interpretable Deep Learning

14

3
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Interpretable Deep Learning

15

DNNs are regarded as black boxes DNNs make lots of progresses

Accuracy
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Interpretable Deep Learning Categorization

16

Interpretable constricts
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Post-hoc Explanation (Global)

17

Giving a global understanding about what knowledge has 
been captured by a DNN model

Activation maximation
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Post-hoc Explanation (Local)

18

Finding evidence for prediction “elephant”        
Explanation 
heatmap

Output probability

Input

Post-hoc Local Interpretation
§ Given an input instance
§ A pre-trained DNN
§ Contribution score for each feature in input
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Intrinsic Interpretable Model (Global)
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Globally interpretable models that offer a certain extent of
transparency about what is going on inside a model.

Zhang, Quanshi, Ying Nian Wu, and Song-Chun Zhu. "Interpretable convolutional neural networks." CVPR. 2018.

In interpretable CNN, each filer in high-layers represents a specific object part.
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Intrinsic Interpretable Model (Local)

20

Designing more justified model architectures that could explain 
why a specific decision is made

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html
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Intrinsic Interpretable Model (Local)

21

Designing more justified model architectures that could 
explain why a specific decision is made

Interpretation Visualization
--- Contribution score for each feature in input
--- Deeper color in the heatmap means higher    
contribution 

Interpretation heatmap

Hermann, Karl Moritz, et al. "Teaching machines to read and comprehend." Advances in neural information processing systems. 2015.
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1

2

4
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3 Evaluation of Interpretation
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Are the generated explanations 
faithful to the original model?

Are the generated explanations 
friendly to the human users?

Fidelity Persuasibility

Ensure the explanations can be 
easily comprehended by humans

Ensure the explanations can 
faithfully reflect the model

23
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Test 
Instance

Generated
Explanation

Target 
Model

Ablation Analysis

Observe prediction variation
for the certain label

If the generated explanation is faithful to the target model,
the prediction variation should be small.

MT Ribeiro, et al. "Why should I trust you? Explaining the predictions of any classifier." KDD, 2016.
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Fong, Ruth C., et al. “Interpretable explanations of black 
boxes by meaningful perturbation.” ICCV, 2017.

Image Feature Text Feature

Du, Mengnan, et al. “On attribution of recurrent neural network 
predictions via additive decomposition.” The WebConf, 2019.

Training Data Model Component

Koh, Pang Wei, et al. "Understanding black-box predictions 
via influence functions." ICML, 2017.

Narendra, Tanmayee, et al. "Explaining deep learning models 
using causal inference." arXiv, 2018.
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Evaluation with Bounding Box  

Long, Jonathan, et al. "Fully convolutional networks for 
semantic segmentation.“ CVPR, 2015.

Evaluation with Semantic Segmentation

Fong, Ruth C., et al. “Interpretable explanations of black 
boxes by meaningful perturbation.” ICCV, 2017.
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Evaluation with Text Annotation 

Du, Mengnan, et al. "Learning credible deep neural networks with rationale regularization." ICDM, 2019. 
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Lage, Isaac, et al. "An evaluation of the human-interpretability of explanation." arXiv, 2019.

Evaluation with Human-Computer Interaction (HCI)

Mental Model ?

User Satisfaction ?

User Trust ?
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1

2

4 Applications To Four Domains
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• Explaining CNN for Image Classification
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Data Model

Task
“ Why a specific instance 
has been classified into a 

certain category? ”

“ What are the model 
looking for when making 

the predictions? ”

“ Which part of data are 
most responsible for a 

specific prediction ”

Classification / Ranking / Outliers

CNN / CF / ODImage / Text / Tabular

Developer / Expert / End-User

Stake Holder

30
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Key factors
--- A pre-trained DNN and an input instance 
--- The prediction of DNN

Interpretation is to find evidence for prediction “elephant”        
Explanation 

heatmap

Input     

24%
74%Elephant�

Zebra�

2%Other�

Post-hoc Interpretation
--- Contribution score for each feature in input

31

Motivation: Using deep representations in intermediate layers to derive interpretations
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Elephant Zebra

1

2

How to guarantee that the interpretations are indeed faithful 
to the decision making process of the original CNN model? 

