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Dataset

m More than 10 billion data points from GPS, routing Apps, road cameras,...
m Average speed of vehicles (2min timestep) of 4700 road segments in Dallas
m Reported crashes to police dataset

m Collected by Texas A&M Transportation Institute for a year
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Motivation, Problem Statement

oble atement

u Real-time short-term traffic forecasting in transportation networks

Intelligent Transportation Systems (ITS)
m Collect and process traffic data in real-time
m Car traffic delays costs $45 billion?
m Detecting congestion and its effect on neighboring roads
n

Updating routing algorithms and traffic management strategies

1. https ://www.citylab.com/life/2013/10/us-transportation-system-has-100-billion-worth-
inefficiencies/7076/
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State-of-the-art Methods AT | TEXAS ASM
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Geometric Deep Learnin i et. al., 2018 - Cui et. al., 2

m Traffic prediction using graph convolutional recurrent neural networks

u Computationally very expensive
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Graph Signal Processing (Sandryhaila, Moura'13)

m Represent network as a graph G = (V, &)

m A is adjacency matrix
m D = diag(deg(v;)) is degree matrix
m L =D — Ais Laplacian matrix

m Data defined on nodes of the graph — graph data/signal

|

m Graph Signal Processing :
m Leveraging graph structure for graph data analysis
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Conventional Signals as Graph Signals i | TEXAS A6M
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\/_\ m Time : unweighted and directed

P @ ¢ ¢ o @ ) @ ) @
1 2 N-2 N-1 graphs
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® Images : unweighted and
undirected graphs

m Covariance : weighted and
undirected graphs
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Revisiting Discrete Signal Processing

m Define the time series signal as a graph signal on ring graph
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DSP operations can be derived from ring graph !
x[(n — k)n] = A*x = circular shift

A = VAV~ eigendecomposition = V1 = DFT matrix
DFT(x) = V™ 'x

Prediction of 1-D random processes using filters
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From DSP to GSP

H Discrete Signal Processing ‘ Graph Signal Processing
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DSP Vs. GSP cont. T | TEXAS AAM

H Discrete Signal Processing ‘ Graph Signal Processing
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Example : Aor L

A=VAV! S=VAV!

Fourier
F(x) = V~1ix GFT(x) = V~1ix
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Frequency Analysis of GFT AT | TEXAS ASM

= vi's (columns of V) are frequency atoms : x =), Xvi

m Total variation (TV) of a graph signal

TV() = Y Ajlx = x)°
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Eignevalues are frequencies !
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Joint Graph AT | TEXAS ASM,

Joint Fourier Transform

m L = graph Laplacian

m Lt = time series Laplacian

mLy=Lr @Iy +Ir Q) Lc = joint Laplacian

m U; = Ur Q Us = joint Fourier transform eigenvectors
m JFT(x) = Ujx where x = vec(XnxT).
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Joint Time-Vertex Wide-Sense Stationary Process

JWSS Random Processes

m Covariance matrix is jointly diagonizable with L,
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Joint Time-Vertex Wide-Sense Stationary Process A | TEXAS AXM.

JWSS Random Processes (Loukas et. al., 20

m Covariance matrix is jointly diagonizable with L,
m x = h(L))e
m ¢ ~ D(c,Iyt) and h is joint filter as a function of L
mLx= 0N><T and F(tl, tz) = F(l, 1+t — tl) = ’YT(LG)
m 7=ty — t; and vy is a graph filter
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Predictive Model for JWSS Process (Loukas et. al., 2016) A | TEXAS MM

m Signal in frequency domain uncorrelated in each frequency
m GFT of signal at each time step - uncorrelated time series in frequency

= Independent prediction models for time series at each frequency
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Peeking At The Dataset

m Line graph of network topology = consistent with GSP
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m Graph is too big! = not stationary

u Cluster the graph into smaller stationary subgraphs = how ?
m Separate predictive models for each cluster
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Principal Patterns

m Principal patterns on graph : spreading patterns of congestion in
transportation network - spatial relation
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m principal patterns are almost stationary subgraphs

[ use principal patterns to cluster the graph
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Stationary Graph Clustering

Extracting Principal Patterns from Historical Data

m Principal patterns : Weakly connected components of joint graph when
non-congested nodes are removed

= A road is congested if Travel Time Index (TTI) goes beyond a threshold

Current Travel Time of the Road

Travel Time Index = Free Flow Travel Time of the Road

Stationary Cluster

Combining adjacent L o ® \

principal patterns \d

\ \Principal Pattern 2/
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Numerical Results LG ]
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MAPE for Speed Prediction
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Numerical Results, cont.

0.3 | Temporal prediction
- == PCA prediction
—— Proposed spatio-temporal prediction

.. Normalized Absolute Error

Time Step
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Ongoing Works AT | TEXAS ASM

m Static graph embedding using variational graph autoencoders

m Dynamic link prediction using variational recurrent graph autoencoders
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Thanks!
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