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Acute Myocardial Infarction and Heart Failure

Clinical Outcomes Research in Acute Myocardial Infarction
Procedures

Small Data from Big Data for Remote Sensing
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Systems for Personal 10T

Use machine learning models on clinical data to inspire new
sensing modalities.

Use personalized data to understand and update models in real-

time
Sensors
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Acute Myocardial Infarction
and Heart Failure
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(Dharmajan et al. 2015) [1]
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Dharmajan et al. 2015 showed
the relative risk for readmission
and mortality for a year after
hospitalization [1]

Still, trials that aim to reduce
Heart Failure readmissions have
been relatively unsuccessful
(Tele-HF, Beat-HF) [2][3]

Big Data/Machine Learning
models have modest accuracy in
predicting readmissions [4]
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Readmission Modeling

Observed Readmission Rates per Decile of Risk
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Heart Failure and Readmissions

* High Readmission rates impose a tremendous
burden on patients and healthcare systems. [5]

 Modeling of recovery has been challenging. [6]

* Cardiac rehabilitation programs have shown promise
but low adherence

— Limited program availability, cost of attending, cost of
transportation all impact performance [7][8]

— Home-based program too hard to follow, or approximate
too much and lose individual feedback and engagement
[9][10]
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End-to-end systems

e Start with fit patient trending to unfit
* Unfit patient trending to heart attack

* Heart attack causing damage to the heart
muscle

* Heart attack needing operation
* Post-operation recovery
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End-to-end systems

e Start with fit patient trending to unfit

* Unfit patient trending to heart attack

/+ Heart attack causing damage to the heart

muscle
* Heart attack needing operation

\* Post-operation recovery
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Time-Line

Electronic
Health Record
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(Mortazavi et al, 2017) [11]
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TABLE V
BEST MEAN AUC (95% CONFIDENCE INTERVAL (Cl), MODEL) FOR
PREDICTING RESPIRATORY FAILURE IN PCI PATIENTS

Results

TABLE VIII

BEST MEAN AUC (95% CONFIDENCE INTERVAL (Cl), MODEL) FOR

PREDICTING INFECTION IN PCI PATIENTS

Test Mean AU C (95% CI - Mean F-score Mean Top 20 Test Mean AUC (95% CI - Mean F-score Top 20 Precision
Configuration Model) Precision Configuration Model)

eRI 0.62 (0.53-0.71. GLM) 0.12 (0.01-0.22) 0.04 eRI 0.72 (0.54-0.89, XGB) 0.10 (0.00-0.20) 0.03
windowed eRI 0.63 (0.45-0.81. XGB) 0.15 (0.05-0.24) 0.07 windowed eRI 0.71 (0.54-0.88, XGB)  0.11 (=0.05-0.27) 0.01
lastRI 0.66 (0.59-0.73. GLM) 0.19 (0.10-0.28) 0.11 lastRI 0.64 (0.43-0.84, XGB)  0.10(-0.01-0.27) 0.02
windowed lastRI ~ 0.67 (0.48-0.85, XGB) 0.17 (0.07-0.27) 0.08 windowed lastRI 0.6 (0.54-0.88, XGB) ~ 0.13 (-0.06-0.21) 0.02
EHR-RI 0.80 (0.70-0.90, RF) 0.24 (0.11-0.37) 0.00 EHR-RI 0.81 (0.66-0.95, XGB) 0.12 (0.04-0.21) 0.03

EHR 0.81 (0.70-0.92,REF) 0.25 (0.12-0.37) 0.00 EHR 0.83 (0.72-0.93, XGB) 0.14 (0.04-0.23) 0.04
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Cardiac Rehabilitation

e Heart Rate and V02
 Exercise

* Resting Heart Rate, Respiration Rate, and
Blood Pressure

* First: Must understand variety of
measurements, intensities, and context the
data is gathered in
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Smartwatch > Smartphones

Table 1. Movements Captured

Phase ‘ Movement State | Activity Description

Sit - Stand
Stand - Sit
Transitions SI,[ ’ Ll,e Minimal Movement Transition
Lie - Sit
Stand - Lie
Lie - Stand

Using Phone (10 sec)
Brushing Teeth (10 sec)
Lifting Cup (10 times)
Swinging Arms(10 times)
Walk (10 sec)

Open Door (10 times)
Look at Watch (10 times)
Clean with broom (10 sec)
Typing (10 sec)
Activities of Daily Living Reading Book (10 sec)
Brushing Teeth (10 sec)
Look at Watch (10 times)
Bicep Curl (10 times)
Use TV Remote (10 sec)
Adjust Pillow (10 sec)
Text with phone (10 sec)
Lying Adjust in Bed (10 sec)
Reading Book (10 sec)
Adjust blanket (10 sec)

Step Forward 10 times
Step Backward 10 times

Standing

Sitting

Walk

STMI (Mortazavi et al 2015) [12] Fﬁ’! ‘ TEXAS A&AM 43
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Summarization of Data

Activity Level Overview
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(a) Daily transition and state information of a user from (b) Summary of Week
the trial
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Important Features

Features 1-10 11-20 21-30
Average Difference (a,) Mean (g,) Mean (a,.)
Average Difference (a.) Sum (g,) Sum (a.)

Median of Intensity of Gyroscope (||g]|)
Mean (g.)

Sum (g.)

Dominant Frequency (g.)

Energy (g.)

Root Sum of Squares (g.)

Root Mean Square (g.)

Peak Difference (g.)

STMI| .

Eigenvalues (a,)

Root Mean Square (a,)
Energy (a..)

Root Sum of Squares (a,.)
Standard Deviation (g.)
Variance (g.)

Variance (g,.)

Standard Deviation (g,)

Dominant Frequency (g..)
Energy (g.)

Root Mean Square(g,)
Root Sum of Squares (g,.)
Peak Difference (g, )
Peak Difference (g,)
Dominant Frequency (g,)
First Peak (g.)
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Understanding the Context

o
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BLE.\ @ + Requests limits

(Solis et al, 2019, 10TDI) [13]
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Deep Networks with EM
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M-step: maximizing event detection based upon environment

EVENT
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Reducing Labeling Burden
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Activity and Context
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Questions?

 bobakm@tamu.edu
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