How to generate class-discriminative interpretation?

32
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Sub-network ∅ maps input "� to a representation #� �"� �

Aravindh Mahendran and etc, “Understanding deep image representations by inverting them”. CVPR, 2015.

Feature inversion to obtain how much information is preserved at each inner layer 

33
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• Guided feature inversion to preserve the object location in a mask

• Model target neuron in output layer to get class-discriminative interpretation

• Regularization by inner layers to further reduce artifacts

34
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Inverted input

NoiseWeight matrixOriginal input

Representation 
of the inverted 
input

Representation 
of the original 
input

35
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highlight suppress

Output of the 
target neuron

36
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Visualization comparison with 6 state-of-the-art methods 

Our interpretation can accurately identify the evidence for prediction

Question: Are the interpretations accurate, class-discriminative

and not affected by artifacts?              

37
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Interpretation results for three DNN architectures

Interpretations help capture the pros and cons 

of different network architectures.

38
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“elephant”“zebra”

Visualization for input with multiple foreground objects
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1

2

4 Applications To Four Domains
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• Explaining Recommender System
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Video

Music

Books Movies

Items

Friends Having deeper insights into 

RecSys may benefit from 

multiple ways:

For Customers ---

• Identify personal needs

• Facilitate decisions

For Vendors ---

• Make good strategies

• Choose effective target

For Deployers ---

• Debug the system

• Refine the system

41
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1

2

The latent factors of users and items learned by recommender 

systems are simply the uninterpreted vectors to humans.
9.1
1.2
6.3
…

2.5

1.1
8.7
4.9
…

4.5

7.6
7.5
1.3
…

5.5

What does it mean?

The possible interpretations for each recommendation can be 

rather diversified, and appropriate selections would be difficult.

Which interpretation 
would be influential?

42
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SEPà Sorted Explanation Path

43
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Node Type:     User Node                   Item Node                      Aspect Node 

Our Constructed HIN Structure ---

Link Type:       User-User           Item-Item         User-Item        Item-Aspect       

Network Schema:

44
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Latent-Factor Recommender System ---

… u …

…
 i… … r …

User-User
Similarity

Item-Item
Similarity

User-Item
Strength

Item-Aspect
Relevance

Dataset

Pearson Coefficients Pearson Coefficients Unified Score Binary Indicator

45
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To keep the process 

effective and efficient, we 

conduct the mining based 

on a depth-first-search

based algorithm with 

constraints on weight and 

length thresholds

46
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Candidate Path Set

Readability

Capability

Diversity

a specific path

Candidate Ranking Space

For each explanation path !, we have à

47
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We use the model built by Non-negative Matrix 
Factorization (NMF) as the targeting recommender systems

1

2

Applicability

Effectiveness

Mean Explainability Precision (MEP) & Mean Explainability Recall (MER) 

We knock out from training data the objects that appear in the interpretation 
results, and then retrain the whole system with the modified training data.

48
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The proposed SEP method is superior in MEP performance, and 
somewhat competitive in MER performance 

49
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The interpretations generated from 
SEP method are influential to the 
targeting recommender system, 

which indicates the effectiveness of 
the proposed method.

50
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1

2

4 Applications To Four Domains
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• Explaining Outlier Detection System
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The noteworthy objects with patterns or behaviors that significantly
deviate from the chosen background (or context)

o1
o2

o3
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• Hard to tell whether the detected outliers are relevant to 
the application scenario

• Existing metrics such as ROC AUC and nDCG are unstable 
or limited in measuring the performance

• Outlier Detection for UnitedHealthcare
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• The definition of interpretation for outlier detection.

• The design of a model-agnostic interpretation framework.

• Identification of  application-specific anomalies by 
utilizing interpretation with human prior knowledge.
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Given a dataset ! = {$%} and the detected 
outlier set      , the interpretation for each 
outlier                 is defined as:     

where   
: the context (e.g., k-nearest normal 

neighbors) of the outlier;
: clusters identified from the 

context;
: the set of outlying attributes;

: outlierness score.

Figure 1: An toy example explaining why 
context clustering is needed
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Decomposition

!": Local boundary

Synthetic sampling

• : The given outlier detector.
• There could be an imaginary classification boundary, denoted by     , to 

separate outliers from normal instances.
• We use     to interpret     :
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Classification error between Ci  and Oi

Local classification error between Ci,l and Oi,l

Cluster-wise 
decomposition
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Query Outliers

Context Clusters
(Two for each query)

Positive Outlying 
Regions

Negative Outlying 
Regions
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1

2

4 Applications To Four Domains
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• Demo for Interpretable Fake News Detection



Data Analytics at Texas A&M Lab 60

Is this a fake news?
How to identify this?

Any clues for detection?

Challenges:
Beyond Text Classifications ---

v More challenging given heterogeneous types of information

Hard to Achieve Effective Interpretations ---

v Various aspects including the person, the statement or the other contexts

Beyond the News Itself ---

v Further supports are needed to convince people about the interpretations
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Contents Attributes
News 

Statement
Auxiliary 

Information

XAI Detector

Prediction
Result

Content
Interpretation

Attribute
Interpretation

(Attribute à Significance)(Words à Weights)

Support
Example
• Ex. 1
• Ex. 2
• Ex. 3

Speaker    à

Contexts  à

Subjects   à

Targeting à

1

(Features à Contributions)2
f

TRUE

FAKE

weight
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Current AI Model
on Fake News Detection

Proposed XAI Model
on Fake News Detection

(http://www.fakenewsai.com/)

Prediction Labels Only

TRUE

FAKE

Key Components

Word Attributions

Linguistic Features

Labels Interpretations

Prediction Labels
+

Interpretations
+

Meta-Interpretations
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Available at: http://csedatasrv.cs.tamu.edu:3001
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Mengnan Du, Ninghao Liu and Xia Hu. Techniques for Interpretable Machine 
Learning, CACM, 2020.

64
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Deep Learning 
Developer

XDeep 
Package

Trained/Applied
Deep Model

Gap between Human Developers and Deep Models

Post-Hoc21 Architecture-Agnostic 3 Global + Local

Black Box Interpreter Keep Original Performance Interpret Model + Instance
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Interpretable Machine Learning

67

• Model-agnostic explanation 
• Broadly applicable to various machine learning models
• Treating a model as a black-box
• Does not inspect internal model parameters

• Model-specific explanation
• Specifically designed for each model
• Usually require examining internal structures and parameters
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How to enable interpretable
and Interactive machine learning?

How to enable automated 
knowledge discovery and learning?

Interpretable Machine Learning
( IML )

Automated Machine Learning
( AutoML )

Provide convenience for human to 
easily build the system

Provide explanations for human to 
easily understand the system

68
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Make machine learning an accessible tool ---

• to domain experts and data scientists

• by automating the end-to-end process from data to the result.

Data & Task
Preprocessing

Feature Engineering 
Model Selection 

Hyper-param Tuning

Training
Predicting

Result & Trained Model

69
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Given a dataset, find the best neural architecture and hyper-params 

and produce the prediction results.

Predicted 
LabelsLearning rate: 0.1

Batch size: 128
Epoch: 20

Learning rate: 0.025
Batch size: 64
Epoch: 200

Predicted 
Labels

70
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Open-Source Concise InterfaceSingle GPU

• We developed an AutoML System named Auto-Keras;

• It provides easy-to-use solutions to deep-learning tasks;

• Visit www.autokeras.com for more information.

71

http://www.autokeras.com/
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A Spectrum of Platform APIs

TensorFlow Keras KerasTuner Auto-Keras

Configurable Simple

Machine Learning Platform Ecosystem
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Interpretable Machine Learning Automated Machine Learning

Network Analytics Data Mining for Social Good

73
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v DATA Lab and Collaborators

v Funding Agencies

--- Defense Advanced Research Projects Agency (DAPRA)

--- National Science Foundation (NSF)

--- Industrial Sponsors (Adobe, Alibaba, Apple, JP Morgan, etc.)

v Everyone attending the talk!


